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Abstract 

 

In this paper, we propose a technique for solving a separable non linear 

programming problem (SNPP) by approximating each separable function 

by a piecewise linear function and then Modified Fourier Technique is 

used. Earlier Gauss Elimination, Fourier Technique and Modified Fourier 

Technique have already studied for linear programming problem. Here 

we use Modified Fourier Technique in which the numbers of additional 

constraints generated are reduced to a considerable extent by selecting 

the appropriate variable for elimination. To explain our technique, few 

numerical examples of different types are given at the end. 

 
Key words:-Modified Fourier Technique, Inequalities, Separable Non 

Linear Programming, Grid points. 

 
1.  Introduction 

In nonlinear programming problem (NLPP) either objective function or 

constraints or both may be non linear. Separable programming is a 

particular class of NLPP which is important because it allows a non 

linear program to be approximated with arbitrary accuracy with a linear 

programming model. In this technique each non linear function is 

reframed with a piecewise linear approximation. Once a non linear 

program is reduced to linear program then Modified Fourier Technique is 

applied to obtain the solution. 

mailto:drjainsanjay@gmail.com
mailto:ks941342@gmail.com


Sanjay Jain and Kishan Singh 

266 
 

The problem of solving a system of linear inequalities dates back at least 

as far as Fourier who in 1827 published a method for solving them and 

after whom the method of Fourier-Motzkin elimination is named. A lot of 

methods are available to solve linear as well as non linear programming 

problems. In [3] Karmarkar gave a new polynomial time algorithm for 

linear Programming problem. In [2] Williams gave a method to solve 

linear programming problem by Fourier Technique. In [4] Kanniappan, 

Thangavel studied Modified Fourier Technique of solving linear 

programming problem. Jain and Mangal [6, 7, 8] studied various 

elimination techniques for Fractional Programming Problem. In [9] Jain 

studied Fourier elimination technique for multi-objective linear 

programming problem. In [10] Jain proposed Modified Gauss Elimination 

Technique for solving SNPP. Jain [11, 12] studied Fourier Elimination 

and Gauss Elimination Technique for Multiobjective Fractional 

Programming Problem. In [5] Bhargava and Sharma applied Extended 

Modified Fourier method to solve integer programming problem. In [1] 

Gaur and Arora studied Multi-level multi-objective integer linear 

programming problem. 

The main difference between Gauss Elimination Technique and Modified 

Fourier Technique is that in Gauss Elimination Technique variable is 

arbitrary selected for elimination while in Modified Fourier Technique 

proper variable is selected for elimination using specific rule. 

The purpose of this paper is to use modified Fourier  technique for 

solving a separable non linear programming problem by selecting a 

variable for elimination, which will eliminate all variables step by step 

until one variable left and finally by back substitution we will get the 

value of variables and get optimal solution. 
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2.  The Problem 

 

Let f(x) and g(x) be a real-valued functions on X. Let f(x) is function to be 

optimized so non linear program can be represented as follows 

Max./Min. z =  f(x)                            

subject to,                                gj(x) ≤ bj 

                                                       x≥ 0 

for           j=1,2,………….,m  and  x ∈ X                                            (2.1) 

Because we are considering separable non linear programming 

problems so f(x) and g(x) can be expressed as 

  f(x) =  𝑓𝑛
𝑖=1 i(xi)                                     

gj(x) =  𝑔𝑛
𝑖=1 ij(xi)           (2.2) 

Using equation (2.2) in (2.1) the above problem is written as 

Max./Min. z =  𝑓𝑛
𝑖=1 i(xi)               

subject to,                𝑔𝑛
𝑖=1 ij(xi)≤ bj                       for j = 1, 2 ,..........., m 

                x i≥ 0               for  i = 1, 2,…..…....n      (2.3) 

 

3. Methodology 

 

Let us consider the following nonlinear programming problem 

Max./Min. z =  𝑓𝑛
𝑖=1 i(xi)               

subject to,                𝑔𝑛
𝑖=1 ij(xi) ≤ bj                       for j = 1, 2 ,..........., m 

                x I  ≥ 0               for  i = 1, 2,…..…....n     (3.1) 

 

To solve this problem, we first find range of xi corresponding to non 

linear terms. We partition each xi of non linear term into (ri+1) grid points. 

