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Abstract

In this paper, we introduce a new class of generalized (θ, η, ρ)-V -univex functions
for a discrete minmax fractional programming problem and discuss numerous sets of
global parametric sufficient optimality conditions under various generalized (θ, η, ρ)-V -
univexity assumptions for a discrete minmax fractional programming problem involving
arbitrary norms.
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1 Introduction

Minimax programming has been an interesting field of active research for a long time. These
problems are of pivotal importance in many areas of modern research such as economics, en-
gineering design, portfolio selection, game theory, rational Chebyshev approximations and
financial planning, see [6, 7, 43] and the references therein. Necessary optimality condi-
tions for finite-dimensional constrained minimax problems in terms of Lagrange multipliers
have been originally investigated by Bram [10] and Danskin [15]. Schmitendorf [41] has
established the necessary and sufficient optimality conditions for the following minimax
programming problem:
(P ∗)
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min sup
y∈Y

f(x, y)

subject to h(x) ≤ 0,

where f(., .) : Rn × Rm → R and h(.) : Rn → Rp are differentiable convex functions and
Y is a compact subset of Rm. Bector and Bhatia [8] and Weir [45] relaxed the convexity
assumption in proving the sufficient optimality conditions for problem (P ∗) and formulated
several dual models. They proved such results under pseudoconvexity and quasiconvexity
assumptions imposed on the functions constituting problem (P ∗) and its duals. Bector et al.
[9] derived duality results for minimax programming problems involving V -invex functions.

In this paper, we establish the parametric sufficient optimality results under various
generalized (θ, η, ρ)-V -univexity assumptions for the following discrete minmax fractional
programming problem:

(P ) Minimize max
1≤i≤p

fi(x) + ‖Aix‖a(i)
gi(x)− ‖Bix‖b(i)

subject to

Gj(x) + ‖Cjx‖c(j) ≤ 0, j ∈ q,

Hk(x) = 0, k ∈ r,

x ∈ X,

where p, q, and r are positive integers and X is an open convex subset of n-dimensional Eu-
clidean space Rn, for each i ∈ p = {1, 2, ···, p}, j ∈ q = {1, 2, ···, q} and k ∈ r = {1, 2, ···, r},
fi, gi, Gj and Hk are real-valued functions defined on X. Ai, Bi and Cj are, respectively,
li×n,mi×n and nj ×n matrices, ‖·‖a(i) , ‖·‖b(i) and ‖·‖c(j) are arbitrary norms in Rli ,Rmi

and Rnj , respectively, and for each i ∈ p, gi(x) − ‖Bix‖b(i) > 0 for all x satisfying the

constraints of the problem (P ). This types of problems in the literature of mathematical
programming are known as generalized fractional programming problem. Based on the con-
straints for (P), we define the feasible set, F (assumed to be nonempty) of (P ) by

F = {x ∈ X : Gj(x) + ‖Cjx‖c(j) ≤ 0, j ∈ q, Hk(x) = 0, k ∈ r}.

Many authors investigated the optimality conditions and duality results for minimax
fractional programming problems using generalized convexity assumptions, see for example
[4, 5, 13, 26, 27, 28, 34, 42, 44] and the references therein. Lai et al. [25] established the
necessary and sufficient optimality conditions and Lai and Lee [24] obtained duality results
for a class of nondifferentiable minimax programming problems with generalized convex
functions. Several authors have developed interesting results in nondifferentiable minimax
fractional programming problems; see for example, [1, 2, 21, 22, 27, 29, 35, 36] and the
references therein.
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The concept of invex functions introduced by Hanson [18] and named by Craven [14] is
a significant generalization of convex functions. The theory of mathematical programming
has grown remarkably when further extensions of invexity have been introduced to establish
the optimality conditions and duality results. Bector et al. [11] introduced the classes of
univex functions by relaxing the definition of an invex function and obtained optimality and
duality results for a nonlinear multiobjective programming problem. Zalmai [46] formulate a
number of parametric sufficient optimality results for (P) under various generalized (θ, η, ρ)-
V -invexity assumptions.

Motivated by earlier research works by Bector et al. [11], Mishra [33], Mishra et al. [37]
and Zalmai [46], the rest of the paper is organized as follows. In Section 2, we present a
number of definitions and auxiliary results which will be needed in the sequel. In Section
3, we begin our discussion of sufficient optimality conditions where we formulate and prove
numerous sets of sufficiency criteria under a variety of generalized (θ, η, ρ)-V -univexity as-
sumptions that are placed on the individual as well as certain combinations of the problem
functions. Utilizing two partitioning schemes, in Section 4 we establish several sets of gener-
alized parametric sufficient optimality results each of which is in fact a family of such results
whose members can easily be identified by appropriate choices of certain sets and functions.
Finally, in Section 5 we summarize our main results.

2 Preliminaries

This section begins by the definition of generalized univex functions which are taken from
Mishra et al. [37]. Now, we mention some notations which are used in throughout the
paper. Let X be a nonempty open subset of Rn, f : X → R, η : X ×X → Rn, φ : R→ R,
and b : X ×X × [0, 1]→ R+, b = b (x, u, λ) . If the function f is differentiable, then b does
not depend on λ.

Definition 2.1. A differentiable function f is said to be univex at y ∈ X with respect to
b, φ and η if there exist functions b, φ and η such that for each x ∈ X,

b (x, y)φ [f(x)− f(y)] = 〈∇f(y), η(x, y)〉 ,

where ∇f(y) = (∂f(y)/∂y1, ∂f(y)/∂y2, . . . , ∂f(y)/∂yn) is the gradient of f at y, and 〈x, y〉
denotes the inner product of the vectors x and y; f is said to be univex on X if the above
inequality holds for all x, y ∈ X.

