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Abstract

In this paper, an M [X]/G(a, b)/1 queueing model with second optional service closedown,
multiple vacation and state dependent arrival rate is considered. After completing the first
service, the customers may opt for the second service with probability ζ or leave the system
with probability 1− ζ. After completing a bulk service, if the queue size is less than ‘a’, then
the server starts closedown and then goes for a vacation of random length. When he returns
from the vacation, if the queue length is still less than ‘a’, he leaves for another vacation
and so on. This process continues until he finds at least ‘a’ customer in the queue. After a
vacation, if the server finds at least ‘a’ customer waiting for service, he resumes service for
a batch of ξ customers (a ≤ ξ ≤ b). The arrival rate varies depends upon the state of the
server. Using supplementary variable technique, the probability generating function (PGF)
of the queue size, expected queue length, expected waiting time, expected busy period and
expected idle period are derived. Numerical illustrations are presented to visualize the effect
of system parameters.
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1 Introduction

Queueing models where the server performs closedown work and resumes vacation when
there is no sufficient batch size (less than the minimum threshold) for service, is quit common in
various practical situations related to manufacturing systems, service systems, etc. Neuts [14]
initiated the concept of bulk queues and analyzed a general class of such models. A literature
survey on vacation queueing models can be found in Doshi [6] and Takagi [16] which include some
applications. Lee [10] developed a systematic procedure to calculate the system size probabilities
for a bulk queueing model. Krishna Reddy et al. [9] considered an M [X]/G(a, b)/1 queueing
model with multiple vacations, setup times and N policy. They derived the steady-state system
size distribution, cost model, expected length of idle and busy period. Arumuganathan and
Jeyakumar [1] obtained the probability generating function of queue length distributions at an
arbitrary time epoch for the bulk queueing model with multiple vacation and closedown times.
Also they have developed a cost model with a numerical study for their queueing model. Wang
[17] considered an M/G/1 queueing model with second optional service and unreliable server. He
derived the steady-state as well as the transient system size probabilities using supplementary
variable method.
Footnote
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Madan et al. [11] considered an M [X]/(G1, G2)/1 queueing model where the batch of cus-
tomers can choose any one of the two service and then after the completion of service, they may
opt for re-service. They derived the steady state probability generating functions for the number
of customers in the queue and the system. Arumuganathan and Jeyakumar [2] obtained the
probability generating function of queue size distribution at an arbitrary time epoch and a cost
model for the M [X]/G(a, b)/1 queueing model with multiple vacation, closedown, setup times
and N-policy. Ke [8] investigated an M [X]/G/1 queueing model with vacation policies, break-
down and startup/closedown times where the vacation, startup, closedown and repair times are
generally distributed. Parthasarathy and Sudhesh [15] derived the transient system size prob-
abilities and the duration of busy period for a single server queueing model using continued
fraction where the system alternates between arrivals and service with state dependent rates.
Maraghi et al. [13] derived PGF for a number of customers in the queue under the steady-state.
Also they derived the performance measures like expected queue length, expected waiting time
with some special cases.

Balasubramanian and Arumuganathan [4] considered an M [X]/G(a, b)/1 queueing model and
obtained its queue size distribution for the steady state. They also derived the average length
of busy and idle periods, expected queue length and waiting time. Jain et al. [7] obtained the
system size distribution for the M/G/1 queueing model with unreliable server and multi-optional
vacations where the arrivals received the first essential service and some of them required some
other optional services. Ayyappan and Shyamala [3] derived the PGF of an M [X]/G/1 queueing
model with feedback, random breakdowns, Bernoulli schedule server vacation and random setup
time for both steady state and transient cases. Madan and Malalla [12] studied a batch arrival
queue in which the server provides the second optional service on customer’s request, the server
may breakdown at random time and delayed repair. They also derived the queue size distribution
of the system and some performance measures.

The rest of the paper is organized as follows. In section 2, an M [X]/G(a, b)/1 queueing
model with second optional service closedown, multiple vacation and state dependent arrival
rate is described and the steady-state system size equations are considered. In section 3, using
supplementary variable technique, the probability generating function of the queue size are
derived and a particular case is provided. In section 4, performance measures like expected
length of busy and idle periods, expected queue length and waiting time are obtained. In
section 5, the cost model is provided. In section 6, numerical illustrations are presented to
validate the analytical results. In section 7, this research work is concluded with the proposed
future work.

2 Model Description

We consider an M [X]/G(a, b)/1 queueing model with second optional service closedown, mul-
tiple vacation and state dependent arrival rate. After completing the first service, the customers
may opt for the second service with probability ζ or leave the system with probability 1 − ζ.
After completing a bulk service, if the queue size is less than ‘a’, then the server starts closedown
and then goes for a vacation of random length. When he returns from the vacation, if the queue
length is still less than ‘a’, he leaves for another vacation and so on. This process continues
until he finds at least ‘a’ customer in the queue. After a vacation, if the server finds at least ‘a’
customer waiting for service, he resumes service for a batch of ξ customers (a ≤ ξ ≤ b). The
arrival rate varies depends upon the state of the server. When the server is busy, the arrival
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rate is λ1. When the server is idle (closedown and multiple vacation), the arrival rate is λ2.
For the model under consideration, the PGF of the queue size at an arbitrary time and various
performance measures are obtained. Cost model for the system is also derived.