As the number of grid points increases, the accuracy also increases. 

Suppose xi ranges from lito ui and also let 

li = x0<x1<x2……………………..xr-1<xr  = ui 

Suppose (k+1)th sub interval is [xk, xk+1] so 
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                           x = 𝜆𝑥k + (1-𝜆) 𝑥k+1                                              (3.2) 

where,                          0 ≤ 𝜆 ≤ 1 

Now writing 𝜆 as 𝜆kand  (1-𝜆) as 𝜆k+1.We get from equation (3.2) 

x = 𝜆kxk+𝜆k+1xk+1𝜆k+𝜆k+1 = 1 

where      0 ≤  𝜆k,𝜆k+1 ≤ 1             (3.3) 

In general if x0<xi<xr then 

  xi =  𝜆𝑟
𝑘=0 kxk                                          

and                                  𝜆𝑟
𝑘 = 0 k =1           (3.4) 

Now at most two 𝜆k are positive and if two 𝜆k are positive then they must 

be consecutive. 

Let (xk,f(xk)) and (xk+1,f(xk+1)) be two points. Then equation of this line is 

as follows 

f(x) = f(xk) + 
𝑥−𝑥𝑘

𝑥𝑘+1−𝑥𝑘
(f(xk+1)-f(xk)) = 𝜆f(xk)+(1-𝜆)f(xk+1)          

where  (1-𝜆) = 
𝑥−𝑥𝑘

𝑥𝑘+1−𝑥𝑘
  ,                                                      (3.5) 

From equation (3.5),  f(x) will reduce to 

f(x) = 𝜆kf(xk) + 𝜆k+1f(xk+1)                                                                                                                                        

where,        𝜆k + 𝜆k+1 = 1                         (3.6)   

In general fi(xi) and gij(xi) is represented as 

fi(xi)  =  𝜆
𝑟𝑖
𝑘=0 ikf(xk)                     

gij(xi) =  𝜆
𝑟𝑖
𝑘=0 ikgijk(xik)    with     𝜆

𝑟𝑖
𝑘=0 k = 1                       (3.7) 

Here also atmost two 𝜆k are greater than zero and they must be 

consecutive. Using equation (3.1) and (3.7) the problem becomes as 

follows 

           Max./Min. z   =   𝜆
𝑟𝑖
𝑘=0

𝑛
𝑖=1 ikf(xik)               

subject to,      𝜆
𝑟𝑖
𝑘=0

𝑛
𝑖=1 ikgijk(xik)≤  bj              for j = 1,2…….m 

            xi≥ 0                                          for i = 1, 2…….n        (3.8) 

where,           𝜆
𝑟𝑖
𝑘=0 ik  =1     and  0 ≤ 𝜆ik≤ 1 
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4.  Modified Fourier Technique 

 

In the problem defined by (3.8), we assume objective function as 

constraints so linear program becomes as follow 

z -   𝜆
𝑟𝑖
𝑘=0

𝑛
𝑖=1 ikf(xik) ≤ 0 

  𝜆
𝑟𝑖
𝑘=0

𝑛
𝑖=1 ikgijk(xik) – bj ≤ 0 

-xi  ≤  0                           for i = 1, 2…….n    (4.1) 

Now above inequalities is represented as follows 

Ax - b ≤ 0 

Now construct Ij
+Ij

- and Ij
0 for each variable j (except z) as follow 

Ij
+  =  {i: Aij> 0 } 

Ij
-  =  {i: Aij< 0  } 

Ij
0  =  {i:  Aij = 0 } 

If any one of the sets Ij
+  or Ij

- is empty for a variable then the given linear 

problem is unbounded. Otherwise find minimum { |Ij
+ | * | Ij

- | } where |C| 

denotes the number of constraints in the set C. Let j be the index 

corresponding to the minimum then eliminates this variable using Fourier 

variable elimination method. Repeat above steps until one programming 

variable is left and then by back substitution get optimum solution. 