In a similar manner, one can readily define pseudounivex and quasiunivex functions as
generalizations of differentiable pseudoinvex and quasiinvex functions.

Definition 2.2. A differentiable function f is said to be pseudounivex at y ∈ X with respect
to b, φ and η if there exist functions b, φ and η such that for each x ∈ X,

〈∇f(y), η(x, y)〉 = 0⇒ b (x, y)φ [f(x)− f(y)] = 0,

or equivalently,
b (x, y)φ [f(x)− f(y)] < 0⇒ 〈∇f(y), η(x, y)〉 < 0.
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Definition 2.3. A differentiable function f is said to be quasiunivex at y ∈ X with respect
to b, φ and η if there exist functions b, φ and η such that for each x ∈ X,

b (x, y)φ [f(x)− f(y)] 5 0⇒ 〈∇f(y), η(x, y)〉 5 0,

or equivalently,
〈∇f(y), η(x, y)〉 > 0⇒ b (x, y)φ [f(x)− f(y)] > 0.

Definition 2.4. A differentiable function f is said to be strict pseudounivex at y ∈ X with
respect to b, φ and η if there exist functions b, φ and η such that for each x ∈ X,

b (x, y)φ [f(x)− f(y)] 5 0⇒ 〈∇f(y), η(x, y)〉 < 0.

The concept of ρ-invexity has been extended in many ways, and various types of general-
ized ρ-invex functions have been utilized for establishing a wide range of sufficient optimality
criteria and duality relations for several classes of nonlinear programming problems. For
more information about invex functions, the reader may consult [12, 14, 16, 17, 19, 30,
31, 38, 40], and for recent surveys of these and related functions, the reader is referred to
[23, 39].

The results of this paper are more general compare to results of the Zalmai [46] paper.

3 Sufficient Optimality Conditions

Let the function F = (F1, F2, . . . , Fm) : X → Rm be differentiable at x∗. We introduce the
following generalizations of the notion of univexity as follows:

Definition 3.1. The function F is said to be (strictly) (α, η, ρ̄)-V -univex at x∗ with respect
to b, φ and η if there exist functions b, φ, η and αi : X × X → R+\{0} ≡ (0,+∞), and
ρ̄i ∈ R, i ∈ m, such that for each x ∈ X(x 6= x∗),

b (x, x∗)φ [Fi(x)− Fi(x∗)] (>) ≥ 〈αi(x, x∗)∇Fi(x∗), η(x, x∗)〉+ ρ̄i ‖x− x∗‖2 .

Definition 3.2. The function F is said to be (strictly) (β, η, ρ̃)-V -pseudounivex at x∗ with
respect to b, φ and η if there exist functions b, φ, η and βi : X × X → R+\{0}, i ∈ m and
ρ̃ ∈ R such that for each x ∈ X(x 6= x∗),〈

m∑
i=1

∇Fi(x∗), η(x, x∗)

〉
≥ −ρ̃ ‖x− x∗‖2

=⇒ b (x, x∗)φ

[
m∑
i=1

βi(x, x
∗)Fi(x)−

m∑
i=1

βi(x, x
∗)Fi(x

∗)

]
(>) ≥ 0,

or equivalently,

b (x, x∗)φ

[
m∑
i=1

βi(x, x
∗)Fi(x)−

m∑
i=1

βi(x, x
∗)Fi(x

∗)

]
< 0
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=⇒

〈
m∑
i=1

∇Fi(x∗), η(x, x∗)

〉
< −ρ̃ ‖x− x∗‖2 .

Definition 3.3. The function F is said to be (prestrictly) (γ, η, ρ̂)-V -quasiunivex at x∗ with
respect to b, φ and η if there exist functions b, φ, η and γi : X × X → R+\{0}, i ∈ m and
ρ̂ ∈ R such that for each x ∈ X,

b (x, x∗)φ

[
m∑
i=1

γi(x, x
∗)Fi(x)−

m∑
i=1

γi(x, x
∗)Fi(x

∗)

]
(<) ≤ 0

=⇒

〈
m∑
i=1

∇Fi(x∗), η(x, x∗)

〉
≤ −ρ̂ ‖x− x∗‖2

In this section, we present several sets of sufficiency results under various generalized
(θ, η, ρ)-V -univexity assumptions. In our sufficiency results, we shall use the following two
auxiliary results, namely, the generalized Cauchy inequality and an alternative expression
for the objective function of (P ).

Lemma 3.1. [20] For each a, b ∈ Rm, 〈a, b〉 ≤ ‖a‖ ∗ ‖b‖ .

Lemma 3.2. For each x ∈ X,

ϕ (x) ≡ max
1≤i≤p

fi(x) + ‖Aix‖a(i)
gi(x)− ‖Bix‖b(i)

= max
u∈U

∑p
i=1 ui

[
fi(x) + ‖Aix‖a(i)

]
∑p
i=1 ui

[
gi(x)− ‖Bix‖b(i)

] .
Throughout this paper, we use the following list of symbols:

