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Abstract

In this article, we consider the output feedback eigenvalue assignment problem for
continuous and discrete-time control systems. This problem is formulated as un-
constrained matrix optimization problems and tackled by the Nelder-Mead simplex
method and particle swarm optimization method. The two methods are extended to
compute the approximate solutions of the eigenvalue assignment problem for the par-
ticular cases of decentralized and periodic control systems. The performance of the
methods is demonstrated numerically on several test problems from the benchmark
collection [22] as well as other test examples from the system and control literature.
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1 Introduction

In this article, we consider the following unconstrained optimization problem

min  f(K), (1)

KeRP*"

where f : IRP*" — IR is generally non-convex and non-smooth, and K is a matrix variable
representing the unknown. As an example of the optimization problem (1) consider the
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output feedback eigenvalue assignment problem (EAP) for continuous and discrete-time
systems. The EAP is an important problem in systems and control literature; see e.g. the
two surveys [5, 32].

A related problem to the EAP is the optimal output feedback design problem; see
e.g. the survey [32], which consists of finding an output feedback gain matrix variable
that minimizes a quadratic cost function in such a way that this output feedback gain
leads to an asymptotically stable closed loop control system. In fact, both problems have
been formulated as optimizations problems and have been tackled by various optimiza-
tion methods; see e.g. [5, 8, 26, 27, 32| and the references therein. As one solves the
optimal output feedback design problem the optimization method typically requires an ini-
tial stabilizing output feedback gain. At this stage it appears the need of the numerical
solver of the EAP to provide such a stabilizing output feedback controller. In addition,
the EAP has been of great importance in many applications in engineering and finance.
In optimal control literature there are numerous research articles that have been writ-
ten on different forms of the EAP for discrete or continuous-time systems among them
[1, 3, 5, 6,9, 10, 11, 14, 15, 16, 17, 18, 20, 21, 24, 25, 27, 30, 31, 34, 36, 38]. The problem
in its simplest form was first addressed by Wonham [36] in 1967. Since then, huge number
of publications have been proposed to tackle different formulations of this problem. In 1976
Moore [25] has given a characterization for the class of all closed loop eigenvectors of the
state feedback problem. One of the first to address EAP by output feedback was Davison [11]
and was extended by Davison and Chatterjee [9] and Sridhar and Lindhor [30]. Moreover,
Fu [14] has proven that the EAP is NP-hard.

Recently, Mostafa et al. [26, 27| tackled the EAP by gradient-based optimization methods.
Optimization techniques have been also used for eigenvalue assignment via output feedback
as demonstrated in [8]. Due to the nature of this problem of non-smoothness, where the
objective function is not everywhere differentiable, gradient-based methods for example face
difficulties to converge to a local solution. In particular, Newton’s method with trust region
[38] fails to converge with problems having repeated eigenvalues at the solution. This clearly
limits algorithms that require derivatives of the objective function to a class of problems
where the desired eigenvalues are distinct. This issue motivates us to use derivative-free
optimization methods to tackle this problem. Derivative-free methods have been appeared
since the 1950s (see [23]). The attractive side of these methods is to avoid calculating
gradients. In fact, derivative-free methods are quite effective in solving several types of
difficult optimization problems. We focus in this work on the Nelder-Mead (NM) simplex
method and particle swarm optimization (PSO) method; see e.g. [12] as a recent survey.

This article is organized as follows. The next section introduces the formulations of the
EAP problem for discrete and continuous—time systems together with some basic definitions.
In Section 3 we introduce NM simplex method for computing an approximate solution to
the considered minimization problems. In Section 4 we apply the PSO method to tackle the
same problems. In Section 5 the two methods are modified to approximately solve the EAP
for decentralized continuous-time systems. Section 6 extends the two methods to find an
approximate solution to the optimization problem corresponding to the EAP for periodic
discrete—time systems. In Section 7 we demonstrate the performance of the methods on
several test examples from the literature. Then we end with a conclusion.

Notations: The eigenvalues of a matrix M € R™ ™ are denoted by \;(M), i =1,...,m.
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The Greek letter p(M) denotes the spectral radius of a square matrix M. Sometimes and
for the sake of simplicity we skip the arguments of the considered functions, e.g., we use v
to denote vec(K) that stretches the matrix variable K into long column vector v.

2 Problem formulation and basic definitions
Consider the linear time-invariant control system with the following state space realization
dr = Az + Bu, z(0) =1z, y=Cuz, (2)

where ¢ is an operator indicating the time derivative d/dt for continuous-time systems and a
forward unit time shift for discrete—time systems. The vectors x € IR™, u € IR?, and y € IR"
are the state, the control input, and the measured output vectors, respectively. Moreover,
AeR™™ BeR™P?and C € R™™ are given constant matrices. We consider the control
law u = Ky to close the above control system which implies that

dr = (A+ BKC)x := A(K)z, x(0) = x, (3)

where A(K) = A+ BKC is the closed-loop system matrix and K € IRP*" is the output
feedback gain matrix which represents the unknown.

Let us consider in the following some basic definitions that will be used throughout the
work.

Definition 2.1 The spectral radius of a matrizc A € C™* ™ with eigenvalues A1, ..., A\, 18
defined as

p(A) =max { |N| @ i€{1,2,...,m}}.

Definition 2.2 The spectral abscissa of a matrix A € C™ ™ having eigenvalues Ay, ..., Ap
1s defined as

pu(A) = max{Re(N;) : i€ {l,...,m}}. (4)

It is well-known fact that the closed-loop system (3) of the continuous—time case is asymp-
totically stable if and only if u(A(K)) < 0 while the asymptotic stability for the discrete—time
system requires p(A(K)) < 1.

