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Abstract

The present paper explores one of the versions of bi-objective trans-
portation problem with the concept of pivotal time in a scenario when both
the problems have more than one pivotal time and time pivotal for one
problem may or may not be pivotal for the other. The concerned problem
has been divided into two scenarios and an algorithm has been proposed to
glean the efficient set of trade-off pairs of transportation and deterioration
cost corresponding to each pivotal time starting from maximum pivotal
time to minimum pivotal time. To reinforce the existence of the suggested
procedure a Numerical illustration is also given.
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1. Introduction

A classical transportation problem is concerned about transporting various
amount of a single commodity (under some supply and demand constraints)
from a given set of supply origin to a given set of destinations in such a way
that the total transportation cost is minimum. Instead of single objective, there
may be two objectives involved associated with the transportation problem.
Our methodology relies on bi-objective optimization to approach the problem
at hand. An efficient mechanism to seek one or more than one solutions at
∗Email: sanchitasharma88@gmail.com; corresponding author
†Email: drritamalhotra@gmail.com
‡Email: shaliniarora@igdtuw.ac.in

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311



Sanchita Sharma, Rita Malhotra and Shalini Arora

the same time to a mathematical optimization problem that is concerned with
two objective functions, bi-objective optimization has been widely used in a
number of fields over a period of time. In order to look at the application
of bi-objective optimization in addressing real world search and optimization
problems, it is important to locate the trade-off produced as a result of dif-
ferent solutions among different objectives. On this premise, in a bi-objective
transportation problem, a process is required to obtain the set of all possible
efficient solutions. The search for the set of efficient solutions must consider all
objectives to be significant.
In 1967, Geoffrion [7] provide theoretical background for bi-objective mathe-
matical problems. Researchers like Ecker et al. [6] , Benson [5] and Armand
[2] provide theoretical methods for the search of efficient solutions for linear
multi-objective problems. These methods locate the set of efficient solutions
in the decision space. Glickman and Berger [9] provide an algorithm for time-
cost trade- offs. In 1979, Isermann [10] studied the multi-objective nature of
transportation problems and provide an algorithm which enumerates the set of
all efficient solutions. Their algorithm is divided into three phases where first
two phases determine all basic efficient solutions and third phase construct the
set of all efficient solutions as a union of a minimal number of convex sets of
efficient solutions.
Even though there are several possible ways to approach multi-objective prob-
lems that are applicable to bi-objective transportation problems also, varied
methods have been proposed by researchers like Swaroop et al. [19], Malhotra
[11, 12], Pandian et al. [13], Quddoos et al. [16, 17] etc. A relation of time-cost
trade off pairs in diverse circumstances (solid, three-dimensional, bulk) of trans-
portation problems has been explored by several researchers [3, 4, 14, 15, 8].
It has been observed that the set of efficient solutions in decision space is larger
than the set of efficient solutions in criterion space [1]. On that note Aneja
and Nair [1] proposed an algorithm which determined the set of efficient solu-
tions of a bi-criterion transportation problem in criterion space. However the
proposed technique had some drawbacks which were later corrected by Mal-
hotra [11]. Malhotra [11] came with a new and improved iterative procedure
to construct the set of efficient pairs for a bi-criterion transportation problem.
Malhotra et al. [12] developed a convergent iterative procedure which pro-
vides cost-pipeline trade-off corresponding to optimal time of transportation.
On the same lines Sharma et al. [18] provides an algorithm for the enumeration
of cost-pipeline trade-off but with the concept of pivotal time. As asserted
by Sharma et al. [18] “time lag between commissioning a project and the time
when the last consignment of goods reaches the project site motivates the study
of a bi-criteria transportation problem at a pivotal time T”.
Many a times we come across situations when achieving optimal time may
increase the cost of transportation to an extent that it does not seems practical
to always aim for optimal time. For instance, in some situations optimal time
may only be achieved by air travel which may be very expensive. In order to
avoid such a situation one may try to opt for a middle path in which neither
the time taken is very long nor the cost involved is too high. In such scenarios
we may opt for pivotal time (and not just any time). Sharma et al. [18] define
the pivotal time corresponding to a single objective (objective of transportation
cost) and obtained the cost pipeline trade-off corresponding to the pivotal time
T.
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However it has been observed that a single objective problem may have more
than one pivotal time or we can say pivotal time is not unique and two different
problems may have different pivotal times i.e. pivotal for one problem may
or may not be pivotal for the other problem. These observations led us to a
situation of gleaning trade-off pairs corresponding to the pivotal time where
both the problems have more than one pivotal time and these pivotal times
may or may not coincide with each other.
On the basis of our observations we divide the whole problem into two scenar-
ios and propose an algorithm that will generate the desire set of efficient pairs
of a bi- objective transportation problem (here we take objectives of transporta-
tion cost and deterioration cost) corresponding to each pivotal time starting
from maximum pivotal time to minimum pivotal time and also found that the
minimum pivotal time is also the optimal time of transportation.