Ai(x, α) = fi(x) +
〈
αi, Aix

〉
, i ∈ p,

Bi(x, β) = −gi(x) +
〈
βi, Bix

〉
, i ∈ p,

C◦j (x, γ) = Gj(x) +
〈
γj , Cjx

〉
, j ∈ q,

Cj(x, v, γ) = vj
[
Gj(x) +

〈
γj , Cjx

〉]
, j ∈ q,

Dk(x,w) = wkHk(x), k ∈ r,

εi (x, λ, u, α, β) = ui
{
fi(x) +

〈
αi, Aix

〉
− λ

[
gi(x)−

〈
βi, Bix

〉]}
, i ∈ p,

α =
(
α1, α2, ..., αp

)
, β =

(
β1, β2, ..., βp

)
, γ =

(
γ1, γ2, ..., γq

)
,

and assume that φ is linear with φ (x) ≥ 0⇒ x ≥ 0, unless otherwise stated.
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Theorem 3.1. Let x∗ ∈ F, λ∗ = ϕ(x∗) = 0, the functions fi, gi, i ∈ p, Gj and Hk be
differentiable at x∗ for j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U, v∗ ∈ Rq+, w∗ ∈
Rr, α∗i ∈ Rli , β∗i ∈ Rmi , i ∈ p, and γ∗j ∈ Rnj , j ∈ q, such that

p∑
i=1

u∗i
{
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]}
+

q∑
j=1

v∗j
[
∇Gj (x∗) + CTj γ

∗j]
+

r∑
k=1

w∗k∇Hk (x∗) = 0, (3.1)

u∗i
{
fi(x

∗) +
〈
α∗i, Aix

∗〉− λ∗ [gi(x∗)− 〈β∗i, Bix∗〉]} = 0, i ∈ p, (3.2)

v∗j
[
Gj(x

∗) +
〈
γ∗j , Cjx

∗〉] = 0, j ∈ q, (3.3)∥∥α∗i∥∥∗
a(i)
≤ 1,

∥∥β∗i∥∥∗
b(i)
≤ 1, i ∈ p, (3.4)∥∥γ∗j∥∥∗

c(j)
≤ 1, j ∈ q. (3.5)

Assume, furthermore, that either one of the following three sets of conditions holds:

(a) (i) (A1 (., α∗) , . . . ,A1 (., α∗)) is (θ, η, ρ̄)-V -univex at x∗ with respect to b, φ and η;

(ii) (B1(., β∗), . . . ,Bp(., β∗)) is (ξ, η, ρ̃)-V -univex at x∗ with respect to b, φ and η;

(iii)
(
C◦1 (., γ∗), . . . , C◦q (., γ∗)

)
is (π, η, ρ̂)-V -univex at x∗ with respect to b, φ and η;

(iv) (D1(., w∗), . . . ,Dr(., w∗)) is (δ, η, ρ̆)-V -univex at x∗ with respect to b, φ and η;

(v) θi = ξi = πj = δk = σ for all i ∈ p, j ∈ q and k ∈ r;
(vi)

∑p
i=1 u

∗
i (ρ̄i + λ∗i ρ̃i) +

∑q
j=1 v

∗
j ρ̂j +

∑r
k=1 ρ̆k ≥ 0;

(b) (i) (A1 (., α∗) , . . . ,A1 (., α∗)) is (θ, η, ρ̄)-V -univex at x∗ with respect to b, φ and η;

(ii) (B1(., β∗), . . . ,Bp(., β∗)) is (ξ, η, ρ̃)-V -univex at x∗ with respect to b, φ and η;

(iii) (C1(., v∗, γ∗), . . . , Cq(., v∗, γ∗)) is (π, η, 0)-V -quasiunivex at x∗ with respect to b, φ
and η;

(iv) (D1(., w∗), . . . ,Dr(., w∗)) is (δ, η, 0)-V -quasiunivex at x∗ with respect to b, φ and
η;

(v) θi = ξi = σ for all i ∈ p;
(vi)

∑p
i=1 u

∗
i (ρ̄i + λ∗i ρ̃i) ≥ 0;

(c) The function (L1 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . , Lp (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is (θ, η, 0)-
V -pseudounivex at x∗ with respect to b, φ and η where

Li (z, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) = u∗i

{
fi(z) +

〈
α∗i, Aiz

〉
− λ∗

[
gi(z)−

〈
β∗i, Biz

〉]
+

q∑
j=1

v∗j
[
Gj (z) +

〈
γ∗j , Cjz

〉]
+

r∑
k=1

w∗kHk (z)
}
, i ∈ p.

Then, x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P).
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(a) For u∗ ≥ 0, v∗ ≥ 0 and λ∗ ≥ 0, we have

p∑
i=1

u∗i b (x, x∗)φ
{
fi (x) + ‖Aix‖a(i) − λ

∗
[
gi (x)− ‖Bix‖b(i)

]}
≥

p∑
i=1

u∗i b (x, x∗)φ
{
fi (x) +

∥∥α∗i∥∥∗
a(i)
‖Aix‖a(i) − λ

∗
[
gi (x)−

∥∥β∗i∥∥∗
b(i)
‖Bix‖b(i)

]}
(by (3.4))

≥
p∑
i=1

u∗i b (x, x∗)φ
{
fi (x) +

〈
α∗i, Aix

〉
− λ∗

[
gi (x)−

〈
β∗i, Bix

〉]}
(by Lemma 3.1)

=

p∑
i=1

u∗i b (x, x∗)φ
{
fi (x) +

〈
α∗i, Aix

〉
−
[
fi(x

∗) +
〈
α∗i, Aix

∗〉]
− λ∗

{
gi (x)−

〈
β∗i, Bix

〉
−
[
gi(x

∗)−
〈
β∗i, Bix

∗〉]}} (by (3.2))

=

p∑
i=1

u∗i

{
b (x, x∗)φ

{
fi (x) +

〈
α∗i, Aix

〉
−
[
fi(x

∗) +
〈
α∗i, Aix

∗〉]}
−λ∗b (x, x∗)φ

{
gi (x)−

〈
β∗i, Bix

〉
−
[
gi(x

∗)−
〈
β∗i, Bix

∗〉]}} (by the linearity of φ)

≥
p∑
i=1

u∗i

{
σ (x, x∗)

〈
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]
, η (x, x∗)

〉
+ (ρ̄i + λ∗i ρ̃i) ‖x− x∗‖

2
}

(by(i), (ii) and(v))