The eigenvalue assignment problem is to find an output feedback gain matrix K such
that the closed-loop system is in satisfactory stage by shifting the controllable eigenvalues to
desirable locations in the complex plane. In particular, for discrete-time systems we require
the spectral radius of the closed-loop system matrix A(K) to be strictly within the open
unit desk. In other words, let A, B, and C be given constant matrices. The attempt is to
find K € IRP*" that solves the following optimization problem:

min f(K)=p(A+ BKC) s.t. 9(K)=p(A+ BKC)—(1-71) <0, (5)

where 7 € (0,1) is a given constant and f : RP*" — TR, is generally nonconvex and
nonsmooth function.
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The inequality constraint of the problem (5) represents a cut to the objective function,
where the major task is to find a feasible point K to the problem (5). In fact this problem
can be regarded as the following unconstrained minimization problem:

min f(K) = p(A+ BKC) (6)

while we make sure of fulfilling the associated inequality constraint during the iterations of
the proposed method. Obviously we can stop the unconstrained minimization solver as soon
as the objective function becomes strictly less than one. However, we can run the method
until it achieves a satisfactory stability margin as indicated by the inequality constraint.
From a computational point of view, the unconstrained minimization solver when applied to
the problem (6) it typically reduces the objective function where the imposed cut is fulfilled
after finite number of iterations. Therefore, the focus is given to approximately solve the
unconstrained minimization problem (6).

On the other side, the EAP for continuous—time control systems is stated as follows.
Let A, B, and C be given constant matrices and let A, Aa, ..., An € C be given desired
eigenvalues. The EAP is to find a matrix variable K € IRP*" such that

N(A+BKC) =X, i=12,....m.

The EAP for continuous—time systems can be equivalently rewritten as: Find K € IRP*"
that solves the following nonlinear least—squares problem; see [26, 38]:

min  f(K) =

N —

Z(&(A(K)) = X ((A(K)) = A), (7)

where the superscript * denotes the complex conjugate.

Note that, optimization methods that require derivatives of the objective function when
applied to the problem (7) face difficulty because the eigenvalues of A + BKC' may not be
differentiable everywhere. Consequently, algorithms that require derivatives of the objective
function are only appropriate for problems where the desired eigenvalues are distinct. In this
work we will apply the Nelder—-Mead and particle swarm optimization methods to tackle the
two problems (6) and (7). In addition, we extend the two methods to tackle the EAP for
decentralized and periodic control systems.

3 Nelder—Mead method for EAP

Nelder-Mead (NM) simplex method [28] is one of the classical direct search methods. This
method was successful in solving various practical optimization problems. It is based on
comparing the objective function of the minimization problem on a finite set of vertices.
For an optimization problem with n variables the NM method searches for a minimizer of
the objective function by evaluating the objective on a set of n + 1 vertices. The method
continuously forms new simplexes by replacing the vertex having the worst objective value
with a new one. The new vertex is generated by reflection, expansion, and contraction
operations. Each iteration of the NM method begins with a non-degenerate simplex defined
by the given vertices and the associated values of the objective function.
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In our case, let us first focus on the minimization problem (6). For simple treatment
with the NM method and its vertices let us regard the p x r matrix space as a space of
IRP*" vectors, where the matrix variable K € IRP*" is stretched into a long column vector
v =vec(K) € R" where n = p-r. The initialization of the method is done by choosing
an initial guess Kj, where we assume that p(A(Kp)) > 1. Then we set vy =vec(K,) and
generate the remaining vertices of the starting simplex as

v; = vy + 0 e, 1=1,2,...,n, (8)
where 6 > 0 is a given constant and e; is the 7" column of the n x n identity matrix.
Let us be at iteration k and assume that the vertices {v; : i € {0,...,n}} are sorted
according to the objective function values as
J(EKox) < f(Kip) < ..o < f(Knp), (9)

where as we compute the objective function we reshape the vectors v;;’s back into the
corresponding matrices Kj;;’s. We define the set of vertices

S(k) = {UO,lm Viky - avn,k’}a (10)

and denote v? = vec(K}) and v* = vec(K}") the best and worst vertices of the set S(k) such
that

FORY) = min f(K), fEY) = max f(K). (11)

i=0,...,n =0,...,n
Moreover, let v, be the centroid of the face of the simplex calculated by the vertices of the
simplex S(k) except v}’. Hence,

n
’(_Jk = % (Z Uik — Ug) . (12)
i=0

If v} is the vertex corresponding to the largest value of the objective function among the
vertices of a simplex, one expects that the vertex v;¢ obtained by reflecting the vertex v}’
in the opposite face to have the smallest value. If this is the case, then we might construct
a new simplex by rejecting the vertex v}’ from the simplex and inserting the new vertex
v;°. In other words, the NM method seeks to replace v}’ by a vertex with a lower objective
function value. The simplex is updated in five different ways during an iteration. Except in
the case of a shrink, the worst vertex of the simplex at iteration k is replaced by one of the
reflection, expansion, or contraction points, each being associated with a scalar parameter «
(reflection), f (expansion), v (contraction), and ¢ (shrink). The values of these parameters
are such that « >0, > 1,0< vy < 1and 0 < < 1. The overall algorithm for computing
an approximate solution to the problem (6) is illustrated in the following lines.

Algorithm 3.1 (Nelder-Mead method for solving Problem (6))

1. Initialization: Let A, B, C' be given constant matrices, and let &« > 0,4 > 1,0 <y < 1
and 0 < ¢, Tolp < 1 be given constants. Choose K, € IRP*" then reshape it as a column
vector vg € IR" to be one of the initial simplex vertices. Then generate the remaining
n vertices as explained above and compute f(K;p), ¢ = 0,...,n. Arrange the n + 1
vertices so that (9) holds. Identify v5, v¥, and compute f(K}). If f(K}) < Tolp, stop;
otherwise set k£ <— 0 and go to next step.
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2. While f(K?) > Tolp and k < kyax, do

(i) Compute 041 using (12), set v;%; = Up41 + a(Vpq1 — v}, ), reshape v%, as K5,
and compute f;¢, = f(Kp%,).

(ii) (Reflection step) If f(K}p. ;) < frsy < f(KP.,), set vy == vj%,; and go to step
(vii).

(iii) (Expansion step) If fi¢, < f(KP,,) then compute v§,, = Ups1 + B(Oks1 — V1),
reshape v}, as K}, and compute f;. , = f(K; ). If fi < fi5q, set v, =
vj ., otherwise vy, ; := v;%; and go to step (vii).

(iv) (Outside contraction step) If f( zk:+1) < < f(KP,)Vi=0,....n, i#w,
then compute vpS, = Upq1 + V(v — Upq1), reshape vpS, as K,?Srl and compute
TS = FIKRL). W fes, < F(KGS,), set vty == vpS, and go to step (vii) otherwise
go to step (vi).

