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Abstract

In this paper, we analyze batch arrival queueing model with multiple vacation, closedown,
balking and two phases of service (for both single and bulk service) is considered. The single
server provides two consecutive phases of service. The server provides bulk service only if the
queue length is atleast ‘a’ and the maximum bulk service capacity is ‘b’. If the queue length
is less than ‘a’ the server provides single service. After two successive phases of service, if
there is no customer waiting in the queue the server starts closedown and then goes for a
vacation of random length. After the vacation, still there is no customer waiting in the queue,
the server goes for another vacation and so on until he finds atleast one customer waiting
in the queue. Otherwise, the server resumes service to the waiting customers. The batch
of customers may join the queue with probability η or may not join (i.e. balk) the queue
with probability 1−η. Using supplementary variable technique, the steady-state probability
generating function of the system size at an arbitrary time is obtained. The performance
measures and cost model are also derived. Numerical illustrations are presented to visualize
the effect of system parameters.
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1 Introduction

Queueing models where the server performs closedown work and resumes vacation when
there is no sufficient batch size (less than the minimum threshold) for service, is quit common
in various practical situations related to manufacturing systems, service systems, etc. Neuts
[14] initiated the concept of bulk queues and analyzed a general class of such models. A lit-
erature survey on vacation queueing models can be found in Doshi [8] and Takagi [15] which
include some applications. Krishna Reddy et al. [13] considered an M [X]/G(a, b)/1 queueing
model with multiple vacations, setup times and N policy. They derived the steady-state system
size distribution, cost model, expected length of idle and busy period. Arumuganathan and
Jeyakumar [1] obtained the probability generating function of queue length distributions at an
arbitrary time epoch for the bulk queueing model with multiple vacation and closedown times.
Also they have developed a cost model with a numerical study for their queueing model.

Arumuganathan and Jeyakumar [2] obtained the probability generating function of queue
size distribution at an arbitrary time epoch and a cost model for the M [X]/G(a, b)/1 queue-
ing model with multiple vacation, closedown, setup times and N-policy. Ke [12] investigated
an M [X]/G/1 queueing model with vacation policies, breakdown and startup/closedown times
where the vacation, startup, closedown and repair times are generally distributed. Jeyakumar
Footnote
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and Arumuganathan [11] obtained the PGF of queue size at an arbitrary time epoch in the steady
state case for the M [X]/G/1 queueing model with two service modes and multiple vacation. Jain
and Pandey [9] analyzed the M [X]/G(a,b)/1 queueing model with multiple vacation of alternate
type, setup times and balking. They computed the PGF of queue size at an arbitrary time
epoch.

Arumuganathan and Jeyakumar [3] derived the PGF of queue size at an arbitrary epoch for
an MX/G/1 queueing model with two service modes. They have considered the situation in
which the server provides single service if the queue length at least ’a’ until it reaches ’c’ (a < c)
and resumes bulk service if the queue size is ’c’ with a maximum batch size of ’b’. Choudhury
and Deka [5] derived the queue size distribution of the MX/G/1 retrial queueing model with two
phase of heterogeneous service and Bernoulli vacation schedule. Ayyappan and Shyamala [4]
derived the PGF of an M [X]/G/1 queueing model with feedback, random breakdowns, Bernoulli
schedule server vacation and random setup time for both steady state and transient cases. Using
matrix geometric method, Jain [10] derived the queue size distribution for the priority queueing
model with batch arrival, balking, threshold recovery, unreliable server and optional service.
Choudhury and Deka [6] obtained the queue size distribution at various time epochs for the
MX/G/1 queueing model with two phases of service, multiple vacation and unreliable server.

The rest of the paper is organized as follows. In section 2, batch arrival single and bulk
service queue with two phases of service, closedown, multiple vacation and balking is described
and the steady-state system size equations are considered. In section 3, using supplementary
variable technique, the probability generating function of the queue size are derived and some
particular cases are provided. In section 4, performance measures like expected length of busy
and idle periods, expected queue length and waiting time are obtained. In section 5, the cost
model is provided. In section 6, numerical illustrations are presented to validate the analytical
results. In section 7, this research work is concluded with the proposed future work.

