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1 Introduction

In Euclidean Geometry there are two equivalent approaches from which
the notion of mean curvature of a submanifold arises. One starts with the
de�nition of the second fundamental form as the orthogonal component of
the directional derivative of a tangent vector �eld to the submanifold, and
the mean curvature appears as the trace of the second fundamental form.
The other one considers the volume functional de�ned on the submanifolds
of the same dimension and the mean curvature appears as the gradient of
this functional.

Much of the modern global theory of complete minimal surfaces in three
dimensional Euclidean space studied by Osserman during the 1960�s. Re-
cently, many of the global questions arose in this classical subject. These
questions deal with analytic and conformal properties, the geometry and
asymptotic behavior, and the topology and classi¢ cation of the images of
certain injective minimal immersions ' : M �! E3 which are complete in
the induced Riemannian metric.1
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2 Heisenberg Group H3

The Heisenberg group historically originates in and still has its strongest
ties to quantum physics: there it is a group of unitary operators acting on the
space of states induced from those observables on a linear phase space, which
are given by linear or by constant functions. So any Heisenberg group is a
subgroup of a group of observables in certain simple examples of quantum
mechanical systems.

The Heisenberg group H3 is de�ned as R3 with the group operation

(x; y; z) � (x1; y1; z1) =
�
x+ x1; y + y1; z + z1 +

1

2
(xy1 � x1y)

�
:

The left-invariant Riemannain metric on H3 is given by

g = ds2 = dx2 + dy2 � (xdy + dz)2 :

The left invariant orthonormal frame on H3, which is belong to Riemannian
metric g

e1 =
@

@z
; e2 =

@

@y
+ x

@

@z
; e3 =

@

@x
:

For the covariant derivatives of the Levi-Civita connection of the left-invariant
metric g,

reiej =
1

2

24 0 e3 �e2
e3 0 e1
�e2 �e1 0

35 ;
where the (i; j)-element in the table above equals reiej for our basis. Also,
we have

�g (e1; e1) = g (e2; e2) = g (e3; e3) = 1:
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3 Spacelike InducedMetric and Some Conclusions

in H3

Theorem 3.1. Let

 (x; y) = (f (x) ; g (y) ; h (x; y)) (1)

be a spacelike surface in (H3; g); where f (x) ; g (y) and h (x; y) are continous
functions. If the mean curvature of the surface is zero, then one of the
following conditions holds.

i)

g00(�f 03g04 + 2g03#0 � 3f2g03#0 � #03

+fg02
�
g02 + 3#02

�
+ (fg0 + #0)(f2g0(fg0 + #0)� fg02) (2)

+#00(�g04 + (fg0 + #0)(g02g00 + g0(fg0 + #0)) = 0

ii)
f 0hxx(f

02 � h2x) + hx(�2f 0f 00 + f 00hx + f 02f 00) = 0 (3)

iii)
 (x; y) = (p; qy + t;�p (qy + t) + c2) : (4)

Proof. From the derivative of the (1), we have components of the �rst
fundamental form

E = g1 ( x;  x) = f 02 � h2x; (5)

F = g1
�
 x;  y

�
= �hx

�
fg0 + hy

�
; (6)

G = g1
�
 y;  y

�
= g02 �

�
fg0 + hy

�2 (7)

Since  (x; y) is a spacelike surface, we have

f 02 > h2x and g
02 >

�
fg0 + hy

�2 (8)

Theni according to induced metric, following conditions holds.
i). If hx = 0; (fg0 + hy) 6= 0, then h (x; y) = # (y). So, the induced

metric is
~g2 = f 02dx2 +

�
g02 �

�
fg0 + #0

�2�
dy2: (9)
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The unit normal vector �eld of the surface is

N =
1r����fg0 + #0�2 � g02���

�
�g0e1 +

�
fg0 + #0

�
e2
�
: (10)

Then, the local orthonormal basis of the surface  (x; y)

E1 =
1

f 0
e3; (11)