(v) (Inside contraction step) If fi$, > f(K}’,,), then compute v,iil = U1 — (V"¢ —

U+1) reshape vl as K5, and compute fi5, = f(K}5,). If fi5, < fKE,), set
v, = v, and go to step (vii) otherwise go to step (vi).
(vi) (Shrinking step) Set v; 41 = Ul[;+1 + 0(Vi g1 — v2+1), reshape v; p41 as K41 and
compute f(K;41) foralli=0,...,n, i #b.
(vii) Arrange the n + 1 vertices so that (9) holds and identify v}, and v}, ;.
(viii) Reshape v}, as K}, and compute f(K}_ ). If f(K},,) < Tolp, stop; otherwise
set k < k+ 1 and go to step (i).

End (do)

Remark 3.1 As explained in the introduction, numerical methods that seek optimal solution
of the static output feedback design problem require an initial stabilizing output feedback gain
matriz, i.e. K such that p(A(K)) < 1. Such a feedback controller can be provided by one of
the considered methods.

Therefore, it is reasonable to stop the NM method as soon as f(K?2) < Tolp, where
Tolp € (0,1) is a small number representing the stability margin.

In the following lines we list minor changes made on Algorithm 3.1 to tackle the mini-
mization problem (7) of the EAP for continuous-time systems.

e The initialization step: Similar to Algorithm 3.1, except we replace the objective func-
tion f by f as defined in the problem (7). Moreover let A1, Agy .., Am € C be given
desired eigenvalues. Replace the constant Tolp by a given constant AverFune (0,1)
for the stopping condition.

e Replace the convergence criterion ‘While f(K?) > Tolp and k < kpyax, do’ by ‘While
Yoo f(KGk)/(n+1) > AverFun and k < kpax, do’, where f(K) is given by (7).

e Within the main loop the steps (i)-(vii) are the same except we replace f by f and
the stopping condition becomes: ‘If > " f( ik+1)/(n+ 1) < AverFun, stop’.

Remark 3.2 The stopping criterion for NM method when solving the minimization prob-
lem (7) is such that the average objective function value over the current simplex is required
to be less than a prescribed tolerance AverFune (0,1).
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4 Particle swarm optimization algorithm for EAP

The particle swarm optimization (PSO) method is an evolutionary algorithm that can solve
difficult optimization problems; see e.g. the recent survey [12]. This method was proposed
in 1995 by Kennedy and Eberhart, see [12], and recently has gained increasing popularity
with its performance in solving various optimization problems. PSO algorithm is a direct
search method that is based on population. It has been inspired by the behavior of natural
groups, e.g. birds, fish or bees swarm. The idea of a PSO method is to find at each iteration
the best available solution by adjusting the moving vector of each particle according to its
best solution it has achieved so far (cognition aspect) and the global best (social aspect)
positions of particles in the entire swarm.

Let v; =vec(K;) € R", i =0,1,...,n be the current vertices representing the population
(swarm) of size n + 1 and dimension n. Note that the size of the swarm is not necessarily
more than the unknowns vector by one. The change of the particles positions at iteration &
are represented by the velocities V;(k), i =0,1,...,n.

Populations of particles modify their positions based on the best positions visited earlier
by themselves and other particles. All particles have fitness values that are evaluated by
the fitness function of values F; = f(K;), i =0,1,...,n to be optimized. In every iteration
k, each particle is updated using specific two best values, namely, the particle best position
v®(k), which is the best solution so far calculated by the current population, and the global
best ¢°(k), which is the best value obtained so far by any particle in the population (among
all particles) until the kth iteration.

The velocity of the i'" particle {V;(k)}, is given as [V;;(k), -, Vin(k)] and is updated
by

Vij(k +1) = wV; (k) + ey randy (v} (k) — vij(k)) 4+ carandy(g) (k) — vij(k)), Vi,5, (13)

where ¢; and ¢y are given constants, rand; and rands are uniform random numbers within
[0, 1]. Moreover, w is called the inertia weight which is updated as

k
(wmax - wmin); (14)

w(k) = Wmax — -
where wWinin, Wmae > 0 are given constants and k., is the iterations limit.
A new " particle position v; ;(k + 1) is calculated by the previous particle position and

its achieved velocity vector, based on (13):
Ui?j(k? + 1) = U@j(kﬁ) + ‘/;7]‘(]{7 + 1), v i, j (15)

The initial velocities might be chosen as V; ;(0) = 0.1 x v;;(0), V1, j.
The PSO algorithm is stated in the following lines.

Algorithm 4.1 (PSO method for solving Problem (6))

1. (Initialization) Let A, B, C be given constant matrices, let wpi, € (0, 1), wnax € (0,1),
c1 € (0,2), o € (0,2), Tolp € (0,1) be given constants. Choose a starting swarm
position v;(0) € IR" and set V;(0) = 0.1 x v;(0), ¢ = 0,1...,n. Calculate the fitness
of the particles F;(0) = f(K;(0)), ¢ = 0,1,...,n. Then identify the index of the best
particle v”(0) and ¢”(0). Reshape ¢°(0) as K(0) and compute the objective function
Fp(0) = f(Kp(0)). If Fp(0) < Tolp, stop; otherwise set k < 0 and go to next step.

377



El-Sayed M.E. Mostafa, Fatma F.S. Omar

2. While Fj(k) > Tolp and k < kmax, do

(i) Compute w(k) using (14).

(ii) Update the velocity V;(k + 1) and the position v;(k + 1) of particles using (13)
and (15), respectively.

(iii) Reshape the positions v;(k + 1) into the matrices K;(k + 1) and compute the
fitness FF*' = f(K;i(k+1)), i = 0,1,...,n and identify the index of the best
particle v*}(k + 1).

(iv) Update v°(k + 1) for all the population i = 0, 1,...,n:

If Fy(k+1) < Fi(k) set v2(k +1) = v;(k + 1)
else set v’ (k + 1) = v} (k).

(v) Update g°(k + 1) of the population:
If Fri(k+1) < Fy(k) set ¢°(k+1) = v* (k+1) and v*(k+ 1) = 0" (k+ 1)
else ¢°(k + 1) = ¢°(k).
(vi) Reshape ¢”(k+1) as the matrix K (k+1) and compute the corresponding fitness
function Fu(k +1) = f(Kp(k+1)). If Fp(k 4+ 1) < Tolp, stop; otherwise set
k < k+ 1 and go to step (i).