2.1 Notations

The following notations are used in this paper.
λ - Arrival rate,
X - Group size random variable,
gk − Pr {X = k},
X(z) - Probability generating function (PGF) of X.

Here S1(.), S2(.), V (.) and C(.) represent the cumulative distribution function (CDF) of first
essential service time, second optional service time, vacation time and closedown time and
their corresponding probability density functions are s1(x), s2(x), v(x) and c(x) respectively.
S0
1(t), S0

2(t), V 0(t) and C0(t) represent the remaining service time of first essential service of
a batch, second optional service time of a batch, vacation time and closedown time at time t
respectively. S̃1(θ), S̃2(θ), Ṽ (θ) and C̃(θ) represent the Laplace-Stieltjes transform of S1, S2, V
and C respectively.

The supplementary variables S0
1(t), S0

2(t), V 0(t) and C0(t) are introduced in order to obtain
the bivariate Markov process {N(t), Y (t)}, where N(t) = {Nq(t) ∪Ns(t)} and

Y (t) = (0)[1] {2} 〈3〉 , if the server is on(first essential service)[second optional service]

{vacation} 〈closedown time〉 .
Z(t) = j, if the server is on jth vacation.

Ns(t) = Number of customers in the service at time t.

Nq(t) = Number of customers in the queue at time t.

Define the probabilities as,

P
(1)
i,j (x, t)dt =P

{
Ns(t) = i,Nq(t) = j, x ≤ S0

1(t) ≤ x+ dx, Y (t) = 0
}
, a ≤ i ≤ b, j ≥ 0,

P
(2)
i,j (x, t)dt =P

{
Ns(t) = i,Nq(t) = j, x ≤ S0

2(t) ≤ x+ dx, Y (t) = 1
}
, a ≤ i ≤ b, j ≥ 0,

Qj,n(x, t)dt =P
{
Nq(t) = n, x ≤ V 0(t) ≤ x+ dx, Y (t) = 2, Z(t) = j

}
, n ≥ 0, j ≥ 1,

Cn(x, t)dt =P
{
Nq(t) = n, x ≤ C0(t) ≤ x+ dx, Y (t) = 3

}
, n ≥ 0.

The supplementary variable technique was introduced by Cox [5]. The steady-state system size
equations are obtained as follows:

−P ′(1)i,0 (x) = −λ1P (1)
i,0 (x) + (1− ζ)

b∑
m=a

P
(1)
m,i(0)s1(x) +

b∑
m=a

P
(2)
m,i(0)s1(x)

+

∞∑
l=1

Ql,i(0)s1(x), a ≤ i ≤ b, (1)

−P ′(1)i,j (x) = −λ1P (1)
i,j (x) +

j∑
k=1

P
(1)
i,j−k(x)λ1gk, j ≥ 1, a ≤ i ≤ b− 1, (2)
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−P ′(1)b,j (x) = −λ1P (1)
b,j (x) + (1− ζ)

b∑
m=a

P
(1)
m,b+j(0)s1(x) +

j∑
k=1

P
(1)
b,j−k(x)λ1gk

+
b∑

m=a

P
(2)
m,b+j(0)s1(x) +

∞∑
l=1

Ql,b+j(0)s1(x), j ≥ 1, (3)

−P ′(2)i,0 (x) = −λ1P (2)
i,0 (x) + ζP

(1)
i0 (0)s2(x), a ≤ i ≤ b, (4)

−P ′(2)i,j (x) = −λ1P (2)
i,j (x) + ζP

(1)
ij (0)s2(x) +

j∑
k=1

P
(2)
i,j−k(x)λ1gk, j ≥ 1, a ≤ i ≤ b, (5)

−C ′n(x) = −λ2Cn(x) + (1− ζ)
b∑

m=a

P (1)
m,n(0)c(x) +

b∑
m=a

P (2)
m,n(0)c(x)

+
n∑
k=1

Cn−k(x)λ2gk, n ≤ a− 1, (6)

−C ′n(x) = −λ2Cn(x) +
n∑
k=1

Cn−k(x)λ2gk, n ≥ a, (7)

−Q′1,0(x) = −λ2Q1,0(x) + C0(0)v(x), (8)

−Q′1,n(x) = −λ2Q1,n(x) + Cn(0)v(x) +
n∑
k=1

Q1,n−k(x)λ2gk, n ≥ 1, (9)

−Q′j,0(x) = −λ2Qj,0(x) +Qj−1,0(0)v(x), j ≥ 2, (10)

−Q′j,n(x) = −λ2Qj,n(x) +Qj−1,n(0)v(x) +

n∑
k=1

Qj,n−k(x)λ2gk, j ≥ 2, 1 ≤ n < a, (11)