2. Mathematical Formulation

The mathematical models of the concerned bi-criterion transportation prob-
lem are as follows:

(P1)

min z1 =
∑
i∈I

∑
j∈J

ci jxi j

(P2)

min z2 =
∑
i∈I

∑
j∈J

di jxi j

Subject to the constraints:∑
j∈J xi j = ai, ai > 0, i ∈ I,∑
i∈I xi j = b j, b j > 0, j ∈ J,

xi j ≥ 0,∀ (i, j) ∈ I × J

 (1)

where I is the index set of starting points of transportation (origins) each with
availability ai and J is the index set of landing places (destinations) each with
requirement/demand b j.
From ith origin to the jth destination;
ci j: per unit cost of transportation
di j: per unit deterioration cost of transportation
xi j: amount of homogeneous product transported
Also let ti j be the time of transportation from ith source to the jth destination
independent of xi j.
Problem (P1) and (P2) represent transportation cost and deterioration cost min-
imization problem respectively.
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S = {X = (xi j) | X satiesfies (1)}

For any time T, define
(P1)T

min
X∈S

∑
i∈I

∑
j∈J

c∗i jxi j

where

c∗i j =

ci j if ti j ≤ T
∞ if ti j > T

and
(P2)T

min
X∈S

∑
i∈I

∑
j∈J

d∗i jxi j

where

d∗i j =

di j if ti j ≤ T
∞ if ti j > T

Let the optimal value of the problems (P1)T and (P2)T are denoted by zT
1 and zT

2
respectively.
Optimal solution of (P1)T and (P2)T provides minimum transportation cost and
minimum deterioration cost respectively at time T or less than T.

Remark 2.1. If ∃ at least one optimal basic feasible solution X = (xi j) for the problem
(P1)T (yielding cost zT

1 ) such that ∀ (i, j) with ti j = T, xi j = 0 and max
xi j>0

ti j = T′(< T),

then zT
1 = zT′

1 .
Similarly, if ∃ at least one optimal basic feasible solution X = (xi j) for the problem (P2)T

(yielding cost zT
2 ) such that ∀ (i, j) with ti j = T, xi j = 0 and max

xi j>0
ti j = T′(< T),then

zT
2 = zT′

2 .

Definition of pivotal time as given by Sharma et al. [18].
“Pivotal Time: Time T is called Pivotal for the problem (P1) if for any other
time T′ ,T′ > T⇒ zT′

1 < zT
1 and T′ < T⇒ zT′

1 > zT
1 , where zT

1 and zT′

1 are optimal
costs of (P1)T at times T and T′ respectively”.

Remark 2.2. Interchanging the role of (P1) with (P2), (P1)T with (P2)T, zT
1 with zT

2

and zT′

1 with zT′

2 the obtained time would be pivotal for the problem (P2).

A cost (transportation and deterioration) minimization problem may have
more than one pivotal time. In the concerned bi- criterion problem, two types
of costs (transportation and deterioration) are involved and therefore might
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have different pivotal time. Mathematically which means that if t1
1, t

1
2, ..., t

1
r are

r pivotal times for the problem (P1) and t2
1, t

2
2, ..., t

2
l are l pivotal times for the

problem (P2),then t1
i for some i ∈ {1, 2, ..., r} may or may not be equal to t2

j for
some j ∈ {1, 2, ..., l}.
In order to obtain the efficient trade-off pairs of transportation and deteriora-
tion costs corresponding to the chosen pivotal time TM, the concerned problem
has been divided into two scenarios.

Scenario-A: If time TM is pivotal for the problem (P1)
There will be two cases associated with this;
Case-1: TM is pivotal for the problem (P1) only.
Case-2: TM is pivotal for the problem (P2) also.

Scenario-B: If time TM is pivotal for the problem (P2)
There will be two cases associated with this;
Case-1: TM is pivotal for the problem (P2) only.
Case-2: TM is pivotal for the problem (P1) also.

The theory that has been proposed here will work efficiently on both the sce-
narios and provide the exhaustive sets of efficient pairs corresponding to each
pivotal time of the problems (P1) and (P2).

Remark 2.3. Definitions, notations, symbols and theoretical developments (Section
3 and Section 4) are given in context to Scenario-A. The same can be implied for
Scenario-B, by interchanging the role of (P1) with (P2), (PTM

1 ) with (PTM

2 ) and ∆1
i j with

∆2
i j.

3. Definitions, Notations and Symbols

{T1,T2,T3, ...,Th
} = Set of all pivotal times of the problem P1 and P2 such

that T1 > T2 > ... > Th,where Th = min
{
t1
i , t

2
j ∀ i = 1, 2, .., r and ∀ j = 1, 2, ..., l

}
.

TM : Mth pivotal time such that TM
∈ {T1,T2,T3, ...,Th

}.