End (do)

In the following lines we list the main changes made on the PSO algorithm 4.1 to tackle
the minimization problem (7) representing the EAP for continuous—time systems.

e The initialization step: It is similar to Algorithm 4.1 except we replace the objective
function f by f assuming that A, Ao, ..., A\, € C are given desired eigenvalues.

e Replace the convergence criterion ‘While f(K®(k)) > Tolp and k < kyax, do’ by ‘While
Yoo f(KG(K))/(n+ 1) >AverFun and k < Kpyax, do’.

e Within the main loop the steps (i)—(vii) are the same as in Algorithm 4.1 except
we replace f by f as defined in (7) and the stopping condition is changed into: ‘If

A

Yoo f(K(k+1))/(n+1) < AverFun, stop’.

5 The EAP for decentralized systems

Decentralized control systems appear in different models such as in electric power systems,
communication networks, large space structures, robotic systems, economic systems and
traffic networks, etc, see e.g. [29, 33] and the references therein. These systems are char-
acterized as large-scale which are therefore composed of lower order subsystems. In the
following we consider the continuous—time linear time-invariant decentralized system with
n control stations:

n

x(t) = Az(t) + Z Biu;(t), x(0) =z, wi(t) = Cix(t), (16)

i=1
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where x € R, u; € IR”*, and y; € IR are the state, the control input, and the measured
output vectors, respectively. Moreover A € IR™*™, B, € R™*? C; € R"*™, i =1,...,n are
given constant matrices.

This system is closed using the following control law

wi(t) = K;yi(t), i=1,...,n, (17)

which yields:
B(t) = (A+ > BIKC)a(t) = Aa(Ky, Ko, ... Kz)x(t),  x(0) = o, (18)
=1

where Ay (-) = (A+ E?:l B;K;C;) and K; € IRP"" are the output feedback gain matrices.
By introducing the following augmented matrices it is straightforward to rewrite the
decentralized control system (16)—(17) in the original structure (2) and (3):

B=[B, ... By], c=[cT ...cI". (19)

The corresponding closed-loop system matrix is A, (K) = A + BKC, where the output
feedback gain matrix K takes the block-diagonal structure

K = diag(Ky, ..., K3). (20)

The EAP for the decentralized control system (16)-(17) is stated as follows. Let A1, Az,
..y, Am € C be given desired eigenvalues, which are assumed to be closed under conjugation.
The goal is to find output feedback matrices K1, K, ..., K; such that

Mi(Aa(Ky Ko, Ka)) = A, i=1... m. (21)

Similar to the problem (7) the EAP for decentralized systems can be stated as the following
nonlinear least-squares problem

min f(Ky, . K) = 5 D u(Aa() = ) (AilAa() = A, (22)

=
=
3
N | —

where the superscript * denotes the complex conjugate. Therefore, the attempt is to find
Ky, ..., Kj that assign the eigenvalues of the closed-loop system matrix A.(-) as close as
possible to the desired vector A € C™ of desired eigenvalues.

Clearly, we can apply the NM simplex method or PSO method to compute an approximate
solution to the minimization problem (22) similar to the treatment used with the problem

(7).

6 The EAP for linear periodic systems

Periodic time control systems have been studied recently in several research articles in par-
ticular for the stabilization of systems of walking and hopping robots, see among others
(2,4, 7, 13, 37]. Consider the following linear discrete—time periodic control system

w(t+1) = A@)z(t) + Bt)u(t), y(t)=CH)z(t), t=0,1,2,..., (23)
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where z € R™, u € IR?, and y € IR" are the state, the control input, and the measured
output vectors, respectively. Moreover, A(-) € R™*™, B(-) € R™" and C(-) € R™™ are
given d—-periodic matrices, i.e.,

A(t+d)=A(t), B(t+d)=DB(), Cit+d)=C({), ¥Vt d=>1. (24)

Let us also consider the following control law to close the system (23)—(24):

u(t) = K(t)y(t), (25)
where K (t +d) = K(t) for all t and d > 1. This yields
w(t+1) = (A(t) + B{)K(6)C1)) x(t) := Aa(K(t))x(t),
where
Aa(K(1)) = (A(t) + B(t)K(1)C(1)),
ACZ(K(t+d)) :Acl(K(t))7 t:071a2a
Note that, the control system (23) is time-variant. However, it is straightforward to
restate it as a linear time-invariant system. Consequently, the two methods of NM and
PSO can be extended to tackle the EAP for periodic systems. The formulation of the given

system as a linear time—invariant one is described in the following lemma; see [37, Theorem
1] for a similar result.

Lemma 6.1 Consider the linear periodic discrete-time system (23)—(24) together with the
control law (25). This system is equivalent to the following augmented linear time—invariant
system:

7+ 1) = ADz(0) + Bda(®), @’ () =[0,0,....0],
§(t) = C(Dz(D), {=0,1,..., (26)

with the output feedback control law:

u(t) = Ky(t) (27)
where
o (td) u(td) y(td)
#(0) = m(tds+ 1) alh) = u(tdz+ 1) 50 = y(tdz+ 1)
| z(td+d—1) u(td+d—1) y(td+d —1)
[0 0 A(0)
PR 0 A(l):A(O) |
(0 - 0 A(d—1)... A(1)A(0)
[ B(0) 0
. A(1)B(0) B(1) 0
| Ad-1). .:.A(l)B(O) A(d—1). i} A(2)B(1) B(d:— 1)
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where A € R™ 4™ B ¢ R gnd

0 - 0 C(0)
o (:] (:) C(l)i‘ld(o) |
0 «oo 0 Cld—1)Au(d—2)... Au(0)

K = diag(K(0), K(1),..., K(d —1)).

Proof. See [37, Theorem 1]. O

The drawback of considering this approach to tackle the EAP for periodic systems is the
increase of the size of the associated system matrices. However, in the rest of this section
we consider an alternative approach.