= −
〈 q∑
j=1

v∗jσ (x, x∗)
[
∇Gj (x∗) + CTj γ

∗j]+

r∑
k=1

w∗k∇Hk (x∗) , η (x, x∗)
〉

+

p∑
i=1

u∗i (ρ̄i + λ∗ρ̃i) ‖x− x∗‖2 (by (3.1))

≥
q∑
j=1

v∗j {Gj (x∗) + 〈γ∗, Cjx∗〉 − [Gj (x) + 〈γ∗, Cjx〉]}

+

 p∑
i=1

u∗i (ρ̄i + λ∗ρ̃i) +

q∑
j=1

v∗j ρ̂j +

r∑
k=1

ρ̆k

 ‖x− x∗‖2
(by (iii), (iv), (v) and the primal feasibility of x and x∗)

≥ −
q∑
j=1

v∗j

[
Gj (x) +

∥∥γ∗j∥∥∗
c(j)
‖Cjx‖c(j)

]
(by (vi), (3.3), and Lemma 3.1)

≥ −
q∑
j=1

v∗j

[
Gj (x) + ‖Cjx‖c(j)

]
(by (3.5))

≥ 0 (by feasibility of x). (3.6)
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By using u∗ > 0, and Lemma 3.2 with assumption on φ the above inequality implies
that

ϕ (x∗) = λ∗ ≤

∑p
i=1 u

∗
i

[
fi(x) + ‖Aix‖a(i)

]
∑p
i=1 u

∗
i

[
gi(x)− ‖Bix‖b(i)

]
≤ max

u∈U

∑p
i=1 ui

[
fi(x) + ‖Aix‖a(i)

]
∑p
i=1 ui

[
gi(x)− ‖Bix‖b(i)

] = ϕ (x) .

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an optimal
solution of (P ) .

(b) Since for each j ∈ q,

v∗j
[
Gj (x) +

〈
γ∗j , Cjx

〉]
≤ v∗j

[
Gj (x) +

∥∥γ∗j∥∥∗
c(j)
‖Cjx‖c(j)

]
(by Lemma 3.1)

≤ v∗j

[
Gj (x) + ‖Cjx‖c(j)

]
(by(3.5))

≤ 0 (since x ∈ F)

= v∗j
[
Gj (x∗) +

〈
γ∗j , Cjx

∗〉] (by (3.3)),

it follows that

b (x, x∗)φ
{ q∑
j=1

v∗jπj(x, x
∗)
[
Gj (x) +

〈
γ∗j , Cjx

〉]
−

q∑
j=1

v∗jπj(x, x
∗)
[
Gj (x∗) +

〈
γ∗j , Cjx

∗〉] } ≤ 0, (3.7)

which in view of (iii) implies that

〈
q∑
j=1

v∗j
[
∇Gj (x∗) + CTj γ

∗j] , η(x, x∗)

〉
≤ 0. (3.8)

Similarly, using our assumption in (iv) and the feasibility of x and x∗, we can show
that 〈

r∑
k=1

w∗k∇Hk (x∗) , η(x, x∗)

〉
≤ 0. (3.9)
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Now proceeding as in the proof of part (a), we obtain

p∑
i=1

u∗i b (x, x∗)φ
{
fi (x) + ‖Aix‖a(i) − λ

∗
[
gi (x)− ‖Bix‖b(i)

]}
≥ −

〈
q∑
j=1

v∗jσ (x, x∗)
[
∇Gj (x∗) + CTj γ

∗j]+

r∑
k=1

w∗kσ (x, x∗)∇Hk (x∗) , η (x, x∗)

〉

+

p∑
i=1

u∗i (ρ̄i + λ∗ρ̃i) ‖x− x∗‖2 ,

which in view of (3.8), (3.9) and (vi), reduces to (3.6). Hence, the rest of the proof is
similar to that of part (a).

(c) By our (θ, η, 0)-V -pseudounivexity assumption, (3.1) implies that

b (x, x∗)φ
[ p∑
i=1

θi(x, x
∗)Li (x, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

−
p∑
i=1

θi(x, x
∗)Li (x∗, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

]
≥ 0.

Because x, x∗ ∈ F, v∗ ≥ 0, and (3.2) and (3.3) hold, then the above inequality implies
that

0 ≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{
fi (x) +

∥∥α∗i∥∥∗
a(i)
‖Aix‖a(i) − λ

∗
[
gi (x)−

∥∥β∗i∥∥∗
b(i)
‖Bix‖b(i)

]}
+

q∑
j=1

v∗j b (x, x∗)φ
[
Gj (x) +

∥∥γ∗j∥∥∗
c(j)
‖Cjx‖c(j)

]
(by Lemma 3.1)

≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{
fi (x) + ‖Aix‖a(i) − λ

∗
[
gi (x)− ‖Bix‖b(i)

]}
+

q∑
j=1

v∗j b (x, x∗)φ
[
Gj (x) + ‖Cjx‖c(j)

]
(by (3.4)and(3.5))

≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{
fi (x) + ‖Aix‖a(i) − λ

∗
[
gi (x)− ‖Bix‖b(i)

]}
(by the feasibility of x). (3.10)

Since u∗ and θi (x, x∗) > 0, and by the assumption on φ, with the Lemma 3.2, the
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above inequality implies that

ϕ (x) = max
1≤i≤p

fi(x) + ‖Aix‖a(i)
gi(x)− ‖Bix‖b(i)

= max
1≤i≤p

θi(x, x
∗)
[
fi(x) + ‖Aix‖a(i)

]
θi(x, x∗)

[
gi(x)− ‖Bix‖b(i)

]
(
since θi(x, x

∗) > 0, i ∈ p
)

= max
u∈U

∑p
i=1 uiθi(x, x

∗)
[
fi(x) + ‖Aix‖a(i)

]
∑p
i=1 uiθi(x, x

∗)
[
gi(x)− ‖Bix‖b(i)

] (by Lemma 3.1)

≥ max
u∈U

∑p
i=1 u

∗
i θi(x, x

∗)
[
fi(x) + ‖Aix‖a(i)

]
∑p
i=1 u

∗
i θi(x, x

∗)
[
gi(x)− ‖Bix‖b(i)

]
≥ λ∗ (by(3.10))

= ϕ (x∗) .