For M ∈ {1, 2, ..., h}
(TM; zs

1, z
s
2) : sth efficient pair of transportation and deterioration cost at pivotal

time TM.

Dominated pair: A pair (TM; z1, z2) is said to be dominated by another pair
(TM; z′1, z

′

2), if zk ≥ z′k ∀ k ∈ {1, 2} and zk > z′k for at least one k ∈ {1, 2}.

Non- Dominated Pair: A pair which is not dominated by any of the pair.
∆1

ij : Relative cost co-efficient for the cell (i, j) corresponding to the problem PTM

1 .
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∆2
ij : Relative cost co-efficient for the cell (i, j) corresponding to the problem PTM

2 .

For s ≥ 1, l = 0, 1, .., ts
Xls

M : Basic feasible solutions yielding the sth efficient pair at pivotal time TM.

XS
M =

{
Xls

M|l = 0, 1, .., ts

}
be the set of all basic feasible solutions for the sth ef-

ficient pair.

Bls
M : Set of basic cells corresponding to the basic feasible solutions Xls

M.

Rls
M = {(i, j) < Bls

M|∆
1
i j < 0,∆2

i j > 0, entering which into Bls
M,∃ at least one cell

of positive allocation in the resulting basis with time TM
}.

Bls(rm)

M : Set of basic cells obtained by entering a cell (r,m) ∈ Rls
M into the ba-

sis Bls
M.

Xls(rm)

M : Basic feasible solution corresponding to the basis Bls(rm)

M .

Ols
M = {(TM; z1, z2)|z1 =

∑
i∈I

∑
j∈J c∗i jx

i j(rm) , z2 =
∑

i∈I
∑

j∈J d∗i jx
i j(rm) , where (xi j(rm) ) ∈

Xls(rm)

M }.

Os
M = ∪ts

l=0Ols
M.

Us
M = Ns−1

M − {(TM; zs
1, z

s
2)},U1

M = ∅.

Ns
M = Us

M ∪Os
M − {(T

M; z1, z2)|(TM; z1, z2)} is a dominated pair in Us
M ∪Os

M}.

EM : Collection of all the efficient pairs of transportation and deterioration
cost at pivotal time TM.

4. Theoretical Development

The theoretical developments of the concerned problem are given in context
to Scenario-A i.e. when time TM is pivotal for the problem (P1) and may or may
not be pivotal for the problem (P2).The same can be implied for Scenario-B,
by interchanging the role of (P1) with (P2), (PTM

1 ) with (PTM

2 ), ∆1
i j with ∆2

i j and
redefining the theorems accordingly.

Theorem 4.1. Time T is called pivotal for the problem (P1) or (P2), if and only if each
optimal basic feasible solution of the problem (P1)T or (P2)T has at least one cell (i, j)
with time ti j = T and xi j > 0.

Proof. Let time T be pivotal for the problem (P1). Suppose there exits an optimal
basic feasible solution X =

(
xi j

)
of (P1)T (yielding cost (z1)T) such that ∀(i, j) with
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ti j = T, xi j = 0. This indicates that cells containing time T has no allocation which
further implies that there exists an optimal basic feasible solution X =

(
xi j

)
with

max
xi j>0

ti j = T′, where T′ < T. Therefore from Remark 2.1, (z1)T′ = (z1)T. Thus

there exits a time time T′ (< T) with (z1)T′ = (z1)T, which is a contradiction to
the definition of pivotal time.
Conversely, suppose that T is not pivotal for the problem (P1). Therefore there
exits a time T′ (say) less that T with (z1)T′

≤ (z1)T. Therefore each cell (i, j)
corresponding to the optimal basic feasible solution of the problem (P1)T with
time ti j = T has xi j = 0. �

Note: Theorem 4.1 can be proved for the problem (P2) also.

Theorem 4.2. Corresponding to pivotal time TM, there are finite number of efficient
pairs (TM; z1

s, z2
s) and each corresponds to a basic feasible solution.

Proof. The proof has been divided into two parts.
Part-1:(First efficient pair)
Let time T = TM[M ∈ {1, 2, ..., h}] be the pivotal for the problem (P1) with optimal
cost z1

1 corresponding to the optimal basic feasible solution Y0 with basis B0.
Define (P2)T for T = TM(pivotal time) and read the value of z2 at Y0.
Construct the set

F0 = {(i, j) < B0|∆
1
i j = 0,∆2

i j > 0}

If F0 = ∅, the obtained value of z2 is minimum corresponding to z1
1 at TM and

therefore denoted by z2
1. Thus the obtained pair (TM; z1

1, z2
1) is the first efficient

pair at TM.
If F0 , ∅, choose (i0, j0) ∈ F0 such that ∆2

i0 j0
= max{∆2

i j|(i, j) ∈ F0} and enter the
same into the basis B0. Let Y1 be the resulting basic feasible solution with basis
B1.
Construct the set F1 = {(i, j) < B1|∆

1
i j = 0,∆2

i j > 0}.
If F1 = ∅, the pair corresponding to Y1 would be the first efficient pair, otherwise
repeat the process.
The process will continue unless get F f = ∅ for some basis B f at some f th stage.
In this case B f will yield the first efficient pair (TM; z1

1, z2
1).