2 Model Description

In this paper, we analyze batch arrival queueing model with multiple vacation, closedown,
balking and two phases of service (for both single and bulk service). The single server provides
two consecutive phases of service. The server provides bulk service only if the queue length is
atleast ‘a’ and the maximum bulk service capacity is ‘b’. If the queue length is less than ‘a’,
the server provides single service. After two successive phases of service, if there is no customer
waiting in the queue, the server starts closedown and then goes for a vacation of random length.
After the vacation, still there is no customer waiting in the queue the server goes for another
vacation and so on until he finds atleast one customer waiting in the queue. Otherwise, the
server resumes service to the waiting customers. The batch of customers may join the queue
with probability η or may not join (i.e. balk) the queue with probability 1− η.

2.1 Notations

The following notations are used in this paper.
λ - Arrival rate,
X - Group size random variable,
gk − Pr {X = k},
X(z) - Probability generating function (PGF) of X.
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Here S1(.), S2(.), G1(.), G2(.), V (.) and C(.) represent the cumulative distribution function (CDF)
of service time for first phase service (single service), service time for second phase service (single
service),service time for first phase service (bulk service),service time for second phase service
(bulk service), vacation time and closedown time and their corresponding probability density
functions are s1(x), s2(x), g1(x), g2(x), v(x) and c(x) respectively. S0

1(t), S0
2(t), G0

1(t), G
0
2(t), V

0(t)
and C0(t) represent the remaining single service time of first phase service, remaining single ser-
vice time of second phase service, remaining bulk service time of first phase service, remaining
bulk service time of second phase service , vacation time and closedown time at time t respec-
tively. S̃1(θ), S̃2(θ), G̃1(θ), G̃2(θ), Ṽ (θ) and C̃(θ) represent the Laplace-Stieltjes transform of
S1, S2, G1, G2, V and C respectively. The supplementary variables S0

1(t), S0
2(t), G0

1(t), G
0
2(t), V

0(t)
and C0(t) are introduced in order to obtain the bivariate Markov process {N(t), Y (t)}, where
N(t) = {Nq(t) ∪Ns(t)} and

Y (t) = (0)[1] {2} 〈3〉 (4)[5], if the server is on(phase 1 single service)[phase 2 single service]

{phase 1 bulk service} 〈phase 2 bulk service〉 (vacation)[closedown].

Z(t) = j, if the server is on jth vacation.

Ns(t) = Number of customers in the service at time t.

Nq(t) = Number of customers in the queue at time t.

Define the probabilities as,

B
(1)
1,j (x, t)dt =P

{
Nq(t) = j, x ≤ S0

1(t) ≤ x+ dx, Y (t) = 0
}
, j ≥ 0.

B
(2)
1,j (x, t)dt =P

{
Nq(t) = j, x ≤ S0

2(t) ≤ x+ dx, Y (t) = 1
}
, j ≥ 0.

P
(1)
i,j (x, t)dt =P

{
Ns(t) = i,Nq(t) = j, x ≤ G0

1(t) ≤ x+ dx, Y (t) = 2
}
, a ≤ i ≤ b, j ≥ 0.

P
(2)
i,j (x, t)dt =P

{
Ns(t) = i,Nq(t) = j, x ≤ G0

2(t) ≤ x+ dx, Y (t) = 3
}
, a ≤ i ≤ b, j ≥ 0.

Qj,n(x, t)dt =P
{
Nq(t) = n, x ≤ V 0(t) ≤ x+ dx, Y (t) = 4, Z(t) = j

}
, n ≥ 0, j ≥ 1.

Cn(x, t)dt =P
{
Nq(t) = n, x ≤ C0(t) ≤ x+ dx, Y (t) = 5

}
, n ≥ 0.

The supplementary variable technique was introduced by Cox [7]. The steady-state system
size equations are obtained as follows:

−B′(1)1,0(x) = −λB(1)
1,0(x) + λ(1− η)B

(1)
1,0(x) +B

(2)
11 (0)s1(x) +

b∑
m=a

P
(2)
m,1(0)s1(x)

+

∞∑
l=1

Ql,1(0)s1(x), (1)

−B′(1)1,n(x) = −λB(1)
1,n(x) + λ(1− η)B

(1)
1,n(x) + η

n∑
k=1

B
(1)
1n−k(x)λgk +B

(2)
1,n+1(0)s1(x)

+
b∑

m=a

P
(2)
m,n+1(0)s1(x)

∞∑
l=1

Ql,n+1(0)s1(x), 1 ≤ n ≤ a− 2, (2)