−Q′j,n(x) = −λ2Qj,n(x) +

n∑
k=1

Qj,n−k(x)λ2gk, j ≥ 2, n ≥ a. (12)

The Laplace-Stieltjes transform of P
(1)
i,j (x), P

(2)
i,j (x), Cn(x), Qj,n(x), are defined as follows:

P̃
(1)
i,j (θ) =

∞∫
0

e−θxP
(1)
i,j (x)dx, P̃

(2)
i,j (θ) =

∞∫
0

e−θxP
(2)
i,j (x)dx,

C̃n(θ) =

∞∫
0

e−θxCn(x)dx, Q̃j,n(θ) =

∞∫
0

e−θxQj,n(x)dx.

Taking Laplace-Stieltjes transform from (1) to (12), we get

θP̃
(1)
i,0 (θ)− P (1)

i,0 (0) =λ1P̃
(1)
i,0 (θ)− S̃1(θ)

[
(1− ζ)

b∑
m=a

P
(1)
m,i(0) +

b∑
m=a

P
(2)
m,i(0) +

∞∑
l=1

Ql,i(0)

]
,

a ≤ i ≤ b, (13)
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θP̃
(1)
i,j (θ)− P (1)

i,j (0) =λ1P̃
(1)
i,j (θ)−

j∑
k=1

P̃
(1)
i,j−k(θ)λ1gk, (14)

θP̃
(1)
b,j (θ)− P (1)

b,j (0) =λ1P̃
(1)
b,j (θ)−

j∑
k=1

P̃
(1)
b,j−k(θ)λ1gk − S̃1(θ)

[
(1− ζ)

b∑
m=a

P
(1)
m,b+j(0)

+
b∑

m=a

P
(2)
m,b+j(0) +

∞∑
l=1

Ql,b+j(0)

]
, j ≥ 1, (15)

θP̃
(2)
i,0 (θ)− P (2)

i,0 (0) =λ1P̃
(2)
i,0 (θ)− ζP (1)

i0 (0)S̃2(θ), a ≤ i ≤ b, (16)

θP̃
(2)
i,j (θ)− P (2)

i,j (0) =λ1P̃
(2)
i,j (θ)−

j∑
k=1

P̃
(2)
i,j−k(θ)λ1gk − ζP

(1)
i0 (0)S̃2(θ), a ≤ i ≤ b, j ≥ 1, (17)

θC̃n(θ)− Cn(0) =λ2C̃n(θ)−
n∑
k=1

C̃n−kλ2gk − C̃(θ)

[
(1− ζ)

b∑
m=a

P (1)
m,n(0) +

b∑
m=a

P (2)
m,n(0)

]
,

n ≤ a− 1, (18)

θC̃n(θ)− Cn(0) =λ2C̃n(θ)−
n∑
k=1

C̃n−k(θ)λ2gk, (19)

θQ̃1,0(θ)−Q1,0(0) =λ2Q̃1,0(θ)− Ṽ (θ)C0(0), (20)

θQ̃1,n(θ)−Q1,n(0) =λ2Q̃1,n(θ)− Ṽ (θ)Cn(0)−
n∑
k=1

Q̃1,n−k(θ)λ2gk, n ≥ 1, (21)

θQ̃j,0(θ)−Qj,0(0) =λ2Q̃j,0(θ)− Ṽ (θ)Qj−1,0(0), (22)

θQ̃j,n(θ)−Qj,n(0) =λ2Q̃j,n(θ)− Ṽ (θ)Qj−1,n(0)−
n∑
k=1

Q̃j,n−k(θ)λ2gk, (23)

θQ̃j,n(θ)−Qj,n(0) =λ2Q̃j,n(θ)−
n∑
k=1

Q̃j,n−k(θ)λ2gk. (24)

To find the probability generating function (PGF) of queue size, we define the following PGFs:

P̃
(1)
i (z, θ) =

∞∑
j=0

P̃
(1)
i,j (θ)zj , P

(1)
i (z, 0) =

∞∑
j=0

P
(1)
i,j (0)zj , a ≤ i ≤ b,

P̃
(2)
i (z, θ) =

∞∑
j=0

P̃
(2)
i,j (θ)zj , P

(2)
i (z, 0) =

∞∑
j=0

P
(2)
i,j (0)zj , a ≤ i ≤ b,

C̃(z, θ) =

∞∑
n=0

C̃n(θ)zn, C(z, 0) =

∞∑
n=0

Cn(0)zn,

Q̃j(z, θ) =
∞∑
n=0

Q̃j,n(θ)zn, Qj(z, 0) =
∞∑
n=0

Qj,n(0)zn, j ≥ 1. (25)
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By multiplying the equations from (13) to (24) by suitable power of zn and summing over n,
(n = 0 to ∞) and using (25),

(θ − λ2 + λ2X(z))Q̃1(z, θ) =Q1(z, 0)− C(z, 0)Ṽ (θ), (26)