Part-2: (sth efficient pair)
Let X01

M be basic feasible solution with basis B01
M yielding the first efficient pair

(TM; z1
1, z

1
2) at pivotal time TM.

For s = 1, l = 1, 2, ..., t1, construct the sets

L = {(i, j) < B01
M |∆

1
i j = 0,∆2

i j = 0}

Enter all the elements (cells) of L into the basis B01
M one by one. Let Xl1

M and
Bl1

M (l = 1, 2, .., t1) be the resulting basic feasible solutions and basis respectively,
each yielding the first efficient pair (TM; z1

1, z
1
2).

Let X1
M = {Xl1

M|l = 0, 1...t1} be the collection of all alternate solutions yielding the
first efficient pair (TM; z1

1, z
1
2).

Construct the sets
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Rls
M = {(i, j) < Bls

M|∆
1
i j < 0,∆2

i j > 0, entering which into Bls
M,∃ at least one cell of

positive allocation in the resulting basis with time TM
},

Ols
M = {(TM; z1, z2)|z1 =

∑
i∈I

∑
j∈J c∗i jx

i j(rm) , z2 =
∑

i∈I
∑

j∈J d∗i jx
i j(rm) where (xi j(rm) ) ∈

Xls(rm)

M },
Os

M = ∪ts
l=0Ols

M,
Us

M = Ns−1
M − {(TM; zs

1, z
s
2)},U1

M = ∅.
Ns

M = Us
M ∪Os

M − {(T
M; z1, z2)|(TM; z1, z2)} is a dominated pair in Us

M ∪Os
M}.

If Ns
M = ∅, the process will terminate.

If Ns
M , ∅, choose (TM; zs+1

1 , zs+1
2 ) ∈ Ns

M such that zs+1
1 = min{z1|(TM; z1, z2) ∈ Ns

M}.
Now set s = s + 1 and again construct the sets Rls

M,O
ls
M,U

s
M,N

s
M. The process

will continue until Ns
M = ∅ for some s.

From the above two parts it is clearly visible that each efficient pair corresponds
to a basic feasible solution. Since basic feasible solutions are finite in numbers,
the efficient pairs would also be same.

�

Note: Theorem 4.3, Remark 4.4 and Theorem 4.5 are motivated from [18].

Theorem 4.3. In each efficient pair (TM; zs
1, z

s
2), zs

1 and zs
2 are minimum corresponding

to each other at Pivotal time TM.

Proof. Suppose there exists a pair (TM; z′1, z
′

2) such that z′1 = zs
1, z

′

2 < zs
2. This

indicates that (TM; zs
1, z

s
2) is dominated by (TM; z′1, z

′

2). Being an efficient pair,
(TM; zs

1, z
s
2) is non-dominated by the pairs corresponds to basic feasible solu-

tions and therefore (TM; z′1, z
′

2) must be a convex combination of basic feasible
solutions.
This contradicts the efficient character of (TM; zs

1, z
s
2) as these basic feasible so-

lutions must yield at least one pair (TM; zs
1, z

′′

2 ) for which z′′2 < z′2.
Thus zs

2 minimum corresponding to zs
1. The converse can also be prove on the

same lines. �

Remark 4.4. A pair (TM; z′1, z
′

2) for which z′1 = zs
1 for some pair (TM; zs

1, z
s
2) ∈ EM and

z′2 , zs
2, is dominated pair.

Theorem 4.5. If (TM; z′1, z
′

2) is a non-dominated pair which is not in EM, then

z
′

1 =

Q∑
r=1

αrzr
1, z

′

2 ≤

Q∑
r=1

αrzr
2,

Q∑
r=1

αr = 1, αr
≥ 0 ∀ r ∈ {1, 2, ..Q}

where Q is the index corresponding to the last efficient pair (TM; zQ
1 , z

Q
2 ) in EM.

Proof. Since (TM; z′1, z
′

2) < EM, therefore must be yielded by a feasible solution.
Also by Remark 4.4, z′1 , z1

1 and z′1 , zQ
1 .

⇒ z1
1 < z′1 < zQ

1 . This implies that ∃ scalars αr
≥ 0 for r ∈ {1, 2, ..Q} such that

z
′

1 =

Q∑
r=1

αrzr
1
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where
∑Q

r=1 α
r = 1. Let z′′2 =

∑Q
r=1 α

rzr
2. If z′2 > z′′2 , then (TM; z′1, z

′

2) is dominated
by (TM; z′1, z

′′

2 ), which contradict the fact that (TM; z′1, z
′

2) is a non- dominated
pair. Therefore z′2 ≤

∑Q
r=1 α

rzr
2. �

Theorem 4.6. NQ
M = ∅ if and only if (TM; zQ

1 , z
Q
2 ) is the last efficient pair in EM.