−B′(1)1,n(x) = −λB(1)
1,n(x) + λ(1− η)B

(1)
1,n(x) + η

n∑
k=1

B
(1)
1n−k(x)λgk, n ≥ a− 1, (3)
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−B′(2)1,0(x) = −λB(2)
1,0(x) + λ(1− η)B

(2)
1,0(x) +B

(1)
10 (0)s2(x), (4)

−B′(2)1,n(x) = −λB(2)
1,n(x) + λ(1− η)B

(2)
1,n(x) +B

(1)
1n (0)s2(x) + η

n∑
k=1

B
(2)
1n−k(x)λgk, n ≥ 1, (5)

−P ′(1)i,0 (x) = −λP (1)
i,0 (x) + λ(1− η)P

(1)
i,0 (x) +B

(2)
1i (0)g1(x) +

b∑
m=a

P
(2)
m,i(0)g1(x)

+

∞∑
l=1

Ql,i(0)g1(x), a ≤ i ≤ b, (6)

−P ′(1)i,j (x) = −λP (1)
i,j (x) + λ(1− η)P

(1)
i,j (x) + η

j∑
k=1

P
(1)
i,j−k(x)λgk, j ≥ 1, a ≤ i ≤ b− 1,(7)

−P ′(1)b,j (x) = −λP (1)
b,j (x) + λ(1− η)P

(1)
b,j (x) +B

(2)
1,b+j(0)g1(x) +

b∑
m=a

P
(2)
m,b+j(0)g1(x)

+η

j∑
k=1

P
(1)
b,j−k(x)λgk +

∞∑
l=1

Ql,b+j(0)g1(x), j ≥ 1, (8)

−P ′(2)i,0 (x) = −λP (2)
i,0 (x) + λ(1− η)P

(2)
i,0 (x) + P

(1)
i0 (0)g2(x), a ≤ i ≤ b, (9)

−P ′(2)i,j (x) = −λP (2)
i,j (x) + λ(1− η)P

(2)
i,j (x) + P

(1)
ij (0)g2(x) + η

j∑
k=1

P
(2)
i,j−k(x)λgk,

j ≥ 1, a ≤ i ≤ b, (10)

−C ′0(x) = −λC0(x) + λ(1− η)C0(x) +
b∑

m=a

P
(2)
m,0(0)c(x) +B

(2)
10 (0)c(x), (11)

−C ′n(x) = −λCn(x) + λ(1− η)Cn(x) + η

n∑
k=1

Cn−k(x)λgk, n ≥ 1, (12)

−Q′1,0(x) = −λQ1,0(x) + λ(1− η)Q1,0(x) + C0(0)v(x), (13)

−Q′1,n(x) = −λQ1,n(x) + λ(1− η)Q1,n(x) + Cn(0)v(x) + η
n∑
k=1

Q1,n−k(x)λgk, n ≥ 1, (14)

−Q′j,0(x) = −λQj,0(x) + λ(1− η)Qj,0(x) +Qj−1,0(0)v(x), j ≥ 2, (15)

−Q′j,n(x) = −λQj,n(x) + λ(1− η)Qj,n(x) + η

n∑
k=1

Qj,n−k(x)λgk, j ≥ 2, n ≥ 1. (16)

The Laplace-Stieltjes transform of P
(1)
i,j (x), P

(2)
i,j (x), B

(1)
1,j (x), B

(2)
1,j (x), Cn(x), Qj,n(x), are defined

as follows:

P̃
(1)
i,j (θ) =

∞∫
0

e−θxP
(1)
i,j (x)dx, P̃

(2)
i,j (θ) =

∞∫
0

e−θxP
(2)
i,j (x)dx,

B̃
(1)
1,j (θ) =

∞∫
0

e−θxB
(1)
1,j (x)dx, B̃

(2)
1,j (θ) =

∞∫
0

e−θxB
(2)
1,j (x)dx,
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C̃n(θ) =

∞∫
0

e−θxCn(x)dx, Q̃j,n(θ) =

∞∫
0

e−θxQj,n(x)dx.