Lemma 6.2 Consider the linear periodic discrete—time system (23)—(24) together with the
control law (25). This system is equivalently rewritten in the following closed form:

z(t+d)=Ag(K(t+d—1)Aq(K({t+d—2))... Au(K(0))z(t)
= (K(0),K(1),...,K(t+d—1))z(t),

where

G(K0), K(1), ..., K(t+d—1)) = Ag(K(t +d —1)Ag(K({t +d—2))... Ag(K(t)) (28)
is the closed-loop monodromy matriz of the system. It follows that
ot +td) = Y(Aa(K(t))z(t + (E - 1)),

where v is given by (28). In particular, let us denote x(td) = z(t). Ift = 0, then this yields
the time-invariant discrete—time system

z(t+1)=¢(K(0),KQ1),...,K(d—1))xz(t),
where
Y(K(0),K(1),...,K(d—1)) = Aa(K(d—1))Aaq(K(d —2)) ... Aq(K(0)). (29)

Proof. See [4, Sec. 2.4]. 0
The eigenvalues of the monodromy matrix are called characteristic multipliers. It is known
that the control system (23)—(25) is asymptotically stable if and only if all eigenvalues of its
monodromy matrix 1 lie in the open unit disk, see e.g. [4, Proposition 3.3].
For the control system (23)—(24) with the control law (25) the periodic eigenvalue assign-
ment problem is to find matrices K(0), K(1),...,K(d — 1) € RP*" that solve the following
minimization problem:

V() —1+7<0, (30)
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where () is as defined in (29) and 7 € (0, 1) is a given constant. Similar to the treatment
in the previous sections and instead of considering the constrained problem (30) we rather
consider the following unconstrained minimization problem:

min f(K<O)aK<1)7"'7K<d_ 1)) = p(¥(-), (31)

where 9(-) is given by (29). The proposed NM and PSO methods are stopped as soon as
the achieved K(0), K(1),..., K (d — 1) are feasible with respect to the inequality constraint
of the problem (30).

In the following we modify both of Algorithms 3.1 and 4.1 to tackle the problem (31)
under the following changes. First, the changes made on Algorithm 3.1 are the following:

e The initialization step: It is similar to that given in Algorithm 3.1 except for the given
data matrices we assume that A(l), B(l), C(l), [ =0,1,...,d — 1 be given constant
matrices. Choose Ko(l) € IRP*", reshape them as the column vectors vo(l) € R*", | =
0,1,...,d—1, and set vy = [(vo(0))7, ..., (vo(d—1))T]* to be one of the initial simplex

vertices. Generate the remaining d x n vertices as explained in (8) and compute

f(Ko(0),..., Ko(d — 1)). Arrange the d x n + 1 vertices so that (9) holds. Identify
vy, v¢ and compute f(K§(0),..., Ki(d—1)). If f(K}(0),...,Kb(d—1)) < Tolp, stop;
otherwise set k <— 0 and go to the next step.

e Convergence criterion: It is changed into ‘While f(K?2(0),..., K!(d —1)) > Tolp and
k < kpas, 4O,

e Within the main loop keep steps (i) to (vii) as in Algorithm 3.1 except the objective
function f is replaced by f as defined in (31).

The following changes are made on Algorithm 4.1 to tackle the EAP (31) for periodic
systems:

e Initialization: Let A(l), B(l), C(l) be given constant matrices. Choose Ky(l), | =
0,1,...,d — 1, reshape them as the long column vectors v € R™ i =0,1,...,nd,
and set v° = [(v3(0))T, ..., (v9,(d — 1))T]T to be one of the initial simplex vertices.
Compute the fitness function of the particles

FO = F(KQ0),..., K,(d—1)), Vi

and find the index of the best particle vy and gj(I). Reshape gy(I) as Ky(1)Vl and
compute the objective function Fgg = f(Kgg(O), . '=K33<d —1)). If Fgg(O) < Tolp,
stop; otherwise set k <— 0 and go to the next step.

e Convergence criterion: It becomes ‘While Fg{f > Tolp and k < kpqq, do’.

e Within the main loop let steps (i) to (vi) the same as in Algorithm 4.1 except the
objective function f is replaced by f.
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7 Numerical results

In this Section, we have developed a Matlab implementation of the NM and PSO methods
to tackle the minimization problems (6) and (7) as well as the problems (22) and (31) that
correspond to the EAP for decentralized and periodic systems. Seven test problems are
introduced in detail to show the performance of the two methods to assign the eigenvalues of
the considered control systems in the desired region in the complex plane. In particular, for
discrete—time systems the focus is given to achieve stabilizing output feedback controllers to
the considered systems with satisfactory stability margin. For continuous—time systems it is
desirable for the eigenvalues of the closed-loop system matrix A(K) to be in the negative
side of the complex plane. Therefore, we choose the desired eigenvalues as N = Ai(A) —
u(A) —s, i =1,...,m, where is the spectral abscissa of the matrix A as defined in (4) and
s is the imposed shift in the negative side of the complex plane.

In addition, the two methods are compared with respect to number of iterations and CPU
time on wide range of test problems. All computations are carried out on Laptop with 1.8
Ghz Core Duo CPU and 2048 MB RAM.

Some of the considered test problems are chosen from the benchmark collection COM-
Pleib [22], while other test problems are collected from different sources of the system and
control literature. Note that the test problems from the benchmark [22] are for continuous—
time systems. The function c2d from the control system toolbox of Matlab is considered
to convert continuous-time models into its discrete-time counterparts and to provide the
constant data matrices A, B, and C. The starting point K is often generated randomly.

In our experiment we used the following values for the stopping conditions of the two
algorithms

AverFun = 10™*, MaxIter = 500, Tolp = 0.98.

The considered parameters of the NM method have been set as follows
c=05 a=1, =2, v=0.5, 6§ =0.5,
and the following values were assigned to the parameters of the PSO method

1 =2xrand(l), co =2xrand(l), wnin = 0.4, Wpax = 0.9.

7.1 The EAP for discrete—time systems

The following two examples describe in detail the performance of the NM and PSO methods
on the minimization problem (6). Again, in each example the goal is to determine an output
feedback control gain for the underlying control system that represents an approximate
solution of the optimization problem (6).