Proof. Let us suppose NQ
M = ∅ and (TM; zQ

1 , z
Q
2 ) is not the last efficient pair in

EM. This indicates that there exists an efficient pair (TM; z∗1, z
∗

2) in EM such that
z∗1 > zQ

1 and z∗2 < zQ
2 . Therefore either (TM; z∗1, z

∗

2) ∈ OQ
M or UQ

M. This implies
(TM; z∗1, z

∗

2) ∈ NQ
M which is a contradiction as NQ

M = ∅.

Conversely suppose that NQ
M , ∅. Thus either UQ

M , ∅ or OQ
M , ∅ or both UQ

M and
OQ

M are non-empty. This implies that there exists at least one pair (TM; z∗1, z
∗

2) ∈
NQ

M such that z∗1 > zQ
1 and z∗2 < zQ

2 . Which further implies (TM; z∗1, z
∗

2) ∈ EM.
Therefore (TM; z∗1, z

∗

2) is not the last efficient pair in EM.
�

Theorem 4.7. The last efficient pair in EM contains the minimum deterioration cost
corresponding to the Pivotal time TM.

Proof. Let (TM; zQ
1 , z

Q
2 ) be the last efficient pair in EM, therefore from Theorem

4.6 it follows that NQ
M = ∅. This implies emptiness of UQ

M and OQ
M.

(a) Emptiness of UQ
M implies that @ any non-dominated pair (TM; z−1 , z

−

2 ) for
which z−1 > zQ

1 and z−2 < zQ
2 .

(b) Emptiness of OQ
M indicates the emptiness of the set RlQ

M ∀ l = 1, 2, ..., tQ. Thus
@ any (i, j) < BlQ

M ∀ l = 1, 2, .., tQ such that ∆1
i j < 0 and ∆2

i j > 0 and by the entry
of which into the current basis there exits at least one cell in the resulting basis
with time TM. There are three possibilities for (i, j) < BlQ

M with ∆2
i j > 0 : −

(1) ∆1
i j > 0

(2) ∆1
i j = 0

(3) ∆1
i j < 0 but by the entry of which into the current basis there does not exits

any cell in the resulting basis with time TM.
The above three possibilities either challenge the efficient nature of the pair
(TM; zQ

1 , z
Q
2 ) or disturb the pivotal time TM.

Therefore (a) and (b)simultaneously exhibits that (TM; zQ
1 , z

Q
2 ) contain the mini-

mum deterioration cost at pivotal time TM. �

Theorem 4.8. Set EM, ∀ M ∈ {1, 2, ....h} records each efficient pair corresponding to
pivotal time TM.

Proof. Let time TM be pivotal for the problem (P1) and an efficient pair (TM; z1, z2) <
EM. Suppose (TM; zQ

1 , z
Q
2 ) is the last efficient pair recorded in EM and z1 = zk

1 for
some k ∈ {1, 2, ..,Q}. Since (TM; z1, z2) < EM therefore z2 , zk

2. Therefore Remark
4.4 implies (TM; z1, z2) is a dominated pair which is not true.

Therefore z1 , zk
1 ∀k ∈ {1, 2, ..,Q}. (2)
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Inevitably z1 > z1
1. If z1 > zQ

1 then z2 < zQ
2 but this will contradict the fact that

zQ
2 is minimum deterioration cost at pivotal time TM.

Therefore z1
1 < z1 < zQ

1 . (3)

(2) and (3) together implies that there exists some w ∈ {1, 2, ...,Q} such that
zw

1 < z1 < zw+1
1 . This indicates the existence of some ξ ∈ (0, 1) such that

z1 = ξzw
1 + (1 − ξ)zw+1

1 .
If z′′2 = ξzw

2 + (1 − ξ)zw+1
2 , then pair (TM; z1, z

′′

2 ) is non-dominated (being convex
combination of adjacent efficient pairs). This betoken that z2 ≮ z′′2 . Also if
z2 > z′′2 , then it will disturb the efficient nature of (TM; z1, z2). Hence there is no
such pair exists. �

Theorem 4.9. Minimum pivotal time Th is equal to the optimal time T∗ of trans-
portation. In other words, optimal time of transportation is the minimum pivotal
time.

Proof. Let us suppose that Th , T∗. This implies that T∗ is not pivotal for any of
the problem. Therefore there exists at least one optimal basic feasible solution
of (P1)T∗ for which there is no cell (i, j) with time ti j = T∗, xi j > 0. Therefore there
exists an optimal basic feasible solution X = {xi j}with max{ti j|xi j > 0} = T′ (< T∗),
which is a contradiction to the fact that T∗ is optimal time of transportation. �

Theorem 4.10. In case-2 (Scenario-A), for the last efficient pair (TM; zQ
1 , z

Q
2 ), ∆2

i j ≤

0 ∀
(
i, j

)
< BlQ

M ∀ l = 1, 2, ..., tQ.