Taking Laplace-Stieltjes transform from (1) to (16), we get

θB̃
(1)
1,0(θ)−B(1)

1,0(0) =λB̃
(1)
1,0(θ)− λ(1− η)B̃

(1)
1,0(θ)− S̃1(θ)

[
B

(2)
11 (0) +

b∑
m=a

P
(2)
m,1(0) +

∞∑
l=1

Ql,1(0)

]
,

(17)

θB̃
(1)
1,n(θ)−B(1)

1,n(0) =λB̃
(1)
1,n(θ)− λ(1− η)B̃

(1)
1,n(θ)− η

n∑
k=1

B̃
(1)
1n−k(θ)λgk

− S̃1(θ)
[
B

(2)
1,n+1(0) +

b∑
m=a

P
(2)
m,n+1(0) +

∞∑
l=1

Ql,n+1(0)

]
, 1 ≤ n ≤ a− 2,

(18)

θB̃
(1)
1,n(θ)−B(1)

1,n(0) =λB̃
(1)
1,n(θ)− λ(1− η)B̃

(1)
1,n(θ)− η

n∑
k=1

B̃
(1)
1n−k(θ)λgk, n ≥ a− 1, (19)

θB̃
(2)
1,0(θ)−B(2)

1,0(0) =λB̃
(2)
1,0(θ)− λ(1− η)B̃

(2)
1,0(θ)− S̃2(θ)B(1)

10 (0), (20)

θB̃
(2)
1,n(θ)−B(2)

1,n(0) =λB̃
(2)
1,n(θ)− λ(1− η)B̃

(2)
1,n(θ)− S̃2(θ)B(1)

1n (0)− η
n∑
k=1

B̃
(2)
1n−k(θ)λgk, (21)

θP̃
(1)
i,0 (θ)− P (1)

i,0 (0) =λP̃
(1)
i,0 (θ)− λ(1− η)P̃

(1)
i,0 (θ)− G̃1(θ)

[ b∑
m=a

P
(2)
m,i(0) +B

(2)
1,i (0) +

∞∑
l=1

Ql,i(0)

]
,

a ≤ i ≤ b, (22)

θP̃
(1)
i,j (θ)− P (1)

i,j (0) =λP̃
(1)
i,j (θ)− λ(1− η)P̃

(1)
i,j (θ)− η

j∑
k=1

P̃
(1)
i,j−k(θ)λgk, (23)

θP̃
(1)
b,j (θ)− P (1)

b,j (0) =λP̃
(1)
b,j (θ)− λ(1− η)P̃

(1)
b,j (θ)− η

j∑
k=1

P̃
(1)
b,j−k(θ)λgk

− G̃1(θ)

[ b∑
m=a

P
(2)
m,b+j(0) +B

(1)
1,b+j(0) +

∞∑
l=1

Ql,b+j(0)

]
, j ≥ 1, (24)

θP̃
(2)
i,0 (θ)− P (2)

i,0 (0) =λP̃
(2)
i,0 (θ)− λ(1− η)P̃

(2)
i,0 (θ)− G̃2(θ)P

(1)
i0 (0), (25)

θP̃
(2)
i,j (θ)− P (2)

i,j (0) =λP̃
(2)
i,j (θ)− λ(1− η)P̃

(2)
i,j (θ)− G̃2(θ)P

(1)
ij (0)− η

j∑
k=1

P̃
(2)
i,j−k(θ)λgk,

a ≤ i ≤ b, (26)

θC̃0(θ)− C0(0) =λC̃0(θ)− λ(1− η)C0(θ)− C̃(θ)

[
B

(2)
10 (0) +

b∑
m=a

P
(2)
m0(0)

]
, (27)

θC̃n(θ)− Cn(0) =λC̃n(θ)− λ(1− η)Cn(θ)− η
n∑
k=1

C̃n−k(θ)λgk, n ≥ 1, (28)
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θQ̃1,0(θ)−Q1,0(0) = λQ̃1,0(θ)− λ(1− η)Q1,0(θ)− Ṽ (θ)C0(0), (29)

θQ̃1,n(θ)−Q1,n(0) = λQ̃1,n(θ)− λ(1− η)Q1,n(θ)− Ṽ (θ)Cn(0)− η
n∑
k=1

Q̃1,n−k(θ)λgk,

n ≥ 1, (30)

θQ̃j,0(θ)−Qj,0(0) = λQ̃j,0(θ)− λ(1− η)Qj,0(θ)− Ṽ (θ)Qj−1,0(0), (31)

θQ̃j,n(θ)−Qj,n(0) = λQ̃j,n(θ)− λ(1− η)Qj,n(θ)− η
n∑
k=1

Q̃j,n−k(θ)λgk. (32)

To find the probability generating function (PGF) of queue size, we define the following PGFs:

