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Abstract

In an extension to the notion of fuzzy set to the hesitant fuzzy set,
we study some entropy measures of hesitant fuzzy element and check
essential properties of these measures.Also, due to the applicability of
entropy measure in optimization problems,we apply three existing as
well as one newly introduced entropy measures of the hesitant fuzzy
element to study the principle of maximum entropy.
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1 Introduction

Zadeh [10] introduces the concept of fuzzy set and fuzzy logic to model some
realistic situations where vagueness is involved. The notion of fuzziness drasti-
cally changed the inclination of researchers in all the fields. Fuzzy entropy is a
measure of ambiguity in a fuzzy set and is an important tool in fuzzy set theory.
It plays vital role in many real life problems such as pattern recognition, medi-
cal diagnosis, cluster analysis, image processing and decision-making.Shannon
[4] introduces the concept of entropy to quantify the amount of uncertainty
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in a random experiment. De Luca and Termini [1] proposes fuzzy entropy
to quantify vagueness/ambiguity present in a fuzzy set. Mathematically, fuzzy
entropy seems to have some analogy with Shannon’s pobabilistic entropy. But
practically both are different. One quantifies the uncertainty present in a ran-
dom experiment while other gives the amount of ambiguity present in the fuzzy
set. Bhandari and Pal [5] generalizes De Luca and Termini fuzzy entropy and
obtain measures of discrimination between two fuzzy sets. Kaufmann [2] pro-
poses an entropy formula for the fuzzy set by the metric distance between its
membership degree function and membership function of its nearest crisp set.
In order to view the fuzziness degree of the sets in terms of a lack of distinction
between the fuzzy set and its complement another method was given by Yager
[14].Later on, various entropies for fuzzy sets have been given from different
point of views (refer [7],[3],[18],[12],[19] and references therein).

K.T. Atanassov [8] proposes a generalization of fuzzy set by characterizing
a fuzzy set with a membership and non-membership function. Atanassov, De
et al. [9],[15] defines some operations on intuitionistic fuzzy sets. Szmidt and
Kacprzyk [6] formulates axioms to define entropy for intuitionistic fuzzy sets.
Vlachos and Sergiadis [11] defines intuitionistic fuzzy information measures
with its application in pattern recognition. Zhang et al. [13]defines some in-
formation measures for interval-valued intuitionistic fuzzy sets.

In order to capture some intriguing features present in a fuzzy set, Torra
and Narukawa [17] introduces another generalization of a fuzzy set and this
generalization is called hesitant fuzzy set. A hesitant fuzzy set is characterized
by a number of membership functions irrespective to the conventional fuzzy
set which is characterized by a single membership function.

Definition 1.1 (/17],[16]) Let X be a fized set, then a HF'S N on X is given
as a function gy(x) that returns a subset of [0,1] when applied to X. Mathe-
matically, it can be represented as

N = {<z,gn(z)> |z e X},

where gy (x) is a set of some values in [0,1] denoting the possible membership
degrees of the element © € X to the set N.For convenience, Xia and Xu[20]
called gy () as an HFE and H the set of all HFEs.
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For given three HFEs, g, g1 and g Torra and Narukawa[17] and Torra[16]
defined some operations which are given below:

L g°(z) = Useg {1 — 0},
2. (91U 92(2)) = Us, g1 2) 826 g0(x) max{01, 82},

3. (f1N92)(x) = Us, e, 2) 520 () MI0{01, 02}

Also some operations are defined by Xia and Xu[16] on the HFEs f, f1, fo
which are given below :

1. g)‘(l’) = U&eg(x){é)\}, A>0,
3. (1@ g2)(x) = U51€gl($)752€g2(m){61 + 02 — 0102},

4 (91 ® go)(2) = U51€gl($)752€g2(m){51’ d2}.

Xu and Xia [20]introduces hesitant fuzzy entropy and cross entropy and
suggests their applications in multi attribute decision making.