Proof. Let TM be the pivotal time for the problem (P1) and (P2). Since (TM; zQ
1 , z

Q
2 )

is the last efficient pair, zQ
2 will be minimum deterioration cost at TM(Theorem

4.7). Let us suppose that ∃ a cell
(
i0, j0

)
< BlQ

M such that ∆2
i0 j0

> 0 for some

l ∈
{
1, 2, ..., tQ

}
. This implies zQ

2 > zTM

2 ,where zTM

2 is the optimal deterioration

cost for the problem (P2)TM
.

Since zQ
2 is minimum deterioration cost at TM,therefore each set of optimal basic

feasible solutions of the problem (P2)TM
yielding zTM

2 (optimal deterioration cost)
doesn’t have a cell with time TM. This implies that TM is not Pivotal for (P2)
which is clearly a contradiction. �

Theorem 4.11. In case-2 (Scenario-A), zQ
2 = zTM

2 , where (TM; zQ
1 , z

Q
2 ) is the last

efficient pair at TM and zTM

2 is the optimal deterioration cost for the problem (P2)TM .

OR

In case-2 (Scenario-A), minimum deterioration cost at pivotal time TM is same as the
optimal deterioration cost for the problem (P2)TM .

Proof. Let us suppose that TM is pivotal time for the problem (P1) and (P2).
Therefore from Theorem 4.10, there doesn’t exists any

(
i, j

)
< BlQ

M (∀ l = 1, 2, ...tQ)
for which ∆2

i j ≥ 0 for the problem (P2)TM
. This implies zQ

2 = zTM

2 . �
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5. Algorithm

STEP-1 : Procedure to find the pivotal Time. To find the pivotal time for
the problem (P1), arrange the given time routes in descending order as

t1
i j > t2

i j > .... > tu
ij

Where tu
ij = min{ti j|i ∈ I, j ∈ J}.

Take T = t1
i j, and solve problem (P1)T. If each optimal basic feasible solution

of (P1)T has at least one cell(route) with time T and xi j > 0, declare T = t1
i j as

pivotal for the problem (P1) (Theorem 4.1) otherwise take T = t2
i j and repeat the

above procedure until get the pivotal.

Note: The time obtained by interchanging the role of (P1) with (P2) and (P1)T

with (P2)T in the above procedure, would be the pivotal for the problem (P2).

STEP-2: Choose the pivotal time.
Initially set M = 1,L = 1

(2.a). Choose tL
ij = TM and check whether it is pivotal for the problem (P1)T or

(P2)T (use STEP-1). If it is pivotal for at least one problem, then move to STEP-3
otherwise proceed for (2.b).

(2.b). Repeat (2.a) for TM = tL+1
i j

STEP-3 : To find the comprehensive set EM of efficient pairs for the piv-
otal time TM.

(3.a). If TM = tF
ij, for some F ∈ {1, 2, ...u} is pivotal for the problem (P1)T, then

move to (3.b).

(3.b). Obtained the first efficient pair (TM, z1
1, z

1
2) (as suggested in part 1 of

Theorem 4.2 ) and set/ update EM =
{
(TM, z1

1, z
1
2)
}
. Now set s = 1 move to (3.c).

(3.c). Construct Rls
M,O

ls
M,O

s
M,U

s
M,N

s
M for l = 1, 2, ..., ts. (Part-2 of Theorem 4.2 ).

If Ns
M = ∅, proceed to (3.e), otherwise (3.d).

(3.d). Choose (TM; zs+1
1 , zs+1

2 ) ∈ Ns such that zs+1
1 = min{z1|(TM; z1, z2) ∈ NS

M}.
Now set/update EM = EM

∪ {(TM; zs+1
1 , zs+1

2 )} and move to (3.c) for s = s + 1
otherwise move to (3.e)

(3.e). Declare (TM; zs
1, z

s
2) as the last efficient pair at pivotal time TM (see Theo-

rem 4.6) and EM as the comprehensive set of efficient pairs for the pivotal time
TM (as Theorem 4.8). Now move to step 4.

STEP-4: Move to next pivotal time.
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(4.a). Set M = M + 1 and L = L + 1 and move to STEP-2.

6. Numerical

Consider a transportation table (Table 1) containing transportation cost (up-
per left corner), deterioration cost (lower right corner) and time of transporta-
tion(center). Here transportation problem is denoted by (P1) deterioration
problem is denoted by (P2).

Table 1

ai
20 13 17 14

38 60 30 58 80
12 37 24 10

26 38 24 10
44 50 45 47 50

40 15 10 45
21 24 33 30

56 48 35 37 30
40 38 25 30

30 40 15 12
40 49 46 38 60

18 16 9 21
b j 56 54 74 36

Arrange the given time routes in descending order as;
t1
i j = 60 > t2

i j = 58 > t3
i j = 56 > t4

i j = 50 > t5
i j = 49 > t6

i j = 48 > t7
i j = 47 > t8

i j = 46 >
t9
i j = 45 > t10

i j = 44 > t11
i j = 40 > t12

i j = 38 > t13
i j = 37 > t14

i j = 35 > t15
i j = 30.