Example 7.1 This test problem represents a third—order control system with one control
input and two measured outputs ([22, NN1]). The data matrices for the corresponding
discrete—time system are the following

1.0000 0.1022 0.0051 0.0002 0 -1
A= 0 1.0657 0.1022 | ,B= | 00051 | ,cT=| 5 -1
0 1.3284 1.0657 0.1022 -1 0
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The spectral radius of the system matrix A is 1.4341. The two methods of NM and PSO
require 27 and 19 iterations, respectively, to achieve the following stabilizing output feedback
controllers K¥M and K5, The starting and achieved output feedback gain matrices are
the following

Ko=[2.9080 0.8252 ],
KM =1[8.3266 86.2021 |, K{°9 = [ 5.9707 67.8677 |.

The values of objective function at the initial and achieved final K are, respectively,

f(Ko) = 14711,  f(KYM) =0.8432, f(KL59) = 0.9259.

Example 7.2 This test problem is obtained from the benchmark collection [22, HE1], which
represents the longitudinal motion of a helicopter. The corresponding discrete—time system
has the following data matrices:

0.9964 0.0026 —0.0004 —0.0460 0.0445  0.0167
A 0.0045 0.9037 —0.0188 —0.3834 B 0.3407 —0.7249

0.0098 0.0339  0.9383  0.1302 |’ —0.5278  0.4214 |~

0.0005 0.0017  0.0968  1.0067 —0.0268  0.0215

c=[0100].

The spectral radius of the system matrix A is 1.0280. Starting from the same K, the
two methods of NM and PSO require 15 and 7 iterations, respectively, to achieve stabilizing
output feedback controllers with the least possible objective function value. The initial and
achieved output feedback gain matrices are the following

[ rasu var_ | 05559 L pso [ 0.6205
Ko = { —0.7776 ] K" = { 2.5693 1 K= 98300 |

The objective function at the starting and achieved final output feedback gain is of values

f(Ko) = 1.9435,  f(KYM)=0.9794, f(KEF59)=0.9791.

In Tables 1 and 2 we report the performance of the NM and PSO methods on the mini-
mization problem (6). Table 1 shows the performance of the two methods on test problems
from the benchmark collection [22], while Table 2 shows the performance of the two methods
on test problems from different sources from the literature. Moreover, Table 3 shows the
average number of iterations and average CPU time for the two methods on the considered
set of test problems of the former tables. As can be seen the PSO method outperforms the
NM simplex method with respect to CPU time and number of iterations.
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Table 1: EAP for discrete-time systems: Performance of the NM and PSO methods on test
problems from the benchmark collection [22].

Problem size NM PSO
Problem | n p r No.it. CPU | No.it. CPU
AC1 5 3 3 7 0.34 13 0.09
AC3 5 2 4 5 0.20 3 0.08
AC4 4 1 2 33 0.50 103 0.11
AC5 4 2 2 36 0.53 20 0.08
AC6 72 4 7 0.27 4 0.08
ACT 9 1 2 98 1.22 117 0.09
ACS 9 1 5 12 0.37 2 0.08
AC9 10 1 5 116 1.36 49 0.20
AC11 5 2 4 52 0.78 28 0.11
AC12 4 3 4 21 0.45 3 0.05
AC15 4 2 3 6 0.30 7 0.08
AC16 4 2 4 6 0.23 5 0.08
AC17 4 2 2 2 0.25 3 0.06
HE1 4 2 1 15 0.36 7 0.08
HE2 4 2 2 5 0.23 5 0.06
HE3 8 4 6 298 3.54 15 0.11
HE4 8 4 6 115 1.23 6 0.09
HE5 8 4 2 498 4.96 131 0.23
REA1 4 2 3 8 0.27 11 0.06
REA2 4 2 2 2 0.20 5 0.09
REA3 12 1 3 70 0.98 105 0.14
REA4 8 1 1 1 0.14 3 0.06
DIS1 7T 4 4 31 0.55 5 0.06
DIS2 3 2 2 4 0.23 4 0.05
DIS3 6 4 4 4 0.27 3 0.08
DIS4 6 4 6 108 1.26 13 0.11
DIS5 4 2 2 3 0.22 2 0.14
TG1 10 2 2 21 0.45 24 0.09
UWV 8 2 2 9 0.34 1 0.06
CSE1 20 2 10 147 1.86 19 0.19
CSE2 60 2 30 500 19.94 110 15.74
EB1 10 1 1 30 0.53 107 0.09
TF1 72 4 313 3.39 119 0.19
NN1 3 1 2 27 0.50 19 0.06
NN2 2 1 1 2 0.22 4 0.09
NN4 4 2 3 5 0.23 5 0.06
NN5 7 1 2 90 1.15 114 0.11
NN8 3 2 2 3 0.23 4 0.06
NN9 5 3 2 53 0.78 18 0.09
NN13 6 2 2 18 0.36 69 0.11
NN14 6 2 2 24 0.48 7 0.09
NN15 3 2 2 15 0.37 13 0.06
NN16 8 4 4 44 0.59 5 0.06
NN17 3 2 1 2 0.22 3 0.05
DLR1 10 2 2 22 0.45 24 0.06
WEC1 10 3 4 7 0.28 2 0.06
WEC2 10 3 4 8 0.33 3 0.08
WEC3 10 3 4 7 0.27 4 0.09
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Table 2: EAP for discrete-time systems: Performance of the NM and PSO methods on test
problems from different sources.

Problem size NM PSO
Problem [ n p T No.it. CPU | No.it CPU
(16] 4 2 4 7 0.33 4 0.08
(3] 5 3 2 5 0.22 5 0.08
(1] 4 2 2 7 0.28 8 0.08
6] 6 2 3 3 0.23 3 0.06
35] 3 1 2 6 025 4 008
(19] 2 2 2 12 0.31 11 0.09
(17] 8 4 3 41 0.66 12 0.06
(16] 5 2 5 89 1.12 16 0.09
[10] 3 2 2 7 0.33 5 0.06
(31] 5 2 4 20 0.39 8 0.06
[21] 4 2 2 14 0.39 4 0.05
[21] 6 3 2 40 0.66 28 0.11
[21] 5 3 2 42 0.56 13 0.09
(30] 4 3 2 14 0.42 9 0.08
(30] 4 2 2 11 0.31 9 0.08
(30] 4 3 3 4 0.25 4 0.05

Table 3: EAP for discrete-time systems: Comparison between the NM and PSO methods
on the considered test problems of Tables 1 and 2.