 

5.  Numerical Examples 

 

Here following three types of NLPP are considered in which 

(a) Only objective function is non linear 

(b) Only constraints is non linear 

(c) Both objective function and constraints are non linear 

 

(a) Let us consider NLPP in which objective function is non linear and 

constraints are linear 
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Max z = x1
2-2x1+x2 

subject to,                            x1   + 2x2  ≤ 5 

       2x1 + x2    ≤ 6 

             x1, x2 ≥ 0 

From above constraints 

0 ≤ x1≤ 2 

Let f1(x1) = x1
2-2x1 

f2(x2 = x2 

g11(x1)= x1 

g21(x2) = 2x2 

g12(x1) = 2x1 

g22(x2) = x2 

Here only f1(x1) is non linear so it is approximated as below. 

Let there are 3 breaking points i.e. i=1 and ri=2 and xik are 

x10=0 x11=1 x12=2 

    ⇒ f1(x1) =  𝜆2
𝑘=0 1kf1(x1k) = 0𝜆10+(-1)𝜆11+0𝜆12 

    ⇒ f1(x1) = -𝜆11 

Here 𝜆10+𝜆11+𝜆12 = 1, So above problem reduces 

z+𝜆11-x2≤ 0                                  (b1) 

x1+2x2≤5                                      (b2) 

2x1+x2≤6                                      (b3) 

-x1≤ 0                                      (b4) 

-x2≤ 0                                      (b5) 

-𝜆10≤ 0                                      (b6) 

-𝜆11≤ 0                                      (b7) 

                                         -𝜆12≤ 0                                      (b8) 

𝜆10 + 𝜆11 + 𝜆12 ≤ 1                               (b9) 

Now the problem becomes linear. We select the variable for elimination 

using the Modified Fourier Techniqueby constructing I+ , I- and I0 for 

each variable (except z) and selecting minimum of  { |  Ij
+ | * | Ij

- | }. We 

have the following sets 

                                          

11
|        = { b1, b9 } 

                                          

11
|        = { b7 } 

                                          0

11
|       = { b2, b3, b4, b5, b6, b8 } 



Modeling of Modified Fourier Technique for Solving SNLPP 

271 
 

and                                    Ix2
+    = { b2, b3 } 

                                          Ix2
-     = { b1, b5 } 

                                          Ix2
0   = { b4, b6, b7, b8, b9 } 

and                                    Ix1
+    = { b2, b3 }   

                                          Ix1
-     = { b4 }  

                                          Ix1
0   = { b1, b5, b6, b7, b8, b9 } 

and                                   

10
|     = { b9 } 

                                          

10
|      = { b6 } 

                                          0

10
|     = { b1, b2, b3, b4, b5, b7, b8 } 

and                                    

12
|     = { b9 } 

                                          

12
|      = { b8 } 

                                          0

12
|     = { b1, b2, b3, b4, b5, b6, b7 } 

Now  

{ |Ij
+ | * | Ij

- | } = 2  for j= 𝜆11  

{ |Ij
+ | * | Ij

- | } = 4  for j=x2   

{ |Ij
+ | * | Ij

- | } = 2  for j=x1   

{ |Ij
+ | * | Ij

- | } = 1  for j= 𝜆10  

{ |Ij
+ | * | Ij

- | } = 1   for j= 𝜆12  

Minimum of {2, 4, 2, 1, 1} is 1 which is for 𝜆10 and 𝜆12 so selecting 

arbitrary 𝜆12 and eliminating 𝜆12 by (b8+b9) we get 

z+𝜆11-x2≤ 0                                      (c1) 

X1+2x2≤ 5                                    (c2) 

2x1+x2≤ 6                                      (c3) 

-x1≤ 0                                      (c4) 

-x2≤ 0                                      (c5) 

-𝜆10≤ 0                                      (c6) 

-𝜆11≤ 0                                      (c7) 

𝜆10+𝜆11≤ 1                                      (c8) 

Now calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for 𝜆10. Therefore we get 

z+𝜆11-x2 ≤ 0                                        (d1) 

x1+2x2 ≤ 5                                        (d2) 

2x1+x2 ≤ 6                                        (d3) 

-x1 ≤ 0                                        (d4) 

-x2 ≤ 0                                        (d5) 