P̃
(1)
i (z, θ) =

∞∑
j=0

P̃
(1)
i,j (θ)zj , P

(1)
i (z, 0) =

∞∑
j=0

P
(1)
i,j (0)zj , a ≤ i ≤ b,

P̃
(2)
i (z, θ) =

∞∑
j=0

P̃
(2)
i,j (θ)zj , P

(2)
i (z, 0) =

∞∑
j=0

P
(2)
i,j (0)zj , a ≤ i ≤ b,

B̃(1)(z, θ) =
∞∑
j=0

B̃
(1)
1,j (θ)zj , B(1)(z, 0) =

∞∑
j=0

B
(1)
1,j (0)zj ,

B̃(2)(z, θ) =

∞∑
j=0

B̃
(2)
1,j (θ)zj , B(2)(z, 0) =

∞∑
j=0

B
(2)
1,j (0)zj ,

C̃(z, θ) =

∞∑
n=0

C̃n(θ)zn, C(z, 0) =

∞∑
n=0

Cn(0)zn,

Q̃j(z, θ) =
∞∑
n=0

Q̃j,n(θ)zn, Qj(z, 0) =
∞∑
n=0

Qj,n(0)zj , j ≥ 1. (33)

By multiplying the equations from (17) to (32) by suitable power of zn and summing over n,
(n = 0 to ∞) and using (33),

(θ − λη + ληX(z))Q̃1(z, θ) =Q1(z, 0)− C(z, 0)Ṽ (θ), (34)

(θ − λη + ληX(z))Q̃j(z, θ) =Qj(z, 0)− Ṽ (θ)Qj−1,0(0), j ≥ 2, (35)

(θ − λη + ληX(z))C̃(z, θ) =C(z, 0)− C̃(θ)

[
B(2)

10(0) +
b∑

m=a

P
(2)
m,0(0)

]
, (36)

(θ − λη + ληX(z))B̃(1)(z, θ) =B(1)(z, 0)

− S̃1(θ)
[a−1∑
n=1

[
B

(2)
1n (0) +

b∑
m=a

P (2)
m,n(0) +

∞∑
l=1

Ql,n(0)

]
zn−1

]
, (37)

(θ − λη + ληX(z))B̃(2)(z, θ) =B(2)(z, 0)− S̃2(θ)B(1)(z, 0), (38)

(θ − λη + ληX(z))P̃
(1)
i (z, θ) =P

(1)
i (z, 0)− G̃1(θ)

[
B

(2)
1,i (0) +

b∑
m=a

P
(2)
m,i(0) +

∞∑
l=1

Ql,i(0)

]
,

a ≤ i ≤ b− 1, (39)
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(θ − λη + ληX(z))P̃
(1)
b (z, θ) =P

(1)
b (z, 0)− G̃1(θ)

zb

[
B(2)(z, 0)−

b−1∑
j=0

B
(2)
1,j (0)zj +

b∑
m=a

P (2)
m (z, 0)

−
b∑

m=a

b−1∑
j=0

P
(2)
m,j(0)zj +

∞∑
l=1

Ql(z, 0)−
∞∑
l=1

b−1∑
j=0

Ql,j(0)zj
]
, (40)

(θ − λη + ληX(z))P̃
(2)
i (z, θ) =P

(2)
i (z, 0)− G̃2(θ)P

(1)
i (z, 0), a ≤ i ≤ b. (41)

By substituting θ = λη − ληX(z) in (34) to (41), we get

Q1(z, 0) =Ṽ (λη − ληX(z))C(z, 0), (42)

Qj(z, 0) =Ṽ (λη − ληX(z))
a−1∑
n=0

Qj−1,0(0), j ≥ 2, (43)

C(z, 0) =C̃(λη − ληX(z)))

[
B

(2)
10 (0) +

b∑
m=a

P
(2)
m,0(0)

]
, (44)

P
(1)
i (z, 0) =G̃1(λη − ληX(z))

[
B

(2)
1i (0) +

∞∑
l=1

Qli(0) +
b∑

m=a

P
(2)
m,i(0)

]
a ≤ i ≤ b− 1, (45)

zbP
(1)
b (z, 0) =G̃1(λη − ληX(z))

[
B(2)(z, 0)−

b−1∑
j=0

B
(2)
1,j (0)zj +

b∑
m=a

P (2)
m (z, 0)

−
b−1∑
j=0

b∑
m=a

P
(2)
m,j(0)zj +

∞∑
l=1

Ql(z, 0)−
b−1∑
j=0

∞∑
l=1

Ql,j(0)zj
]
. (46)