Definition 1.2 An entropy HFE f is a real-valued function E : H — [0, 1],
satisfying the following axiomatic requirements:

HE1l: E(f)=0iff f=0 or f =1,
HE2: E(f) =1:ff fcr(j) +fa(lffj+1) =1, for j=1,2,..,la,

HE3: E(f) < E(9) if fot) < 9o) fOr Goi + Goti—iv1) <1 07 go—iz1) =
1i=1.2 .1

HE4: E(f) = E(f°).
The remainder of the paper is organized as follows. In section 2, we prove
optimization principle for three existing measures for hesitant fuzzy entropy.

In section 3, we propose a new measure of hesitant fuzzy entropy and prove
the optimization principle. Finally, section 4 presents the conclusion.
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2 Optimization principles of some hesitant fuzzy
entropies

Let f be a hesitant fuzzy element of length [, then we have following formulae
of entropy the hesitant fuzzy element f due to Xu and Xia[22].

la i(x i(x 2—&i(x; 2—&i(x;
1. EXNf) = —laﬁ)gQ > {&; ) log gjé )y E;( ) log EJQ( )} , where &;(z) =

g"j + f(ffla —j+1)

2. B(f) = e Sl [ s 5 i 28 ), e (0) =
faj + g(Ula—jJrl)'
. la T (x m(2=¢;(z)
3. BX(f) =~k Lo [ o T - 1}’ where &) =

fa]- + f(ffla—jﬂ)'

These measures satisfies the axiomatic requirements HE1-HEA4.

Principle of maximum fuzzy entropy
Here, we provide the applications of entropy measures of hesitant fuzzy element
f for the study of maximum hesitant fuzziness. For this study, we consider

the existing measures E'(f),E?(f), E3(f) and a newly proposed measure E(f).

Problem 1. Maximize

ENf) =

Lo
1 Z[éj(ﬁﬁ)l 5j($)+2—§j($)

"l log2 2 %7 2

j=1
subject to the following hesitant fuzzy constraints

Y &) = a 2)
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and
la
Y &@)g) = k. (3)
j=1

Consider the following Lagrangian

P iFm)loggj(x)+2—§j<x>log2—§-<x>]_M{Ii@(m)_%}

l,log?2 2 2

x{ 36wl (o) - £} o
1 &), &) 2-&(@), 2-&(x) &), &)
_lalogQ{ S T B S B
2=6(@) ) 2ol 51“2(:6) log &aéx) 42 b@), 2= 52“(9”)} Y

2
{a@+a + .+ 6.6 -af - 2f[a@no + @n + ..+ 6 )]

k).
oL

NOW,M =0= 51(%) =

2
1+6{>\1+>\291(z)}2la log2 *

. . _ 2 _ 2
Similarly, 52(x) = T Tr22(@)) a0 1700 &l (517) = e TAaar, @))% Tog2 -
AL (o o 2
Thusvagj(x) = 0 gives 5] (:B) = reNiTAzg; @ lalog? -
From (2) and (3), we get

l
- 2
o Z 1 4+ efritAzg;(z)}2lalog2 (5)
j=1
and
la 5
b= ]21 1+ e{A1+>\2gj(m)}2la log2~gj<x>‘ (6)

where A1, A2 can be determined from (5) and (6)

It is seen that from (6), to every value of Ay there is a unique value of k and
vice-versa.

Further let g1 < g2 < ... < g,,.
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When Ay — —o0, k = 2l Zi“ Lgi(z) = 21, and ag = 21

la la
When Ay — 0, ap = Z] 1 1+6{>\1}2la mzz and k = Z] 1 1+e{/\1}21a o295 (T)
Thus when Ay > 0 then g; < k < g and hence

l
1 = 2 2
1 — —
Emax<f) - la 10g2 Z; |:1 4 e{>\1+)\2gj($)}10g2 + log 1+ 6{)\1+,\29j(x)}2la log 2 +
]:
1 4 efritA2g;(2)}2lalog2 1 + efhitrag;(@)}2lalog2