Sanjay Jain and Kishan Singh 

272 
 

-𝜆11 ≤ 0                                        (d6) 

𝜆11 ≤ 1                                        (d7) 

Similarly calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for x1. Therefore we get 

z+𝜆11-x2 ≤ 0                                            (e1) 

2x2 ≤ 5                                                   (e2) 

x2  ≤ 6                                                     (e3) 

-x2 ≤ 0                                                    (e4) 

-𝜆11 ≤ 0                                                   (e5) 

      𝜆11 ≤ 1                                                   (e6) 

Similarly calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for 𝜆10. Therefore we get 

z-x2≤0                                                  (f1) 

                                  2x2≤ 5                                                  (f2) 

x2≤ 6                                                    (f3) 

                                  -x2≤ 0                                                    (f4) 

                                  0 ≤ 1                                                    (f5) 

Similarly calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for x2. Therefore we get 

2z ≤ 5 

Z ≤ 6 

0 ≤ 5 

0 ≤ 6 

So we get least upper bound for z which is equal to 2.5 and by solving 

above equations we get final solution x2 = 2.5 , x1 = 0 and z = 2.5 

 

(b) Let us consider NLPP in which objective function is linear and 

constraints are non linear. 

           Max. z =  -3x1 + 5x2 

subject to,                             x1
3 + 7x2≤ 8 

x1 ,x2≥ 0 

Let  f1(x1) = -3x1 

    f2(x2) = 5x2 

    g11(x1) = x1
3 

   g21(x2)= 7x2 

Here only g11(x1) is non linear so it is approximated as below 

It is observed from the constraints set that  0 ≤ x1≤ 2. 
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Let there are three breaking points i.e. x10 = 0 , x11 = 1 and x12 = 2        

so g11(x1) can be written as 

g11(x1) =  𝜆2
𝑘=0 1kg11k(x1k) = 𝜆10 . g11(x10) + 𝜆11 . g11(x11) + 𝜆12 . g11(x12) 

                                        = 0.𝜆10 + 2.𝜆11 + 16.𝜆12 

So the above problem reduces 

                                          z+3x1 -5x2≤ 0                                       (g1) 

2.𝜆11 + 16.𝜆12 + 7.x2≤ 8                          (g2) 

                                          -x1≤ 0                                       (g3) 

                                          -x2≤ 0                                       (g4) 

                                          -𝜆10≤ 0                                       (g5) 

                                          -𝜆11≤ 0                                      (g6) 

                                                             -𝜆12≤ 0                                     (g7) 

𝜆10 + 𝜆11 + 𝜆12≤ 1                                (g8) 

 

Now the all constraints of problem become linear. We select the variable 

for elimination using the Modified Fourier Techniqueby constructing I+ , I- 

and I0 for each variable (except z) and selecting minimum of  { |  Ij
+ | * | Ij

- 

| } 

Now calculating { |Ij
+ | * | Ij

- | } for other variables, we get minimum for x1. 

Therefore we get 

z -5x2≤ 0                                                (h1)                              

2.𝜆11 + 16.𝜆12 + 7.x2≤ 8                                   (h2) 

                                                     -x2≤ 0                                   (h3) 

                                                               -𝜆10≤ 0                                   (h4) 

                                                               -𝜆11≤ 0                                   (h5) 

                                                               -𝜆12≤ 0                                   (h6) 

                                                𝜆10 + 𝜆11 + 𝜆12≤ 1                                  (h7) 

Now again calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for  𝜆10. Therefore we get 

   z -5x2≤ 0                                                 (i1) 

2.𝜆11 + 16.𝜆12 + 7.x2≤ 8                                    (i2) 

                                                                -x2≤ 0                                    (i3) 

        𝜆11 + 𝜆12≤ 1                                     (i4) 

                                            -𝜆11≤ 0                                     (i5) 
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                                            -𝜆12≤ 0                                            (i6) 

Now again calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for  𝜆11. Therefore we get 

z -5x2≤ 0                                            (j1) 

                                            16.𝜆12 + 7x2≤ 8                                   (j2) 

𝜆12≤ 1                                            (j3) 

                                             -x2≤ 0                                            (j4) 