Solving for P
(1)
b (z, 0),

P
(1)
b (z, 0) =

G̃1(λη − ληX(z))f(z)

zb − G̃1(λη − ληX(z))G̃2(λη − ληX(z))
, (47)

where

f(z) =B(2)(z, 0)−
b−1∑
n=0

B
(2)
1n (0)zn + G̃2(λη − ληX(z))

b−1∑
m=a

(P (1)
m (z, 0)−

b−1∑
j=0

P
(2)
mj z

j)

+
∞∑
l=1

(Ql(z, 0)−
b−1∑
j=0

Qljz
j), (48)

P
(2)
i (z, 0) =G̃2(λη − ληX(z))P

(1)
i (z, 0), (49)

B(1)(z, 0) =S̃1(λη − ληX(z))

a−1∑
n=1

[
B

(2)
1,n(0) +

b∑
m=a

P (2)
m,n(0) +

∞∑
l=1

Ql,n(0)

]
zn−1, (50)

B(2)(z, 0) =S̃2(λη − ληX(z))B(1)(z, 0), (51)
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Substitute (42) to (50) in (34) to (41), we get

Q̃1(z, θ) =

[
Ṽ (λη − ληX(z))− Ṽ (θ)

]
C(z, 0)

(θ − λη + ληX(z))
, (52)

Q̃j(z, θ) =

[
Ṽ (λη − ληX(z))− Ṽ (θ)

] ∞∑
l=1

Ql0(0)

(θ − λη + ληX(z))
, j ≥ 2, (53)

C̃(z, θ) =

(
C̃(λη − ληX(z))− C̃(θ)

)
(

b∑
m=a

P
(2)
m0(0) +B

(2)
10 (0)

(θ − λη + ληX(z))
, (54)

P̃
(1)
i (z, θ) =

(
G̃1(λη − ληX(z))− G̃1(θ)

)[
B

(2)
1i (0) +

∞∑
l=1

Qli(0) +
b∑

m=a
P

(2)
m,i(0)

]
(θ − λη + ληX(z))

, (55)

P̃
(1)
b (z, θ) =

[
G̃1(λη − ληX(z))− G̃1(θ)

]
f(z)

(θ − λη + ληX(z))
[
zb − G̃1(λη − ληX(z))G̃2(λη − ληX(z))

] , (56)

where

f(z) =B(2)(z, 0)−
b−1∑
n=0

B
(2)
1n (0)zn + G̃2(λη − ληX(z))

b−1∑
m=a

(P (1)
m (z, 0)−

b−1∑
j=0

P
(2)
mj z

j)

+
∞∑
l=1

(Ql(z, 0)−
b−1∑
j=0

Qljz
j), (57)

P̃
(2)
i (z, θ) =

(
G̃2(λη − ληX(z))− G̃2(θ)

)
P

(1)
i (z, 0)

(θ − λη + ληX(z))
, (58)

B̃(1)(z, θ) =

(
S̃1(λη − ληX(z))− S̃1(θ)

) a−1∑
n=1

[
B

(2)
1,n(0) +

b∑
m=a

P
(2)
m,n(0) +

∞∑
l=1

Ql,n(0)

]
zn−1

(θ − λη + ληX(z))
, (59)

B̃(2)(z, θ) =

(
S̃2(λη − ληX(z))− S̃2(θ)

)
B(1)(z, 0)

(θ − λη + ληX(z))
. (60)

Let

p
(1)
i =

b∑
m=a

P
(1)
m,i(0), p

(2)
i =

b∑
m=a

P
(2)
m,i(0), qi =

∞∑
l=1

Ql,i(0),

b
(1)
i = B

(1)
1,i (0), b

(2)
i = B

(2)
1,i (0), di = p

(2)
i + b

(2)
i , ki = di + qi. (61)

3 Probability generating function of queue size

In this section, the PGF, P (z) of the queue size at an arbitrary time is derived.
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3.1 PGF of queue size at an arbitrary time

If P(z) be the PGF of the queue size at an arbitrary time, then

P (z) =

b−1∑
m=a

P̃ (1)
m (z, 0) + P̃

(1)
b (z, 0) +

b∑
m=a

P̃ (2)
m (z, 0) + B̃(1)(z, 0) + B̃(2)(z, 0)

+C̃(z, 0) +
∞∑
l=1

Q̃l(z, 0). (62)

By substituting θ = 0 into the equations (52) to (60), then the equation (62) becomes