NM | PSO
Average no. of iterations | 50.5 | 23.26
Average CPU-time (sec.) | 0.95 | 0.33
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7.2 The EAP for continuous—time systems

The following two examples demonstrate the performance of the NM and PSO methods for
finding an approximate solution to the EAP (7) for continuous—time systems.

Example 7.3 This test problem is from the benchmark collection[22, DIS2], which has
three state variables, two input variables and two measured output variables and has the
following data matrices:

-4 21 10 10
A= 3 2 5|,B=|10],cT=]00
-7 0 3 0 1 11

The system matrix A has eigenvalues —6.3509, 1.6755, 1.6755. The desired eigenvalues
\’s are such that the shift is s = 0.3 in the negative side of the complex plane, which are
namely —8.3264, —0.3000, —0.3000. Starting from the same K{ the two methods of NM
and PSO require 68 and 197 iterations with CPU times 0.97 and 0.31, respectively, to achieve
the following output feedback gain matrices

Ko— 0.4094 0.4626 M _ 4.1724 4.3972
071 0.2385 0.7591 |’ T | 0.9595 —10.0893 |’

gopso _ [ 24544 13151
fin 0.8794 —8.3759 |-

The corresponding objective function of the problem (7) at the starting and achieved final
K is of values

F(Ko) = 17.2279, f(KNM) = 4.9595 x 107°, f(KL%°) =8.0159 x 107.
fin fin

Example 7.4 This test problem is borrowed from [30, SL5| of fourth order control system
which has the following data matrices

1 0 0 0 100
o =2 0 o0 lo1o o
A=lo 0 =3 ol B |loo 1078

0 0 0 —4 11 1

The system matrix A has the eigenvalues —4, —3, —2, 1. The desired eigenvalues \;’s are
chosen as —5.3, —4.3, —3.3, —0.3. Starting from the same Kj the two methods of NM and
PSO require 124 and 199 iterations with CPU times 1.67 and 0.61, respectively, to reach the
least possible output feedback gains. The starting and the achieved final output feedback
gain matrices are the following

[ 0.6957 0.4736 0.2798
Ko= | 0.6279 0.9497 0.4470
| 0.4504 0.0835 0.5876

[ —1.3415  0.8498  0.6204 ]

—2.1399  2.0307  2.4550
JKEM = | 1.0197 —0.9836  0.4033 |,
0.2153  0.5881 —2.8372

KPS0 = | —0.4112 —1.4770  0.7279
0.3956  0.2753 —1.0107

The objective function has the following values at the corresponding K

F(Ky) = 37.9842, f(KNM) = 4.4042x107°, f(KE9) = 3.5893x107°.
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Table 4: The EAP for continuous—time systems (s = 0.1): Performance of the NM and PSO
methods on test problems from the benchmark collection [22] and other sources.

Problem size NM PSO
Problem [ n p T No.it CPU | No.it CPU
AC1 5 3 3 154 1.97 81 0.30
AC3 5 2 4 69 1.03 140 0.44
AC12 4 3 4 252 3.00 141 0.59
AC15 4 2 3 89 1.28 100 0.27
AC16 4 2 4 76 1.01 80 0.27
HE2 4 2 2 63 0.94 500 0.76
HE4 8 4 6 500 6.15 167 1.64
REA1 4 2 3 96 1.33 239 0.51
REA2 4 2 2 73 1.08 212 0.36
DIS2 3 2 2 55 0.89 81 0.17
DIS3 6 4 4 500 5.83 500 2.71
DIS4 6 4 6 497 5.65 178 1.50
NN2 2 1 1 5 0.31 106 0.11
NN4 4 2 3 43 0.69 44 0.14
NN8 3 2 2 35 0.67 49 0.17
NN15 3 2 2 40 0.64 109 0.23
[16] 4 2 4 101 1.56 72 0.23
[16] 5 2 5 249 2.82 90 0.33
[10] 3 2 2 165 2.06 500 0.72
[3] 5 3 2 240 2.82 169 0.48
[1] 4 2 2 114 1.59 500 0.73
[21] 4 2 2 399 4.84 500 0.72
[30] 4 3 2 159 2.28 500 0.98
[30] 4 2 2 103 1.45 500 0.76
[30] 4 3 3 110 1.51 92 0.33
[6] 6 2 3 235 2.70 500 1.19
[19] 2 2 2 41 0.70 65 0.14

Table 5: The EAP for continuous—time systems (s = 0.1): Comparison between the NM and
PSO methods on the considered test problems of Table 4.

NM | PSO
Average no. of iteratons | 165.29 | 230.18
Average CPU-time (sec.) 2.10 0.62

Table 4 shows the performance of the NM and PSO methods on the minimization prob-
lem (7) with respect to test problems from the benchmark collection [22] as well as test
problems from the literature. The desired eigenvalues N, i = 1,...,m of the minimiza-
tion problem (7) are chosen such that the eigenvalues of A(Kjy,) are sufficiently shifted in
the negative side of the complex plane as explained at the beginning of the section, where
s =0.1.

Table 5 shows the average number of iterations and average CPU time for the NM and
PSO methods. As can be seen the PSO method outperforms the NM method with respect
to CPU time. Although the NM method requires less average number of iterations, but the
increase of the CPU time is due to the increase of the number of function evaluations per
iteration in that method.

We also ran the two methods on the problem (7) after adding extra shift on the desired
eigenvalues in the negative side of the complex plane, namely s = 0.3. Table 6 shows the
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Table 6: The EAP for continuous—time systems (s = 0.3): Performance of NM and PSO on test
problems from the benchmark collection [22] and other sources.