Since x ∈ F was arbitrary, we conclude from the above inequality that x∗ is an optimal
solution of (P).

�

Theorem 3.2. Let x∗ ∈ F, λ∗ = ϕ(x∗) = 0, the functions fi, gi, i ∈ p, Gj and Hk be differ-

entiable at x∗ for j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U, v∗ ∈ Rq+, w∗ ∈ Rr, α∗i ∈
Rli , β∗i ∈ Rmi , i ∈ p, and γ∗j ∈ Rnj , j ∈ q, such that (3.1)-(3.5) hold. Furthermore, assume
that any one of the following four sets of assumptions is satisfied:

(a) (i) (ε1 (., λ∗, u∗, α∗, β∗) , . . . , εp (., λ∗, u∗, α∗, β∗)) , is (θ, η, ρ)-V-pseudounivex at x∗

with respect to b, φ and η;

(ii) (C1(., v∗, γ∗), . . . , Cq(., v∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with respect to b, φ
and η;

(iii) (D1(., w∗), . . . ,Dr(., w∗)) is (δ, η, ρ̂)-V -quasiunivex at x∗ with respect to b, φ and
η;

(iv) ρ+ ρ̃+ ρ̂ ≥ 0;

(b) (i) (ε1 (., λ∗, u∗, α∗, β∗) , . . . , εp (., λ∗, u∗, α∗, β∗)) , is prestrictly (θ, η, ρ)-V-quasiunivex
at x∗ with respect to b, φ and η;

(ii) (C1(., v∗, γ∗), . . . , Cq(., v∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with respect to b, φ
and η;

(iii) (D1(., w∗), . . . ,Dr(., w∗)) is (δ, η, ρ̂)-V -quasiunivex at x∗ with respect to b, φ and
η;

(iv) ρ+ ρ̃+ ρ̂ > 0;

(c) (i) (ε1 (., λ∗, u∗, α∗, β∗) , . . . , εp (., λ∗, u∗, α∗, β∗)) , is prestrictly (θ, η, ρ)-V-quasiunivex
at x∗ with respect to b, φ and η;
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(ii) (C1(., v∗, γ∗), . . . , Cq(., v∗, γ∗)) is strictly (π, η, ρ̃)-V -pseudounivex at x∗ with re-
spect to b, φ and η;

(iii) (D1(., w∗), . . . ,Dr(., w∗)) is (δ, η, ρ̂)-V -quasiunivex at x∗ with respect to b, φ and
η;

(iv) ρ+ ρ̃+ ρ̂ ≥ 0;

(d) (i) (ε1 (., λ∗, u∗, α∗, β∗) , . . . , εp (., λ∗, u∗, α∗, β∗)) , is prestrictly (θ, η, ρ)-V-quasiunivex
at x∗ with respect to b, φ and η;

(ii) (C1(., v∗, γ∗), . . . , Cq(., v∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with respect to b, φ
and η;

(iii) (D1(., w∗), . . . ,Dr(., w∗)) is (δ, η, ρ̂)-V -pseudounivex at x∗ with respect to b, φ and
η;

(iv) ρ+ ρ̃+ ρ̂ ≥ 0.

Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P).
(a) Proceeding as in the proof of part (b) of Theorem 3.1, we obtain (3.7), which in view of
(ii) implies that 〈

q∑
j=1

v∗j
[
∇Gj (x∗) + CTj γ

∗j] , η(x, x∗)

〉
≤ −ρ̃ ‖x− x∗‖2 . (3.11)

Similarly, we can show that our assumptions in (iii) combined with the feasibility of x and
x∗ lead to the following inequality:〈

r∑
k=1

w∗k∇Hk (x∗) , η(x, x∗)

〉
≤ −ρ̂ ‖x− x∗‖2 . (3.12)

Now because of (3.11), (3.12) and (iv), (3.1) reduces to〈
p∑
i=1

u∗i
{
∇fi(x∗) +ATi α

∗i − λ∗
[
∇gi(x∗)−BTi β∗i

]}
, η (x, x∗)

〉
≤ −ρ ‖x− x∗‖2 ,

which in view of (i) implies that

p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{[
fi(x) +

〈
α∗i, Aix

〉]
− λ∗

[
gi(x)−

〈
β∗i, Bix

〉]}
≥

p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{[
fi(x

∗) +
〈
α∗i, Aix

∗〉]− λ∗ [gi(x∗)− 〈β∗i, Bix∗〉]} ,
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Because of (3.2), the above inequality implies that

0 ≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{[
fi(x) +

〈
α∗i, Aix

〉]
− λ∗

[
gi(x)−

〈
β∗i, Bix

〉]}
≤

p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{[
fi(x) +

∥∥α∗i∥∥∗
a(i)
‖Aix‖a(i)

]
− λ∗

[
gi(x)−

∥∥β∗i∥∥∗
b(i)
‖Bix‖b(i)

]}
(by Lemma 3.1)

≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{[
fi(x) + ‖Aix‖a(i)

]
− λ∗

[
gi(x)− ‖Bix‖b(i)

]}
(by (3.4)),

which is precisely (3.10). As shown in the proof of part (c) of Theorem 3.1, this inequality
leads to the conclusion that x∗ is an optimal solution of (P).
(b)-(d) The proofs are similar to that of part (a).