P (z) =



[
(zb − 1)(S̃1(λη − ληX(z))S̃2(λη − ληX(z))− 1)− (z − 1)(G̃1(λη − ληX(z))

G̃2(λη − ληX(z))− 1)

]
a−1∑
n=1

knz
n + z(G̃1(λη − ληX(z))G̃2(λη − ληX(z))− 1)

b−1∑
n=a

(zb − zn)kn + z(Ṽ (λη − ληX(z))C̃(λη − ληX(z))− 1)(zb − 1)d0

+ z(Ṽ (λη − ληX(z))− 1)(zb − 1)q0


(−λη + ληX(z))z

[
zb − G̃1(λη − ληX(z))G̃2(λη − ληX(z))

] .

(63)

Equation (63) has b + 1 unknowns k1, k2, . . . , kb−1, d0, q0. Using the following result, we
express q0 in terms of d0 in such a way that numerator has only b constants. Now equation (63)
gives the PGF of the number of customers involving only ’b’ unknowns. By Rouche’s theorem
of complex variables, it can be proved that (zb − G̃1(λη − ληX(z))G̃2(λη − ληX(z))) has b− 1
zeros inside and one on the unit circle |z| = 1. Since P (z) is analytic within and on the unit
circle, the numerator must vanish at these points, which gives b equations in b unknowns. These
equations can be solved by any suitable numerical technique.

3.2 Steady-state condition

Using P (1) = 1, the steady state condition is derived as ρ = ληE(X) [E(G1) + E(G2)] /b.

Theorem 1 Let q0 can be expressed in terms of d0 as

q0 =
γ0δ0d0
1− γ0

, (64)

Proof: From equations (42) and (43), we have

∞∑
n=0

qnz
n =Ṽ (λη − ληX(z))

[
C̃(λη − ληX(z))d0 + q0

]
,

=

∞∑
n=0

γnz
n

[ ∞∑
n=0

δiz
i[d0 + q0]

]
(65)
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Equating constant term, we get

q0 =
γ0δ0d0
1− γ0

3.3 Particular case

When there is no second phase of service, no closedown and no balking

P (z) =


(zb − 1)

(
S̃(λ− λX(z))− 1

)
− (z − 1)

(
G̃(λ− λX(z))− 1

) a−1∑
n=1

knz
n

+z
(
G̃(λ− λX(z))− 1

) b−1∑
n=a

(zb − zn)kn

+ z
(
Ṽ (λ− λX(z))− 1

)
(zb − 1)k0


(−λ+ λX(z))z(zb − G̃(λ− λX(z)))

, (66)

which coincides with the PGF of Jayakumar and Arumuganathan [11].

4 Performance measures

4.1 Expected queue length

The expected queue length E(Q) at an arbitrary epoch is obtained by differentiating P (z) at
z = 1 and is given by

E(Q) =



f1(X,S1, S2, G1, G2)

[
a−1∑
n=1

kn

]
+ f2(X,S1, S2, G1, G2)

a−1∑
n=1

nkn

+f3(X,G1, G2)
b−1∑
n=a

(b− n)kn + f4(X,G1, G2)

[
b−1∑
n=a

[b(b− 1)− n(n− 1)] kn

]
+ f5(X,G1, G2, V )(d0 + q0) + f6(X,G1, G2, V, C)d0


2.
[
(λ.η.X1).(b−G(1)

1 −G
(1)
2 )
]2 ,

(67)

f1(X, , S1, S2, G1, G2) =

[
b(b− 1).(S

(1)
1 + S

(1)
2 ) + b(S

(2)
1 + S

(2)
2 + 2.S

(1)
1 .S

(1)
2 )

− (G
(2)
1 +G

(2)
2 + 2.G

(1)
1 .G

(1)
2 )

]
.H1 −

[
b.(S

(1)
1 + S

(1)
2 )−G(1)

1 −G
(1)
2

]
.H2

f2(X,S1, S2, G1, G2) =2.