Problem size NM PSO
Problem [ n p T No.it CPU | No.it CPU
AC1 5 3 3 175 2.71 196 0.67
AC3 5 2 4 74 1.36 57 0.22
AC12 4 3 4 331 4.38 239 1.20
AC15 4 2 3 111 1.58 85 0.25
AC16 4 2 4 105 1.45 89 0.30
AC17 4 2 2 57 1.00 106 0.20
HE2 4 2 2 112 2.00 500 0.80
REA1 4 2 3 114 1.61 245 0.53
REA2 4 2 2 149 2.03 500 0.69
DIS2 3 2 2 68 0.97 197 0.31
NN4 4 2 3 82 1.26 115 0.30
NN8 3 2 2 53 0.87 29 0.09
NN15 3 2 2 107 1.40 62 0.14
[16] 4 2 4 120 176 75 0.25
[16] 5 2 5 416 6.36 356 1.23
[10] 3 2 2 227 2.67 500 0.72
[3] 5 3 2 275 4.01 500 1.20
[1] 4 2 2 187 2.82 500 0.73
[30] 4 3 2 193 2.39 500 0.97
[30] 4 2 2 119 1.78 500 0.78
[30] 4 3 3 124 1.67 199 0.61
6] 6 2 3 264 412 | 491 117
[19] 2 2 2 43 0.75 255 0.39

Table 7: The EAP for continuous—time systems (s = 0.3): Comparison between NM and PSO on
the test problems of Table 6.

NM  PSO
Average number of iterations | 152.43 273.73
Average CPU-time (sec.) 2.21 0.59

performance of the two methods corresponding to this case. Moreover, Table 7 shows the
comparison between the two methods for these results.

7.3 The EAP for decentralized control systems

The following two examples quite show the applicability of the methods NM and PSO to
tackle the EAP for decentralized control systems.

Example 7.5 This test problem appeared in [29] of a decentralized control system with two
state variables and two control stations. The given data matrices are the following:

[ dne[3) - [2)er-[1)-[2]

The system matrix A has the eigenvalues 7.1231, —1.1231. The desired eigenvalues s
are chosen as —0.3000, —8.5462. Starting from the same Kj the two methods of NM and
PSO require 28 and 48 iterations with CPU times 0.70 and 0.12, respectively, to achieve the
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least possible values of the objective function of the problem (22). The starting and achieved
output feedback gain matrices are

K 0.3727 0.0000

71 0.0000 0.9120 |’
FNM —7.4255  0.0000 pso | —7.4243  0.0000
fin ™ 0.0000 —7.4247 |> fm T 0.0000 —7.4198 |’

where f (Ko) = 130.3228 and the corresponding objective function values are f (KY¥MY) =
8.4257x 1075 and f(KL99) = 1.7122x1075.

Example 7.6 This test problem appeared in [33] of a fifth order control system with two
control stations and has the following data matrices:

[ —04 02 06 0.1 —0.2 1 -1 0
0 —05 0 0 04 2 1 0
A= 0o 0 -2 0 02 |,Bi=|0 0|,Bo=| 1],
02 01 05 —-125 0 0 0 —2
| 025 0 -02 05 -1 0 0 1
Cy = 1_1888 ,Co=[0 01 -1 1].

The matrix A has the eigenvalues —0.2592, —1.4535, —1.8564, —0.7904 + 0.14701, and the
desired eigenvalues \i’s are chosen as —0.1000, —0.6312, —0.6312, —1.6972. Starting from
the same K the two methods of NM and PSO require 95 and 83 iterations with CPU times
1.40 and 0.27, respectively, to achieve the least possible value of the objective function of the
problem (22). The starting and achieved output feedback gain matrices are, respectively,

[ 0.0196 0.4243 0.0000 ] 0.0300 0.2233 0.0000
Ko = | 03309 0.2703 0.0000 |, KYM = | 0.3778 0.4320 0.0000 |,
| 0.0000 0.0000 0.1971 | 0.0000 0.0000 0.4495
[ 0.0097 0.2073 0.0000 ]
KPSO = | 0.3368 0.4080 0.0000 |,
| 0.0000 0.0000 0.4476 |

where f (Kp) = 1.3410 and the corresponding objective function values are

FIKNMY = 4.9970%x107°, f(KES9) =9.5371x107°.

7.4 The EAP for discrete-time periodic systems

We consider the following example to demonstrate the applicability of the NM and PSO
methods for tackling the EAP for discrete-time periodic systems.
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Example 7.7 This test problem appeared in [4] and has the following data matrices, where
the period d = 2:

1.1052 0 1.1052 0 0 0
A0) = [ 0 1.1052 ] A = [0.1052 1 ] B0) = [0 0.1052 ] ’

B1) = l 8:1823 0.1008 ] GO = { (1) ] C)F = { 1 ] ‘

The spectral radius of the monodromy matrix ¢ (K (0), K (1)) is 1.2214. Starting from the
same K(0) and Ky(1) (given below) the NM and PSO methods require 10 and 6 iterations
with 0.41 and 0.09 CPU-time, respectively, to achieve the least objective function value. The
starting and achieved output feedback controllers are the following:

[ 1.5772 ] —0.7162
Ko0) =1 9 9770 ’K(’(l):{—o.m?}’

[0.3482 | —3.8925
K (0) = | 3455 | K" (1) = { ~2.0183 ] !

[ 1.1626 | —1.2036
Kiw(0) = | 57766 | Kin~ (1) = [ —0.7427 } '

The objective function value at starting point is f(Ky(0), Ko(1)) = 1.2290 and at the
achieved final points is of values

FIEEM(0), KNM(1)) = 0.9705, f(KLS9(0), KESO(1)) = 0.9697.

As can be seen both values lie in the open unit disk as required.

Conclusion

In this work the eigenvalue assignment problem is considered for discrete and continuous—
time control systems. Two matrix optimization problems are considered corresponding the
two cases. The first problem is an inequality constraint minimization problem where the
objective function is included as a cut. However, this problem is treated as an unconstrained
problem, while monitoring the fulfillment of the constraint during the minimization of the ob-
jective function. The second problem is a nonlinear least—squares problem, which is derived
from the EAP for continuous—time systems.

Two derivative-free optimization techniques of the Nelder-Mead simplex method and par-
ticle swarm optimization methods are proposed to tackle the optimization problems. Both
methods are extended to tackle the eigenvalue assignment problem for decentralized and
periodic systems. The performance of the methods is demonstrated over wide range of test
problems from the benchmark collection [22] and different test examples from the system and
control literature. The two methods are successful in tackling the considered problems. In
particular, the particle swarm optimization method relatively outperforms the Nelder-Mead
simplex method.

Our future work is focused on the following two issues for improving the current imple-
mentation:

391



El-Sayed M.E. Mostafa, Fatma F.S. Omar

e study the performance of other derivative—free optimization methods for tackling the
EAP.

e apply some variants of hybrid and three-term conjugate gradient algorithms for the
output feedback EAP.
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