(θ − λ2 + λ2X(z))Q̃j(z, θ) =Qj(z, 0)− Ṽ (θ)
a−1∑
n=0

Qj−1,n(0)zn, j ≥ 2, (27)

(θ − λ2 + λ2X(z))C̃(z, θ) =C(z, 0)− C̃(θ)

[
(1− ζ)

a−1∑
n=0

b∑
m=a

P (1)
m,n(0)zn +

a−1∑
n=0

b∑
m=a

P (2)
m,n(0)zn

]
,

(28)

(θ − λ1 + λ1X(z))P̃
(1)
i (z, θ) =P

(1)
i (z, 0)− S̃1(θ)

[
(1− ζ)

b∑
m=a

P
(1)
m,i(0)

+

b∑
m=a

P
(2)
m,i(0) +

∞∑
l=1

Ql,i(0)

]
, a ≤ i ≤ b− 1, (29)

(θ − λ1 + λ1X(z))P̃
(1)
b (z, θ) =P

(1)
b (z, 0)− S̃1(θ)

zb

[
(1− ζ)

b∑
m=a

P (1)
m (z, 0)−

b∑
m=a

b−1∑
j=0

P
(1)
m,j(0)zj

+
b∑

m=a

P (2)
m (z, 0)−

b∑
m=a

b−1∑
j=0

P
(2)
m,j(0)zj

+
∞∑
l=1

Ql(z, 0)−
∞∑
l=1

b−1∑
j=0

Ql,j(0)zj
]
, (30)

(θ − λ1 + λ1X(z))P̃
(2)
i (z, θ) =P

(2)
i (z, 0)− ζS̃2(θ)P (1)

i (z, 0). (31)

By Substituting θ = λ2 − λ2X(z) in (26) to (28), we get

Q1(z, 0) =Ṽ (λ2 − λ2X(z))C(z, 0), (32)

Qj(z, 0) =Ṽ (λ2 − λ2X(z))
a−1∑
n=0

Qj−1,n(0)zn, j ≥ 2, (33)

C(z, 0) =C̃(λ2 − λ2X(z))

[
(1− ζ)

a−1∑
n=0

b∑
m=a

P (1)
m,n(0)zn +

a−1∑
n=0

b∑
m=a

P (2)
m,n(0)zn

]
, (34)

By Substituting θ = λ1 − λ1X(z) in (29) to (31), we get

P
(1)
i (z, 0) =S̃1(λ1 − λ1X(z))

[
(1− ζ)

b∑
m=a

P
(1)
m,i(0) +

b∑
m=a

P
(2)
m,i(0) +

∞∑
l=1

Ql,i(0)

]
,

a ≤ i ≤ b− 1, (35)
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zbP
(1)
b (z, 0) =S̃1(λ1 − λ1X(z))

[
(1− ζ)(

b∑
m=a

P (1)
m (z, 0)−

b−1∑
j=0

b∑
m=a

P
(1)
m,j(0)zj) +

b∑
m=a

P (2)
m (z, 0)

−
b−1∑
j=0

b∑
m=a

P
(2)
m,j(0)zj +

∞∑
l=1

Ql(z, 0)−
b−1∑
j=0

∞∑
l=1

Ql,j(0)zj
]
, (36)[

zb − (1− ζ)S̃1(λ1 − λ1X(z))− ζS̃1(λ1 − λ1X(z))S̃2(λ1 − λ1X(z))

]
P

(1)
b (z, 0)

= S̃1(λ1 − λ1X(z))

[
[(1− ζ) + ζS̃2(λ1 − λ1X(z))]

b−1∑
m=a

P (1)
m (z, 0) +

∞∑
l=1

Ql(z, 0)

−
b−1∑
j=0

[
(1− ζ)

b∑
m=a

P
(1)
m,j(0)zj +

b∑
m=a

P
(2)
m,j(0)zj +

∞∑
l=1

Ql,j(0)zj
]]
, (37)

P
(2)
i (z, 0) =S̃2(λ1 − λ1X(z))ζP

(1)
i (z, 0).a ≤ i ≤ b. (38)

Here

p
(1)
i =

b∑
m=a

P
(1)
m,i(0), p

(2)
i =

b∑
m=a

P
(2)
m,i(0),

qi =
∞∑
l=1

Ql,i(0), ki = (1− ζ)p
(1)
i + p

(2)
i , gi = ki + qi (39)

Substitute (32) to (34), (35), (37), (38) in (26) to (31), we get

Q̃1(z, θ) =

[
Ṽ (λ2 − λ2X(z))− Ṽ (θ)

]
C(z, 0)

(θ − λ2 + λ2X(z))
, (40)

Q̃j(z, θ) =

[
Ṽ (λ2 − λ2X(z))− Ṽ (θ)

] a−1∑
n=0

Qj−1,n(0)zn

(θ − λ2 + λ2X(z))
, j ≥ 2, (41)

C̃(z, θ) =

(
C̃(λ2 − λ2X(z))− C̃(θ)