E2 =
fg0 + hy

g0
q
g02 �

�
fg0 + #0

�2 e1 + 1q
g02 �

�
fg0 + #0

�2 e2: (12)

Components of the second fundamental form are

h11 = 0; (13)

h12 =
1

2f 02g02
�
g02 �

�
fg0 + #0

�2�f2f 0g04 � g02(g02 + �fg0 + #0�2) (14)
�
�
fg0 + #0

�2 �
g02 +

�
fg0 + #0

�2 � 2f 0g02�g;

h21 =
1

2f 0g0
; (15)

h22 =
1

g0
�
g02 �

�
fg0 + #0

�2�5=2 fg00(�f 03g04 + 2g03#0 � 3f2g03#0 � #03
+fg02

�
g02 � 3#02

�
+ (fg0 + #0)(f2g0(fg0 + #0)� fg02) (16)

+#00(�g04 + (fg0 + #0)(g02g00 + g0(fg0 + #0)):
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Then, the mean curvature of the surface is

H = � 1

f 02g0
�
g02 �

�
fg0 + #0

�2�5=2 fg00(�f 03g04 + 2g03#0 � 3f2g03#0 � #03
+fg02

�
g02 + 3#02

�
+ (fg0 + #0)(f2g0(fg0 + #0)� fg02) (17)

+#00(�g04 + (fg0 + #0)(g02g00 + g0(fg0 + #0))

If the mean curvature of the surface is zero,

g00(�f 03g04 + 2g03#0 � 3f2g03#0 � #03

+fg02
�
g02 + 3#02

�
+ (fg0 + #0)(f2g0(fg0 + #0)� fg02) (18)

+#00(�g04 + (fg0 + #0)(g02g00 + g0(fg0 + #0)) = 0:

ii). If hx 6= 0; (fg0 + hy) = 0, then h (x; y) = �f (x) g (y) + c (x). So
the induced metric is

~g2 =
�
f 02 � h2x

�
dx2 + g02dy2: (19)

Components of the �rst fundamental are

E = g1 ( x;  x) = f 02 � h2x; (20)

F = 0; (21)

G = g02: (22)

and the unit normal vector �eld is

N = � 1p
jh2x � f 02j

�
f 0e1 + hxe3

�
: (23)

Local orthonormal basis system of  (x; y) is

E1 =
hx

f 0
p
jh2x � f 02j

e1 +
1p

jh2x � f 02j
e3; (24)

E2 =
1

g0
e2: (25)
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Coe¢ cients of the second fundamental form are

h11 = �
1

f 0 (f 02 � h2x)
3=2

�
f 0hxx(f

02 � h2x) + hx(�2f 0f 00 + f 00hx + f 02f 00
�
);

(26)

h12 = �
�
�f 02 + h2x

�
2g0 (f 02 � h2x)

; (27)

h21 =
f 02 + 2hxyf 0 � h2x
2f 0g0 (h2x � f 02)

; (28)

h22 = 0: (29)

The mean curvature of the surface

H =
1

2

g02

f 0 (f 02 � h2x)
3=2

�
f 0hxx(f

02 � h2x) + hx(�2f 0f 00 + f 00hx + f 02f 00
�
)):

(30)
So if H = 0, then

f 0hxx(f
02 � h2x) + hx(�2f 0f 00 + f 00hx + f 02f 00) = 0: (31)

iii) If
fg0 + hy = 0;

we have
h (x; y) = � f (x) g (y) + c2 (x) : (32)

Then induced metric
~g2 = p2dx2 + g02dy2 (33)

where p is a constant. The unit normal vector �eld of the surface is

N = �e1: (34)

Then the mean curvature of the surface

H =
g00

f 02g03
: (35)
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If H = 0,
g (y) = qy + t: (36)

So, we have
 (x; y) = (p; qy + t;�p (qy + t) + c2) : (37)

Example 3.1. Let

 (x; y) = (3; 4y + 5;�3(4y + 5) + 8) (38)

be a spacelike surface in (H3; g). The unit normal vector �eld of the surface
is

N = �e1: (39)

Then the mean curvature surface is zero.
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