+lo

1+ efAi+A2g;(2)}2la log2 g 1+ efrit+Arag;(@)}2lalog2 |

Since —x log z is a concave function and the sum of a concave function is also
a concave function, therefore E}_ (f) given in (1) is a concave function.

max

Problem 2. In this problem, we maximize the hesitant fuzzy entropy E*(f)
under the set of constraints (2) and (3).
Consider the following Lagrangian

L = mg{lsinﬁi(x) 4 sin 72 —45]-(:7@))} —1}+)\1{§:§j($)—a0}

e éfmgj(x) -} _

_ 1 — { {Sin (@) | o TR=G(w) 1} N {Sin mea(r) | o T2 &()

lo(v2 4 4

[sm ”@f) + sin O _fj(x)) - 1] } +/\1{ [g )+ Ea(x) + o+ & (2 )} —ozo} +

e [61000) + &(0)a(0) + . + 6. (2)galo)| ~ 1.

Now, 72 = 0 = & () = {%sin_l [{Al + Mm(@}(@m)] } +1.
Similarly, &(z) = {%sin_l {{)\1 - )ngg(:L“)}( 22-v2) la)}} +1 .., &, (z) =

{g sin~! [{)\1 + Ao, (2)} (Mm)} } +1.

Thus,aE & = 0 gives §;() —{% sin~*! [{)\1 + Aogj(x)} (2(2_7\/5)[@)1 } + 1.
From (2) and (3), we get
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- i{fsm—l [{A1+Aggj(x>}<2(2+/§>za>]}+1. (8)

and
S (P TRATCEE ) R
When Ay — 0,
- o)
and
(e b e
Thus when Ay > 0, we have
B2.(f) = ﬁ jlzjf(sme Teost— 1),

where 6 = %{i sin™! {2(2_7\/5”04{)\1 + )\293‘(95)}} + 1}

T

Thus7Er2nax<f) = mf(e)u

where, f(0) = (sinf + cosf — 1),

f(6) = (cosf — sin#) and

f(0) = —(sinf + cos ) < 0.

Thus above equation shows that E2_ (f) is concave.

Problem 3. Here we maximize another hesitant fuzzy entropy E3_ (f) under
the set of fuzzy constraints (2) and (3).

Consider the following Lagrangian

L = mi{{cos%(x)—i-COSW} —1}+)\1{§:§j(:ﬁ)—ao}

j=1 j=1

+f éfmgxx) -}
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R (o ) T8N ] [ ) o =80 ]
gt [cos W&Z(gj) 4 cos T2 _f“(x» - 1} } + Al{ [gl(x) +&(2) 4o+ @a(a:)] _ ozg} +
d [0 + E0(e) + .+ 6 )| - k. (10)

Now, 5245 = 0 = & () = {% sin”! [{)\1 + )xggl(a:')}<2(2+/§)la)] } +1.

Similarly, &(z) = {%Sin_l {{)\1 + )\292($>}(2(2;\/§)la):| } +1, ,.., &, (z) =

{% sin™! {1 + Aagi, (2)} (Mla)} } + 1.
us,a—L s §jl@ %

and

Thus when Ay > 0, we have

Epac(f) =
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where 0 = %{%sinl {2(2_7\/5)[04{)\1 + )\299‘(95)}} + 1}

Thus?Er%lax(f) - m Zé(il f<9)7

where, f(0) = (cosf +sinf — 1)

f(0) = (—sin + cos ), and

£ (0) = —(cosf +sinf) < 0.

Thus above equation shows that E3_ (f) is concave.

max

3 A new hesitant fuzzy entropy

We propose the following entropy measure

la
E(f) = {Z(l +ag;(x))log(1 + ag;(x)) + (1 + a(l = §(2)))

aly log 2 =t

log(1 4+ a(l —¢&(z))) + (1 +a)log(l+a)|, (13)

where ;(7) = &, + &0, _;41),a > 0.

E(f) satisfies the axiomatic requirements HE1-HE4.