) a−1∑
n=0

knz
n

(θ − λ0 + λ0X(z))
, (42)

P̃
(1)
i (z, θ) =

(
S̃1(λ1 − λ1X(z))− S̃1(θ)

)
gi

(θ − λ1 + λ1X(z))
, a ≤ i ≤ b− 1, (43)

P̃
(1)
b (z, θ) =

[
S̃1(λ1 − λ1X(z))− S̃1(θ)

]
f(z)(θ − λ1 + λ1X(z))

[
zb − (1− ζ)S̃1(λ1 − λ1X(z))

− ζS̃1(λ1 − λ1X(z))S̃2(λ1 − λ1X(z))

]

, (44)

where

f(z) =[(1− ζ) + ζS̃2(λ1 − λ1X(z))]
b−1∑
m=a

P (1)
m (z, 0) +

∞∑
l=1

Ql(z, 0)−
b−1∑
n=0

gnz
n.

285



T. Deepa, A. Azhagappan

P̃
(2)
i (z, θ) =

(
S̃2(λ1 − λ1X(z))− S̃2(θ)

)
ζP

(1)
i (z, 0)

(θ − λ1 + λ1X(z))
, a ≤ i ≤ b. (45)

3 Probability generating function of queue size

In this section, the PGF, P (z) of the queue size at an arbitrary time epoch is derived.

3.1 PGF of queue size at an arbitrary time epoch

If P(z) be the PGF of the queue size at an arbitrary time epoch, then

P (z) =

b−1∑
m=a

P̃ (1)
m (z, 0) + P̃

(1)
b (z, 0) +

b∑
m=a

P̃ (2)
m (z, 0) + C̃(z, 0) +

∞∑
l=1

Q̃l(z, 0).

(46)

By substituting θ = 0 into the equations (40) to (45), then the equation (46) becomes

P (z) =



(1− ζ)S̃1(λ1 − λ1X(z)) + ζS̃1(λ1 − λ1X(z))(S̃2(λ1 − λ1X(z))− 1)

(−λ2 + λ2X(z))
b−1∑
n=a

(zb − zn)gn + (Ṽ (λ2 − λ2X(z))C̃(λ2 − λ2X(z))− 1)[[
(1− ζ)S̃1(λ1 − λ1X(z)) + ζS̃1(λ1 − λ1X(z))S̃2(λ1 − λ1X(z))− 1

]
(−λ2 + λ2X(z)) +

[
zb − (1− ζ)S̃1(λ1 − λ1X(z))− ζS̃1(λ1 − λ1X(z))

S̃2(λ1 − λ1X(z)))(−λ1 + λ1X(z))

]
a−1∑
n=0

knz
n + (Ṽ (λ2 − λ2X(z))− 1)[[

(1− ζ)S̃1(λ1 − λ1X(z)) + ζS̃1(λ1 − λ1X(z))S̃2(λ1 − λ1X(z))− 1

]
(−λ2 + λ2X(z)) +

[
zb − (1− ζ)S̃1(λ1 − λ1X(z))

− ζS̃1(λ1 − λ1X(z))S̃2(λ1 − λ1X(z))(−λ1 + λ1X(z))

]
a−1∑
n=0

qnzn


(−λ1 + λ1X(z))(−λ2 + λ2X(z))

[
zb − (1− ζ)S̃1(λ1 − λ1X(z))

− ζS̃1(λ1 − λ1X(z))S̃2(λ1 − λ1X(z))

]


.

(47)

Equation (47) has a + b unknowns ga, ga+1, . . . , gb−1, k0, k1, . . . , ka−1, q0, q1, . . . , qa−1. Using
the following theorem, we express qi in terms of ki in such a way that numerator has only b
constants. Now equation (47) gives the PGF of the number of customers involving only ’b’
unknowns.
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By Rouche’s theorem of complex variables, it can be proved that zb−(1−ζ)S̃1(λ1−λ1X(z))−
ζS̃1(λ1−λ1X(z))S̃2(λ1−λ1X(z)) has b−1 zeros inside and one on the unit circle |z| = 1. Since
P (z) is analytic within and on the unit circle, the numerator must vanish at these points, which
gives b equations in b unknowns. These equations can be solved by any suitable numerical
technique.

3.2 Steady-state condition

Using P (1) = 1, the steady state condition is derived as ρ = λ1E(X) [E(S1) + ζE(S2)] /b.

Theorem 1 Let qi can be expressed in terms of gi as

qn =
n∑
i=0

Likn−i, n = 0, 1, 2, . . . , a− 1, (48)

where

Ln =

hn +
n∑
i=1

γiLn−i

1− γ0
, n = 1, 2, 3, . . . , a− 1, (49)

with

hn =
n∑
i=0

γiαn−i, L0 =
γ0α0

1− γ0
, (50)

γi’s and αi’s are the probabilities of the i customers arrive during vacation time and closedown
time respectively.