�

In the remainder of this section, we briefly discuss certain modifications of Theorems 3.1
and 3.2 obtained by replacing (3.1) with an inequality.

Theorem 3.3. Let x∗ ∈ F, λ∗ = ϕ(x∗) = 0, the functions fi, gi, i ∈ p, Gj and Hk be
differentiable at x∗ for j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U, v∗ ∈ Rq+, w∗ ∈
Rr, α∗i ∈ Rli , β∗i ∈ Rmi , i ∈ p, and γ∗j ∈ Rnj , j ∈ q, such that (3.2)-(3.5) and the following
inequality hold:

p∑
i=1

u∗i
{
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]}
+

q∑
j=1

v∗j
[
∇Gj (x∗) + CTj γ

∗j]
+

r∑
k=1

w∗k∇Hk (x∗) ≥ 0, for all x ∈ F, (3.13)

where η : X ×X → Rn is a given function. Furthermore, assume that any one of the three
sets of conditions specified in Theorem 3.1 is satisfied. Then x∗ is an optimal solution of
(P).

Although the proofs of Theorems 3.1 and 3.3 are essentially the same, their contents are
some what different. This can easily be seen by comparing (3.1) with (3.13). We observe
that any octuple (x, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) that satisfies (3.1)-(3.5) also satisfies (3.2)-
(3.5) and (3.13), but the converse is not necessarily true. Moreover, (3.1) is a system of n
equations, whereas (3.13) is a single inequality. Evidently, from a computational point of
view, (3.1) is preferable to (3.13) because of the dependence of the latter on the feasible set
of (P).

The modified version of Theorem 3.2 can be stated in a similar manner.
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4 Generalized Sufficiency Conditions

In this section, we discuss several families of sufficient optimality results under various gen-
eralized (θ, η, ρ)-V -univexity hypotheses imposed on certain vector functions whose com-
ponents are formed by considering different combinations of the problem functions. This
is accomplished by employing a certain type of partitioning scheme which was originally
proposed in [32] for the purpose of constructing generalized dual problems for nonlinear
programming problems. For this we need some additional notation.

Let {J0, J1, . . . , Jm} and {K0,K1, . . . ,Km} be partitions of the index sets q and r re-
spectively; thus,Jµ ⊆ q for each µ ∈ m

⋃
{0}, Jµ

⋂
Jν = φ for each µ, ν ∈ m

⋃
{0} with

µ 6= ν and
⋃m
µ=0 Jµ = q. Obviously, similar properties hold for {K0,K1, . . . ,Km} . More-

over, if m1 and m2 are the members of the partitioning sets of q and r, respectively, then
m = max{m1,m2} and Jµ = φ or Kµ = φ for µ > min{m1,m2}.

In addition, we use the real-valued functions Φi (., λ, u, v, w, α, β, γ) , i ∈ p, and
Λt (., v, w, γ) , t ∈ m, defined for fixed λ, u, v, w, α, β, and γ, on X as follows:

Φi (x, λ, u, v, w, α, β, γ) = ui

{
fi(x) +

〈
αi, Aix

〉
− λ

[
gi(x)−

〈
βi, Bix

〉]
+
∑
j∈J0

vj
[
Gj (x) +

〈
γj , Cjx

〉]
+
∑
k∈K0

wkHk (x)
}
, i ∈ p,

Λt (x, v, w, γ) =
∑
j∈Jt

vj
[
Gj (x) +

〈
γj , Cjx

〉]
+
∑
k∈Kt

wkHk (x) , t ∈ m.

Making use of the sets and functions defined above, we can now formulate our first collection
of generalized sufficiency results for (P) as follows.

Theorem 4.1. Let x∗ ∈ F, λ∗ = ϕ(x∗) = 0, the functions fi, gi, i ∈ p, Gj and Hk be differ-

entiable at x∗ for j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U, v∗ ∈ Rq+, w∗ ∈ Rr, α∗i ∈
Rli , β∗i ∈ Rmi , i ∈ p, and γ∗j ∈ Rnj , j ∈ q, such that (3.1)-(3.5) hold. Furthermore, assume
that any one of the following three sets of assumptions is satisfied:

(a) (i) (Φ1 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . ,Φp (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is (θ, η, ρ̄)-V -
pseudounivex at x∗ with respect to b, φ and η;

(ii) (Λ1 (., v∗, w∗, γ∗) , . . . ,Λm (., v∗, w∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with re-
spect to b, φ and η;

(iii) ρ̄+ ρ̃ ≥ 0;

(b) (i) (Φ1 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . ,Φp (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is prestrictly
(θ, η, ρ̄)-V -quasiunivex at x∗ with respect to b, φ and η;

(ii) (Λ1 (., v∗, w∗, γ∗) , . . . ,Λm (., v∗, w∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with re-
spect to b, φ and η;

(iii) ρ̄+ ρ̃ > 0;
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(c) (i) (Φ1 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . ,Φp (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is prestrictly
(θ, η, ρ̄)-V -quasiunivex at x∗ with respect to b, φ and η;

(ii) (Λ1 (., v∗, w∗, γ∗) , . . . ,Λm (., v∗, w∗, γ∗)) is strictly (π, η, ρ̃)-V -pseudounivex at x∗

with respect to b, φ and η;

(iii) ρ̄+ ρ̃ ≥ 0.

Then x∗ is an optimal solution of (P).