Problem 4. In this problem, we apply another measure study maximum
hesitant fuzzy entropy principle. For this, we consider the following problem:
Maximize

BU) = =iy | SO0+ a6 log(1 + a&i(0) + (14 al1 ~ &)
log(1+a(l —¢&(z))) + (1+a)log(l+a)|;a >0 (14)

subject to constraints (2) and (3).
Consider the following Lagrangian

L = —alallogQL;(l+a§j<w))log(1+a£j(w))+(1+a(1—éj(x)))

g1+ (1 = &) + (1+ @) og(1 + )] + 0] L0 - au

J=1

2 i:;a(x)gj(x) -} (15)
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= Tul 110g2 {(1 4 a& (2))log(1 + a& () + (1 + a(l = & ()
log(1 +a(l =& (2))) + (1 + a)log(l +a)} +
{(1 4 a&y(x)) log(1 + ady(w)) + (1 + a(l — &(x)))
log(1+a(l —&(x)))+ (1 +a)log(l+a)}+...+

{(1 4 a&, (x)) log(1 4 a&, (x)) + (1 4+ a(l — & (w)))
log(1+ a(l — & (z))) + (1 + a)log(1l + a)}] +

)\1{ [51(33) +&(x) 4+ .+ &a(aﬁ)} — ozo} +
o [6010) + @@)n(o) + .+ 6, (0o (0)] - ],

_oL  _ _ 14a—elr1—2291(@)}a log2
NOW’agl(I) - 0 = gl(x) - a(1+e{—>\1—)\291(z)}la log2)’
imi _ Ata—elr1—r292(@)}a log2 N\ . _1+a—elr1—2292(2)} o log2
Slmllarly, 52(I> T a(14et=A1—2292(z)Ha log2y ot é-la (xZ) - a(l_’_e{*)\lf)\ggla(z)}la log2) -

oL . ' N 1+a,e{)‘1—k29]‘(9¢)}5a log 2
Thus?@gj(x) = 0 gives &; () T a(lte M —ag; (@) Ha log2)'

From (2) and (3), we get

b 1 4 g el=Ma—deg;(@)Halog?

G0 = Z a(l—|—e{—)\1—)\29j(37)}la10g2) (16)
and
l
@ 1 _|_ a — e{—Al—Aggj(I)}la log2
b= Z a(1 + el=r1—A2g;(2)}alog2) 9i(@). (17)

When Ay = 00, k= Y% =4® and ap = —12

"
_ 1+afe_A1la10g2 1 n 1+a76—)\1lalog2
Whel’l A2 — 07 Qo = a(1+e—A1lalog2) and k -3 ZiZI —a(1+e*)‘ll"‘1052) g](x)

Thus when Ay > 0, we have

1 [& 244 2+
E(f) = _ala log2 |:Z 14 e—)\l—/\ggj(x)}lalogQ 1Og 1+ e—)x1—)\29j($)}lalog2 +

la

(2 + a)e_)‘l_hgﬂ'(f’?)}la log 2 (2 + a)e—kl—kﬂlj(z)}la log 2

+ log (18)

1+ e~ M —A2g;(z) Holog2 1+ e~ M —A2g;(z) Halog?2

Since —x log z is a concave function and the sum of a concave function is also
a concave function, therefore Ep.(f) given in (18) is a concave function.
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4 Conclusion

In many problems in science and engineering redundancy and overlapping in
similar situations occurs. If by some mathematical model we are able to re-
move this redundancy then it can increase the efficiency and robustness of the
system. The development of new hesitant fuzzy entropy measures is expected
to reduce uncertainty, which in turn may help to increase the efficiency of the
system. Therefore we concluded that despite of development of many fuzzy
entropy measures, still there is scope for the development of better measures
which will find applications in a number of fields. Keeping this in mind, we
have investigated some measures of hesitant fuzzy entropy and applied the re-
sults towards optimization principles. In future, we shall obtain optimization
principles using discrimination measures of hesitant fuzzy sets.
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