Proof: From equations (32) and (33) , we have

∞∑
n=0

qnz
n =Ṽ (λ2 − λ2X(z))C̃(λ2 − λ2X(z))

[a−1∑
n=0

knz
n

]
+Ṽ (λ2 − λ2X(z))

a−1∑
n=0

qnz
n

=

∞∑
n=0

γnz
n

[ ∞∑
i=0

αiz
i
a−1∑
n=0

knz
n +

a−1∑
n=0

qnz
n

]
. (51)

Equating the coefficient of zn, n = 0, 1, 2, . . . , a− 1 on both sides of (51), we get

qn =
n∑
j=0

n−j∑
i=0

γiαn−i−jkj +
n−1∑
i=0

γn−iqi + γ0qn,

qn =

n∑
j=0

n−j∑
i=0

γiαn−i−jkj +
n−1∑
i=0

γn−iqi

1− γ0
.

Co-efficient of kn in qn is
γ0α0

1− γ0
= L0 (say).

Co-efficient of kn−1 in qn is

(γ0α1 + γ1α0) + γ1

(
γ0α0

1−γ0

)
1− γ0

287



T. Deepa, A. Azhagappan

h1 + γ1L0

1− γ0
= L1 (say),

where
h1 = γ0α1 + γ1α0.

By induction

Ln =

hn +
n∑
i=1

γiLn−i

1− γ0
, n = 0, 1, 2, . . . , a− 1,

L0 =
γ0α0

1− γ0
, hn =

n∑
i=0

γiαn−i.

3.3 Particular case

When there is no closedown and second optional service

P (z) =



(
S̃(λ1 − λ1X(z))− 1

)
(−λ2 + λ2X(z))

b−1∑
n=a

(
zb − zn

)
gn

+
(
Ṽ (λ2 − λ2X(z))− 1

)[(
S̃(λ1 − λ1X(z))− 1

)
(−λ2 + λ2X(z))

+ (zb − S̃(λ1 − λ1X(z)))(−λ1 + λ1X(z))

]
a−1∑
n=0

(kn + qn)zn


(−λ1 + λ1X(z))(−λ2 + λ2X(z))(zb − S̃(λ1 − λ1X(z)))

, (52)

which coincides with the PGF of Balasubramanian and Arumuganathan [4] if the number of
vacations are infinite, (i.e) M =∞.

4 Performance measures

4.1 Expected queue length

The expected queue length E(Q) at an arbitrary epoch is obtained by differentiating P(z) at
z=1 and is given by

E(Q) =



f1(X,S1, S2)

[
b−1∑
n=a

[b(b− 1)− n(n− 1)] gn

]
+ f2(X,S1, S2)

b−1∑
n=a

(b− n)gn + f3(X,S1, S2, V )
a−1∑
n=0

(kn + qn)

+f4(X,S1, S2, V, C)
a−1∑
n=0

kn + f5(X,S1, S2, V )
a−1∑
n=0

(nkn + nqn)

+ f6(X,S1, S2, V, C)
a−1∑
n=0

nkn


2.
[
(λ1.X1).(λ2.X1).(b− S(1)

1 − ζ.S
(1)
2

]2 , (53)
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f1(X,S1, S2) =H3.H1,

f2(X,S1, S2) =H1.H4 −H2.H3,

f3(X,S1, S2, V ) =V (2)
[(
S
(1)
1 + ζ.S

(1)
2

)
(λ2.X1) +

(
b− S(1)

1 − ζS
(1)
2

)
(λ1.X1)

]
.H1

+ V (1)

[
(λ2.X1)

(
S
(2)
1 + ζ.(S

(2)
2 + 2.S

(1)
1 ..S

(1)
2 )
)

+ (λ2.X2)
(
S
(1)
1 + ζ.S

(1)
2

)
+
(
b(b− 1)− S(2)

1 − ζ.(S
(2)
2 + 2.S

(1)
1 .S

(1)
2 )
)

(λ1.X1)

+
(
b− S(1)

1 − ζ.S
(1)
2 )(λ1.X2

)]
.H1

− V (1)

[
(λ2.X1)

(
S
(1)
1 + ζ.S

(1)
2

)
+ (λ1.X1)

(
b− S(1)

1 − ζ.S
(1)
2

)]
.H2,

f4(X,S1, S2, V, C) =
[
C(2) + 2.C(1).V (1)

]
.