Proof. Let be an arbitrary feasible solution of (P).
(a) It is clear that (3.1) can be expressed as follows:

p∑
i=1

u∗i
{
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]}
+
∑
j∈J0

v∗j
[
∇Gj (x∗) + CTj γ

∗j]+
∑
k∈K0

w∗k∇Hk (x∗)

+

m∑
t=1

∑
j∈Jt

v∗j
[
∇Gj (x∗) + CTj γ

∗j]+
∑
k∈Kt

w∗k∇Hk (x∗)

 = 0. (4.1)

Since for each t ∈ m,

Λt (x, v∗, w∗, γ∗) =
∑
j∈Jt

v∗j
[
Gj (x) +

〈
γ∗j , Cjx

〉]
+
∑
k∈Kt

w∗kHk (x)

≤
∑
j∈Jt

v∗j

[
Gj (x) +

∥∥γ∗j∥∥∗
c(j)
‖Cjx‖c(j)

]
+
∑
k∈Kt

w∗kHk (x) (by Lemma 3.1)

≤
∑
j∈Jt

v∗j

[
Gj (x) + ‖Cjx‖c(j)

]
+
∑
k∈Kt

w∗kHk (x) (by (3.5))

≤ 0 (by the feasibility of x)

≤
∑
j∈Jt

v∗j
[
Gj (x∗) +

〈
γ∗j , Cjx

∗〉]+
∑
k∈Kt

w∗kHk (x∗)

= Λt (x∗, v∗, w∗, γ∗) ,

and hence

b (x, x∗)φ

[
m∑
t=1

πt(x, x
∗)Λt (x, v∗, w∗, γ∗)−

m∑
t=1

πt(x, x
∗)Λt (x∗, v∗, w∗, γ∗)

]
≤ 0,

which because of (ii) implies that〈
m∑
t=1

∑
j∈Jt

v∗j
[
∇Gj (x∗) + CTj γ

∗j]+
∑
k∈Kt

w∗k∇Hk (x∗)

 , η (x, x∗)

〉
5 −ρ̃ ‖x− x∗‖2 ,

(4.2)
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Combining (4.1) and (4.2), and using (iii) we get

〈 p∑
i=1

u∗i
{
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]}
+
∑
j∈J0

v∗j
[
∇Gj (x∗) + CTj γ

∗j]+
∑
k∈K0

w∗k∇Hk (x∗) , η (x, x∗)
〉

≥ ρ̃ ‖x− x∗‖2 ≥ ρ̄ ‖x− x∗‖2 , (4.3)

which by virtue of (i) implies that

b (x, x∗)φ
[ p∑
i=1

θi(x, x
∗)Φi (x, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

−
p∑
i=1

θi(x, x
∗)Φi (x∗, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

]
≥ 0, (4.4)

where the inequality follows from (3.2), (3.3) and the feasibility of x∗. Therefore, we have

0 ≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{
fi(x)+

∥∥α∗i∥∥∗
a(i)
‖Aix‖a(i)−λ

∗
[
gi(x)−

∥∥β∗i∥∥∗
b(i)
‖Bix‖b(i)

]
+
∑
j∈J0

v∗j

[
Gj (x) +

∥∥γ∗j∥∥∗
c(j)
‖Cjx‖c(j)

]}
(by Lemma 3.1 and the feasibility of x)

≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{
fi(x) + ‖Aix‖a(i) − λ

∗
[
gi(x)− ‖Bix‖b(i)

]
+
∑
j∈J0

v∗j

[
Gj (x) + ‖Cjx‖c(j)

]}
(by (3.4) and (3.5))

≤
p∑
i=1

u∗i θi(x, x
∗)b (x, x∗)φ

{
fi(x)+‖Aix‖a(i)−λ

∗
[
gi(x)− ‖Bix‖b(i)

]}
(by the feasibility of x)

Now using this inequality and Lemma 3.2, as in the proof of Theorem 3.1, we obtain ϕ (x∗) ≤
ϕ (x) . Since x was arbitrary, we conclude that x∗ is an optimal solution of (P).
(b) Proceeding in exactly the same manner as in the proof of part (a), we obtain (4.3) in
which the second inequality is strict. By (i), this implies that (4.4) holds and, therefore, the
rest of the proof is identical to that of part (a).
(c) The proof is similar to those of parts (a) and (b).

�

In the remainder of this section we present another collection of sufficiency results which are
somewhat different from those stated in Theorem 4.1. These results are formulated by uti-
lizing a partition of p in addition to those of q and r, and by placing appropriate generalized
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(θ, η, ρ)-V -univexity requirements on certain vector functions involving εi (., λ, u, α, β) , i ∈
p,Gj , j ∈ q and Hk, k ∈ r.

Let {I0, I1, . . . , I`} be partitions of p, such that L = {0, 1, . . . , `} ⊂ M = {0, 1, . . . ,m},
and let the function Πt (., λ, u, v, w, α, β, γ) : X → R be defined, for fixed λ, u, v, w, α, β and
γ, by

Πt (x, λ, u, v, w, α, β, γ) =
∑
i∈It

ui

{
fi(x) +

〈
αi, Aix

〉
− λ

[
gi(x)−

〈
βi, Bix

〉]
+
∑
j∈Jt

vj
[
Gj (x) +

〈
γj , Cjx

〉]
+
∑
k∈Kt

wkHk (x)
}
, t ∈ m.