Choose t1
i j = T1 = 60 and solve (P1)T and (P2)T for T = 60. Table 2 and Ta-

ble 3 given below exhibits the optimal basic feasible solutions of (P1)T1
and

(P2)T1
respectively.
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Table 2

12 54 14
20 13 17 14

14 36
26 38 24 10

30
21 24 33 30

60
30 40 15 12

Here zT1

1 = 3434.

Table 3

56 24
12 37 24 10

50
17 15 10 45

18 12
40 38 25 30

4 56
18 16 9 21

Here zT1

2 = 3040. Clearly T1 = 60 is pivotal for problem (P1) but not for (P2)
(Case-1 of Scenario-A). Now move to Step 3.
Table 4 provides the basic feasible solution for the first efficient pair (60; 3434, 6076)
at pivotal time T1 = 60.

Table 4

20 13 17 14
12 54 14

12 37 24 10
26 38 24 10

14 36
17 15 10 45

21 24 33 30
30

40 38 25 30
30 40 15 12

60
18 16 9 21

Update E1 = {(60; 3434, 6076)}.
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Here R01
1 = {(1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 4)};

O01
1 = {(60; 3554, 5716), (60; 3700, 5698), (60; 3448, 58100), (60; 3734, 5266), (60; 3644, 5698)

(60; 4184, 4936), (60; 3554, 6028)}

O1
1 = O01

1 , U1
1 = ∅ and

N1
1 = {(60; 3554, 5716), (60; 3448, 58100), (60; 3734, 5266), (60; 3644, 5698), (60; 4184, 4936)}

Therefore (T1, z2
1, z

2
2) = (60; 3448, 58100) and E1 = {(60; 3434, 6076), (60; 3448, 58100)}

Continuing likewise the collection E1 of all the efficient pairs at pivotal time
T1 = 60 is obtained as;

E1 = {(60; 3434, 6076), (60; 3448, 58100), (60; 3554, 5716), (60; 3644, 5698), (60; 3708, 5030)
,(60; 3748, 5000), (60; 3818, 4800), (60; 3908, 4460), (60; 4108, 3920)}

Table 5 depicts the basic feasible solution providing the last efficient pair
(60; 4108, 3920) at T1 = 60

Table 5

20 13 17 14
20 24 36

12 37 24 10
26 38 24 10

36 14
17 15 10 45

21 24 33 30
30

40 38 25 30
30 40 15 12

60
18 16 9 21

Here ∆2
22 > 0,∆2

42 > 0. Also optimal deterioration cost is less than the minimum
deterioration cost time T1 i.e. zT1

2 = 3040 < 3920 = z9
2.

Next pivotal Time T2

For the next pivotal time choose t2
i j = T2 = 58 and solve (P1)T2

and (P2)T2

The two alternate optimal basic feasible solutions yielding zT2

1 = 4290 (optimal
cost of (P1)T2

) are exhibits in Table 6 and Table 7 below and Table 8 depicts the
optimal basic feasible solutions yielding zT2

1 = 3040 (optimal cost of (P2)T2
).
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Table 6

56 24
20 M 17 14

14 36
26 38 24 10

30
21 24 33 30

10 50
30 40 15 12

Table 7

56 14 10
20 M 17 14

24 26
26 38 24 10

30
21 24 33 30

60
30 40 15 12

Table 8

56 24
12 M 24 10

50
17 15 10 45

18 12
40 38 25 30

4 56
18 16 9 21

Above tables (Table 6, Table 7, Table 8) clearly show that time T2 = 58 is pivotal
for the problem (P2) only. Therefore initiating with the optimal solution of
(P2)T2

given in Table 8, the comprehensive set E2 of efficient pairs at pivotal
time T2 is obtained as;

E2 = {(58; 5310, 3040), (58; 5174, 3064), (58; 5130, 3136), (58; 4886, 3160), (58; 4852, 3176),
(58; 4564, 3272), (58; 4444, 3632), (58; 4290, 4318)}.

Table 9 provides the last efficient pair (58; 4290, 4318) at pivotal time T2 = 58.
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Table 9

20 M 17 14
56 14 10

12 M 24 10
26 38 24 10

24 26
17 15 10 45

21 24 33 30
30

40 38 25 30
30 40 15 12

60
18 16 9 21

Here it could be easily seen that optimal transportation cost is equal to the
minimum transportation cost at time T2 = 58 i.e. zT2

1 = 4290 = z8
1.

Next pivotal Time T3

Next t3
i j = T3 = 56 is not pivotal for any of the problem, therefore choose

t4
i j = T3 = 50. Tables (Table 10 and Table 11) given below exhibits the optimal

basic feasible solutions of (P1)T and (P2)T respectively at time T = 50.