[(
S
(1)
1 + ζ.S

(1)
2

)
(λ2.X1)

+
(
b− S(1)

1 − ζ.S
(1)
2

)
(λ1.X1)

]
.H1 + (λ2.X2)

(
S
(1)
1 + ζ.S

(1)
2

)
+ C(1)

[
(λ2.X1)

(
S
(2)
1 + ζ.(S

(2)
2 + 2.S

(1)
1 .S

(1)
2 )+

)
+
(
b(b− 1)− S(2)

1 − ζ(S
(2)
2 + 2.S

(1)
1 .S

(1)
2 )
)

(λ1.X1)

+
(
b− S(1)

1 − ζ.S
(1)
2

)
(λ1.X2)

]
.H1

− C(1)

[
(λ2.X1)

(
S
(1)
1 + ζ.S

(1)
2

)
+ (λ1.X1)

(
b− S(1)

1 − ζ.S
(1)
2

)]
.H2,

f5(X,S1, S2, V, C) =2.V (1)

[
(λ2.X1)

(
S
(1)
1 + ζ.S

(1)
2

)
+ (λ1.X1)

(
b− S(1)

1 − ζ.S
(1)
2

)]
.H1,

f6(X,S1, S2, V, C) =2.C(1)

[
(λ2.X1)

(
S
(1)
1 + ζ.S

(1)
2

)
+ (λ1.X1)

(
b− S(1)

1 − ζ.S
(1)
2

)]
.H1,

where

H1 =(λ1.X1).(λ2.X1).
(
b− S(1)

1 − ζ.S
(1)
2

)
,

H2 =(λ1.X2).(λ2.X1).
(
b− S(1)

1 − ζ.S
(1)
2

)
+ (λ1.X1).(λ2.X2).

(
b− S(1)

1 − ζ.S
(1)
2

)
+ (λ1.X1).(λ2.X1).

(
b.(b− 1)− S(2)

1 − ζ.(S
(2)
2 + 2.S

(1)
1 .S

(1)
2 )
)
,

H3 =(λ2.X1)
(
S
(1)
1 + ζ.S

(1)
2

)
,

H4 =(λ2.X1)
(
S
(2)
1 + ζ.(S

(2)
2 + 2.S

(1)
1 .S

(1)
2 )
)

+ (λ2.X2)
(
S
(1)
1 + ζ.S

(1)
2

)
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and

X1 = E(X), S
(1)
1 = λ1.X1.E(S1), S

(1)
2 = λ1.X1.E(S2),

V (1) = λ2.X1.E(V ), C(1) = λ2.X1.E(C),

S
(2)
1 = λ1.X2.E(S1) + λ21.(E(X))2.E(S2

1),

S
(2)
2 = λ1.X2.E(S2) + λ21.(E(X))2.E(S2

2),

V (2) = λ2.X2.E(V ) + λ22.(E(X))2.E(V 2),

C(2) = λ2.X2.E(C) + λ22.(E(X))2.E(C2).

4.2 Expected waiting time

The expected waiting time is obtained by using Little’s formula as:

E(W ) =
E(Q)

λE(X)
,

where E(Q) is given in (53).

4.3 Expected length of busy period

Theorem 2 Let B be the busy period random variable. Then the expected length of busy period
is

E(B) =
E(T )
a−1∑
n=0

kn

, (54)

where
E(T ) = E(S1) + ζE(S2).

Proof: Let T be the residence time that the server is rendering first essential service or second
optional service.

E(T ) = E(S1) + ζE(S2).

Define a random variable J1 as

J1 =

{
0, if the server finds less than ’a’ customers after the residence time,

1, if the server finds atleast ’a’ customers after the residence time.

Now the expected length of the busy period is given by

E(B) = E(B/J1 = 0)P (J1 = 0) + E(B/J1 = 1)P (J1 = 1)

= E(T )P (J1 = 0) + [E(T ) + E(B)]P (J1 = 1),

Solving for E(B), we get

E(B) =
E(T )

P (J1 = 0)
=

E(T )
a−1∑
n=0

kn

.
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4.4 Expected length of idle period

Theorem 3 Let I be the idle period random variable. Then the expected length of idle period is
given by

E(I) = E(C) + E(I1), (55)

where

E(I1) =
E(V )

1−
a−1∑
n=0

n∑
i=0

[
n−i∑
j=0

γjαn−i−j

]
gi

, (56)

I1 is the idle period due to multiple vacation process, E(C) is the expected closedown time.

Proof: Define a random variable J2 as

J2 =

{
0, if the server finds atleast ’a’ customers after the first vacation,

1, if the server finds less than ’a’ customers after the first vacation.

The expected length of idle period due to multiple vacations E(I1) is given by

E(I1) = E(I1/J2 = 0)P (J2 = 0) + E(I1/J2 = 1)P (J2 = 1)

= E(V )P (J2 = 0) + [E(V ) + E(I1)]P (J2 = 1).

On solving, we get

E(I1) =
E(V )

P (J2 = 0)
=

E(V )

1− P (J2 = 1)
=

E(V )

1−
a−1∑
n=0

Q1n(0)

. (57)

From equation (32), we get
Q1n(0) = coefficient of zn in Q1(z, 0)

Q1(z, 0) = Ṽ (λ2 − λ2X(z))C̃(λ2 − λ2X(z))

[
a−1∑
n=0

knz
n

]

=
∞∑
n=0

γnz
n
∞∑
i=0

αiz
i
a−1∑
n=0

knz
n

=

[ ∞∑
n=0

(
n∑
i=0

γiαn−i

)
zi

]
a−1∑
n=0

knz
n

=

∞∑
n=0

hnz
n
a−1∑
n=0

knz
n

=

a−1∑
n=0

[
n∑
i=0

hn−iki

]
zn +

∞∑
n=a

[
a−1∑
i=0

hn−iki

]
zn,

where

hn =
n∑
i=0

γiαn−i.
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Equating the coefficient of zn, n = 0, 1, 2, . . . , a− 1,

Q1n(0) =
n∑
i=0

hn−iki,

=

n∑
i=0

n−i∑
j=0

γiαn−i−j

 ki.
Substitute in (57),we get (56).