                                             -𝜆12≤ 0                                            (j5) 

Now again calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for  𝜆12. Therefore we get 

z -5x2≤ 0                                              (k1) 

                                             7x2≤ 8                                            (k2) 

         0 ≤ 1                                              (k3) 

                                              -x2≤0                                              (k4) 

Now again calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for x2. Therefore we get 

z≤ 40/7                                               (l1) 

                                                   0 ≤ 8                                                   (l2) 

                                                   0 ≤ 1                                                   (l3) 

So we get least upper bound for z which is equal to 40/7 and by solving 

above equations we get final solution x2=8/7 , x1 =0 and z=40/7. 

(c) Let us consider NLPP in which both objective function and 

constraints are non linear and having separable functions 

   Max. z = x1
2+x2 

subject to,                            2x1
2+4x2≤ 8 

    x1, x2≥ 0 

Let     f1(x1) = x1
2 

      f2(x2) = x2 

      g11(x1) = 2x1
2 

            g21(x2) = 4x2 

Here two terms are non linear. 

It is observed from the constraints set that      0 ≤ x1≤ 2.  

Let there are 3 breaking points i.e. x10 = 0 , x11 = 1 and x12 = 2 so f1(x1) 

and  g11(x1) can be approximated as 
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f1(x1) =  𝜆2
𝑘=0 1kf1k = 0𝜆10 + 1𝜆11 + 4𝜆12 

                          g11(x1) = 0𝜆10 + 2𝜆11 + 8𝜆12 

So above problem reduces to 

z-𝜆11 -4𝜆12 - x2≤ 0                               (m1) 

                               2𝜆11 + 8𝜆12 + 4x2≤  8                          (m2) 

𝜆10 + 𝜆11 + 𝜆12≤ 1                            (m3) 

                               -𝜆10≤ 0                                   (m4) 

                                                              -𝜆11≤ 0                                   (m5) 

                               -𝜆12≤ 0                                    (m6) 

                               -x2≤  0                                   (m7) 

Now calculating { |Ij
+ | * | Ij

- | } for other variables as earlier(in part a), we 

get minimum for 𝜆10. Therefore we get 

z-𝜆11 -4𝜆12 - x2 ≤ 0                              (n1) 

                               2𝜆11 + 8𝜆12 + 4x2  ≤ 8                             (n2) 

𝜆11 + 𝜆12≤ 1                              (n3) 

                                -𝜆11≤ 0                              (n4) 

                               -𝜆12≤ 0                              (n5) 

                                                                      -x2≤0                              (n6) 

Now again calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for x2. Therefore we get 

                              4z-2𝜆11 -8𝜆12≤ 8                                (o1) 

                              2𝜆11 + 8 𝜆12≤ 8                                (o2) 

𝜆11 + 𝜆12≤ 1                                (o3) 

                                      -𝜆11≤ 0                                (o4) 

                              -𝜆12≤ 0                                (o5) 

Now again calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for 𝜆12. Therefore we get 

                                                             4z ≤ 16                                    (p1) 

  4z + 6𝜆11≤ 16                                    (p2) 

      2𝜆11≤ 8                                      (p3) 

𝜆11≤ 1                                      (p4) 

                              -𝜆11≤ 0                                      (p5) 

Finally calculating { |Ij
+ | * | Ij

- | } for other variables as earlier, we get 

minimum for 𝜆11. Therefore we get 
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  4z ≤ 16                                     (q1) 

 4z ≤ 16                                     (q2) 

                                                              0 ≤ 8                                      (q3) 

                                                              0 ≤ 1                                      (q4) 

So we get least upper bound for z which is equal to 4 and by solving 

above equations we get final solution x2 = 0 , x1 = 2 and z = 4 

 

6.  Conclusion 

The proposed technique for solving Separable Non Linear Programming 

Problem is much better than earlier existing techniques because in the 

proposed Modified Fourier Technique additional constraints generated 

are reduced to a considerable extent by selecting the appropriate 

variable for elimination and separable property is used to approximate 

non linear program into linear program. The procedure of solving NLPP 

by different numerical techniques are still updating in our research work 

like Relaxation Method etc. 
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