Theorem 4.2. Let x∗ ∈ F, λ∗ = ϕ(x∗) = 0, the functions fi, gi, i ∈ p, Gj and Hk be differ-

entiable at x∗ for j ∈ q, k ∈ r, and assume that there exist u∗ ∈ U, v∗ ∈ Rq+, w∗ ∈ Rr, α∗i ∈
Rli , β∗i ∈ Rmi , i ∈ p, and γ∗j ∈ Rnj , j ∈ q, such that (3.1)-(3.5) hold. Furthermore, assume
that any one of the following three sets of assumptions is satisfied:

(a) (i) (Π0 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . ,Π` (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is (θ, η, ρ̄)-V -
pseudounivex at x∗ with respect to b, φ and η;

(ii) (Λ`+1 (., v∗, w∗, γ∗) , . . . ,Λm (., v∗, w∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with
respect to b, φ and η;

(iii) ρ̄+ ρ̃ ≥ 0;

(b) (i) (Π0 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . ,Π` (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is prestrictly
(θ, η, ρ̄)-V -quasiunivex at x∗ with respect to b, φ and η;

(ii) (Λ`+1 (., v∗, w∗, γ∗) , . . . ,Λm (., v∗, w∗, γ∗)) is strictly (π, η, ρ̃)-V -pseudounivex at
x∗ with respect to b, φ and η;

(iii) ρ̄+ ρ̃ ≥ 0;

(c) (i) (Π0 (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) , . . . ,Π` (., λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)) is prestrictly
(θ, η, ρ̄)-V -quasiunivex at x∗ with respect to b, φ and η;

(ii) (Λ`+1 (., v∗, w∗, γ∗) , . . . ,Λm (., v∗, w∗, γ∗)) is (π, η, ρ̃)-V -quasiunivex at x∗ with
respect to b, φ and η;

(iii) ρ̄+ ρ̃ > 0.

Then x∗ is an optimal solution of (P).

Proof. (a) Suppose to the contrary that x∗ is not an optimal solution of (P). Then there
is x̄ ∈ F such that ϕ (x̄) < ϕ (x∗) = λ∗, and so it follows that

fi(x̄) + ‖Aix̄‖a(i) − λ
∗
[
gi(x̄)− ‖Bix̄‖b(i)

]
< 0, i ∈ p.

Since u∗ > 0, we see that for each t ∈ L,∑
i∈It

u∗i

{
fi(x̄) + ‖Aix̄‖a(i) − λ

∗
[
gi(x̄)− ‖Bix̄‖b(i)

]}
< 0. (4.5)
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Now using this inequality, we see that

Πt (x̄, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗) ≤
∑
i∈It

u∗i

{
fi(x̄) +

∥∥α∗i∥∥∗
a(i)
‖Aix̄‖a(i)

− λ∗
[
gi(x̄)−

∥∥β∗i∥∥∗
b(i)
‖Bix̄‖b(i)

]}
+
∑
j∈Jt

v∗j

[
Gj (x̄) +

∥∥γ∗j∥∥∗
c(j)
‖Cj x̄‖c(j)

]
(by Lemma 3.1 and feasibility of x̄)

≤
∑
i∈It

u∗i

{
fi(x̄) + ‖Aix̄‖a(i) − λ

∗
[
gi(x̄)− ‖Bix̄‖b(i)

]}
+
∑
j∈Jt

v∗j

[
Gj (x̄) + ‖Cj x̄‖c(j)

]
(by (3.4) and (3.5))

≤
∑
i∈It

u∗i

{
fi(x̄) + ‖Aix̄‖a(i) − λ

∗
[
gi(x̄)− ‖Bix̄‖b(i)

]}
(by the feasibility of x̄)

< 0 (by (4.5))

=
∑
i∈It

u∗i
{
fi(x

∗) +
〈
α∗i, Aix

∗〉− λ∗ [gi(x∗)− 〈β∗i, Bix∗〉]}
+
∑
j∈Jt

v∗j
[
Gj (x∗) +

〈
γ∗j , Cjx

∗〉]+ ∑
k∈Kt

w∗kHk (x∗) (by (3.2), (3.3) and the feasibility of x∗)

= Πt (x∗, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

and hence

b (x, x∗)φ
[∑
t∈L

θt(x, x
∗)Πt (x̄, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

−
∑
t∈L

θt(x, x
∗)Πt (x∗, λ∗, u∗, v∗, w∗, α∗, β∗, γ∗)

]
< 0,

which in view of (i) implies that

〈 p∑
i=1

u∗i
{
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]}
+
∑
t∈L

∑
j∈Jt

v∗j
[
∇Gj (x∗) + CTj γ

∗j]+
∑
k∈Kt

w∗k∇Hk (x∗)

 , η (x, x∗)
〉
< −ρ̄ ‖x̄− x∗‖2 .

(4.6)

As shown in the proof of Theorem (4.1), for each t ∈M\L, Λt (x̄, v∗, w∗, γ∗) ≤ Λt (x∗, v∗, w∗, γ∗) ,
and hence

b (x, x∗)φ

 ∑
t∈M\L

πt(x̄, x
∗)Λt (x̄, v∗, w∗, γ∗)−

∑
t∈M\L

πt(x̄, x
∗)Λt (x∗, v∗, w∗, γ∗)

 ≤ 0,
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which in view of (ii) implies that〈 ∑
t∈M\L

∑
j∈Jt

v∗j
[
∇Gj (x∗) + CTj γ

∗j]+
∑
k∈Kt

w∗k∇Hk (x∗)

 , η (x̄, x∗)

〉
≤ −ρ̃ ‖x̄− x∗‖2 .

(4.7)
Now combining (4.6) and (4.7) and using (iii), we see that

〈 p∑
i=1

u∗i
{
∇fi (x∗) +ATi α

∗i − λ∗
[
∇gi (x∗)−BTi β∗i

]}
+

q∑
j=1

v∗j
[
∇Gj (x∗) + CTj γ

∗j]
+

r∑
k=1

w∗k∇Hk (x∗) , η (x, x∗)
〉
< − (ρ̄+ ρ̃) ‖x̄− x∗‖2 ≤ 0,

which contradicts (3.1). Therefore, x∗ is an optimal solution of (P).
(b) and (c): The proofs are similar to that of part (a).

�

5 Conclusion

In this paper, we have established a number of sets of global sufficient optimality conditions
under various generalized (θ, η, ρ)-V -univexity hypotheses for a discrete minmax fractional
programming problem. It indicates that all these results are new in the area of minmax
programming.
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