5 Cost Model

We derive the expression for finding the total average cost with the following assumptions.
Cs - Start up cost ,
Cv - Reward per unit time due to vacation,
Ch - Holding cost per customer,
Co - Operating cost per unit time,
Ca - Optional service cost,
Cu - Closedown cost per unit time.

The length of cycle is the sum of the idle period and busy period. Now the expected length
of the cycle E(Tc) is obtained as

E(Tc) = E(I) + E(B) =
E(V )

P (J2 = 0)
+ E(C) +

E(T )
a−1∑
n=0

kn

.

Total Average Cost = Start - up cost
+ closedown cost per unit time
+ Optional service cost per unit time
+ holding cost of number of customers in the queue per unit time
+ operating cost per unit time * ρ
- reward due to vacation per unit time.

=

[
Cs + ζ.Ca.E(S2) + Cu.E(c)− Cv.

E(V )

P (J2 = 0)

]
.

1

E(Tc)

+Ch.E(Q) + Co.ρ,

where
ρ = λ1E(X) [E(S1) + ζ.E(S2)] /b.

6 Numerical illustration

In this section, various performance measures which are computed in earlier sections are
verified numerically. Numerical example is analyzed using MATLAB, the zeros of the function
zb− (1− ζ)S̃1(λ1−λ1X(z))− ζS̃1(λ1−λ1X(z))S̃2(λ1−λ1X(z)) are obtained and simultaneous
equations are solved.
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a E(Q) E(W ) E(I) E(B) TAC

1 1.2628 0.2105 0.1226 0.1184 15.8685
2 2.5098 0.4183 0.1432 0.1123 12.0371
3 2.8315 0.4719 0.1651 0.1111 11.7277
4 3.8516 0.6419 0.1693 0.1102 11.1345
5 4.3251 0.7209 0.1715 0.0093 10.5122
6 5.0371 0.8395 0.1728 0.1102 10.0216
7 5.8675 0.9779 0.1712 0.1126 11.8271
8 6.2522 1.0420 0.1708 0.1135 12.3586
9 7.1789 1.1965 0.1699 0.1143 12.7211
10 7.7665 1.2944 0.1622 0.1155 14.1287

Table 1: Minimum threshold value vs Total average cost and performance measures µ1 = 7, µ2 =
5, b = 11

ζ E(Q) E(W ) E(B) E(I) TAC

0.1 2.8653 0.4776 0.8588 0.4312 12.0316
0.2 3.8188 0.6365 0.8603 0.4303 12.7922
0.3 4.0015 0.6667 0.8623 0.4285 12.9498
0.4 4.6475 0.7746 0.8659 0.4266 13.2621
0.5 5.2912 0.8819 0.8674 0.4242 13.8188
0.6 5.7875 0.9646 0.8715 0.4216 14.0077
0.7 6.2479 1.0413 0.8764 0.4178 14.3856
0.8 7.9766 1.3294 0.8793 0.4154 14.7185
0.9 9.5411 1.5902 0.8861 0.4128 15.6914
1.0 11.6984 1.9497 0.8887 0.4111 16.2110

Table 2: Optional service probability vs Total average cost and performance measures µ1 =
8, µ2 = 9

A numerical example is analyzed with the following assumptions:
1. Batch size distribution of the arrival is Geometric with mean two.
2. Service time distribution is Erlang - k for both type of services with k = 2.
3. Vacation time and closedown time are exponential with parameter γ = 9 and α = 7

respectively.
4. The arrival rate λ1 = 3, when the server is busy.
5. The arrival rate λ2 = 2, when the server is idle.
6. Start-up cost : Rs.3
7. Holding cost per customer: Rs. 0.50
8. Operating cost per unit time: Rs.2
9. Optional service cost:Rs.1
10. Reward per unit time due to vacation: Rs.3
11. Closedown cost per unit time: Rs. 0.25
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In Table 1, for µ1 = 7, µ2 = 5, b = 12, we obtained the values of expected queue length,
expected busy period, expected idle period and total average cost. From Table 1, it is clear that
the total average cost is minimum when the minimum threshold value is 6. In Table 2, if we
increase the value of the probability for the second optional service, the values of queue length,
expected busy period, expected waiting time and total average cost increase.

7 Conclusion and future work

In this paper, the M [X]/G(a, b)/1 queueing model with second optional service closedown,
multiple vacation and state dependent arrival rate is investigated for the steady-state case. Also
we have obtained various performance measures and verified numerically. In future this work
may be extended into a queueing model with multiple types of service.
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