Table 10

56 24
20 M 17 M

14 36
26 38 24 10

30
M 24 33 30

10 50
30 40 15 12

Table 11

56 24
12 M 24 M

50
17 15 10 45

30
M 38 25 30

4 50 6
18 16 9 21
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Above tables indicates that T3 = 50 is pivotal for both the problems. Here
optimal values of (P1)T3

and (P2)T3
are z1

T3
= 4290 and z2

T3
= 3538 respectively.

Consider the optimal solution of (P1)T3
as initial solution and obtain the first

efficient pair (T3; z1
1, z

1
2). Table given below provides the first efficient pair

(50; 4290, 4578).

Table 12

20 M 17 M
56 24

12 M 24 M
26 38 24 10

14 36
17 15 10 45

M 24 33 30
30

M 38 25 30
30 40 15 12

10 50
18 16 9 21

Now proceeding as given in Step 2, the efficient set

E3 = {(50; 4290, 4578), (50; 4550, 4474), (50; 4576, 3980), (50; 5174, 3590)}.

Next pivotal Time T4

Next t5
i j = T4 = 49 is pivotal for both the problems and

E4 = {(49; 4430, 4978), (49; 4444, 4712), (49; 4840, 3884), (49; 5794, 3452), (49; 5860, 3314)}

Each tp
ij for p ∈ {6, 7, ..., 13} is not pivotal for any of the problem and T4 = 49

(minimum pivotal time) is also optimal time of transportation.

7. Concluding Remarks

1. The algorithm deals with the situation of gleaning efficient pairs of trans-
portation and deterioration costs corresponding to each pivotal time for
the problem (P1) and (P2) in a scenario when both the problems have more
than one pivotal time and time which is pivotal for one problem may or
may not be pivotal for another.
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In case when both the problems have same pivotal time, minimum dete-
rioration (or transportation) cost at pivotal time TM is same as the optimal
deterioration cost for the problem (P2)TM

(or (P1)TM
)whereas in case of

different pivotal time the result may or may not hold.

2. Table 13 (given below) exhibit the findings of Numerical (Section 6) in
tabular form.

Table 13

Time Pivotal Notation Efficient Pair
Optimal
Value

Minimum
Value at T

(P1) (P2) (P1)T (P2)T (P1) (P2)

t1
i j = 60 Yes No T1

E1={(60;3434,6076),(60;3448,58100),
(60;3554,5716),(60;3644,5698),
(60;3708,5030),(60;3748,5000),
(60;3818,4800),(60;3908,4460),
(60;4108,3920)}

3434 3040 3434 3920

t2
i j = 58 No Yes T2

E2={(58;5310,3040),(58;5174,3064),
(58;5130,3136),(58;4886,3160),
(58;4852,3176),(58;4564,3272),
(58;4444,3632),(58;4290,4318)}

4290 3040 4290 3040

t3
i j = 56 No No NA NA NA NA NA NA

t4
i j = 50 Yes Yes T3 E3={(50;4290,4578),(50;4550,4474)

(50;4576,3980),(50;5174,3590)} 4290 3590 4290 3590

t5
i j = 49 Yes Yes T4

E4={(49;4430,4978),(49;4444,4712),
(49;4840,3884),(49;5794,3452),
(49;5860,3314)}

4430 3314 4430 3314

3. Following observations has been done from Numerical (Section 6).

(a) Theorem 4.10 and Theorem 4.11 could be easily seen from the Nu-
merical (Section 6) for pivotal time T3 = 50 and T4 = 49.

(b) Pivotal time T1 = 60 and time T2 = 58 (Numerical) exhibits that The-
orem 4.10 may or may not hold for Case-1 of Scenario-A (Scenario-B).
For the last efficient pair (T1; z1

9, z
2
9) = (60; 4108, 3920) at pivotal time

T1 = 60,∆2
22 > 0,∆2

42 > 0 for (2, 2) , (4, 2) < B19
1 (See Table 5), whereas

for last efficient pair (T2; z1
8, z

2
8) = (58; 4390, 4318) corresponding to

the pivotal time T2 = 58 ,∆1
i j > 0 ∀ (i, j) < B18

2 .

(c) Theorem 4.11 may or may not hold for Case-1 of Scenario-A (Scenario-
B) i.e. optimal cost of transportation (deterioration) of the problem
(P1)T may or may not be equal to the minimum cost of transporta-
tion (deterioration) at pivotal time T. Table 13 accurately exhibit
this from pivotal times T1 = 60 and T2 = 58. On one hand for
T1 = 60, z2

T1
(optimal cost of transportation) = 3920 , 3040 = z1

9
(minimum cost of transportation at time T1) while on the other side
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for T2 = 58, z1
T2

(optimal cost of deterioration) = 4290 = z1
8 (minimum

cost of deterioration at time T2).

(d) Minimum pivotal time T4 = 49 is the optimal time of transportation.
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