[
b.(S

(1)
1 + S

(1)
2 )−G(1)

1 −G
(1)
2

]
.H1,

f3(X,G1, G2) =

[
2.(G

(1)
1 +G

(1)
2 ) +G

(2)
1 +G

(2)
2 + 2.G

(1)
1 .G

(1)
2

]
.H1 − (G

(1)
1 +G

(1)
2 ).H2

f4(X,G1, G2) =(G
(1)
1 +G

(1)
2 ).H1,
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f5(X,G1, G2, V ) =

[
2.b.V (1) + b.V (2) + b(b− 1).V (1)

]
.H1 − b.V (1).H2

f6(X,G1, G2, V, C) =

[
2.b.C(1) + b.(C(2) + 2.C(1).V (1)) + b(b− 1).C(1)

]
.H1 − b.C(1).H2

where

H1 =(λ.η.X1).
(
b−G(1)

1 −G
(1)
2

)
,

H2 =(λ.η.X2).
(
b−G(1)

1 −G
(1)
2

)
+ (λ.η.X1).

(
b.(b− 1)−G(2)

1 −G
(2)
2 − 2.G

(1)
1 .G

(1)
2

)
+ 2(λ.η.X1).

(
b−G(1)

1 −G
(1)
2

)
and

X1 = E(X), S
(1)
1 = λ.η.X1.E(S1), S

(1)
2 = λ.η.X1.E(S2),

V (1) = λ.η.X1.E(V ), C(1) = λη.X1.E(C),

G
(1)
1 = λ.η.X1.E(G1), G

(1)
2 = λ.η.X1.E(G2),

S
(2)
1 = λ.η.X2.E(S1) + λ2.η2.(E(X))2.E(S2

1),

S
(2)
2 = λ.X2.E(S2) + λ2.η2.(E(X))2.E(S2

2),

G
(2)
1 = λ.η.X2.E(G1) + λ2.η2.(E(X))2.E(G2

1),

G
(2)
2 = λ.X2.E(G2) + λ2.η2.(E(X))2.E(G2

2),

V (2) = λ.η.X2.E(V ) + λ2.η2.(E(X))2.E(V 2),

C(2) = λ.η.X2.E(C) + λ2.η2.(E(X))2.E(C2).

4.2 Expected waiting time

The expected waiting time is obtained by using Little’s formula as:

E(W ) =
E(Q)

λE(X)
,

where E(Q) is given in (67).

4.3 Expected length of busy period

Theorem 2 Let B be the busy period random variable. Then the expected length of busy period
is

E(B) =
E(T )

d0
, (68)

where
E(T ) = E(S1) + E(S2) + E(G1) + E(G2).

Proof: Let T be the residence time that the server is rendering single service or bulk service.

E(T ) = E(S1) + E(S2) + E(G1) + E(G2).

259



G. Ayyappan, T. Deepa

Define a random variable J1 as

J1 =

{
0, if the server finds no customer after the residence time,

1, if the server finds at least one customer after the residence time.

Now the expected length of the busy period is given by

E(B) = E(B/J1 = 0)P (J1 = 0) + E(B/J1 = 1)P (J1 = 1)

= E(T )P (J1 = 0) + [E(T ) + E(B)]P (J1 = 1).

Solving for E(B), we get

E(B) =
E(T )

P (J1 = 0)
=
E(T )

d0
.

4.4 Expected length of idle period

Theorem 3 Let I be the idle period random variable. Then the expected length of idle period is
given by

E(I) = E(C) + E(I1), (69)

where

E(I1) =
E(V )

1− γ0δ0d0
, (70)

I1 is the idle period due to multiple vacation process, E(C) is the expected closedown time.

Proof: Define a random variable J2 as

J2 =

{
0, if the server finds atleast one customer after the first vacation,

1, if the server finds no customer after the first vacation.

The expected length of idle period due to multiple vacations E(I1) is given by

E(I1) = E(I1/J2 = 0)P (J2 = 0) + E(I1/J2 = 1)P (J2 = 1)

= E(V )P (J2 = 0) + [E(V ) + E(I1)]P (J2 = 1).

On solving, we get

E(I1) =
E(V )

P (J2 = 0)
=

E(V )

1− P (J2 = 1)
=

E(V )

1−Q10(0)
. (71)

From equation (45), we get Q10(0) = coefficient of zn in Q1(z, 0)

Q1(z, 0) =Ṽ (λη − ληX(z))C̃(λη − ληX(z))d0

[
a−1∑
n=0

gnz
n

]

=
∞∑
n=0

γnz
n
∞∑
i=0

δiz
id0.

Equating the coefficient of z0 on both sides, we get

Q10(0) =γ0δ0d0.

Substitute in (71), we get (70).
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5 Cost Model

We derive the expression for finding the total average cost with the following assumptions. Cs -
Start up cost, Cv - Reward per unit time due to vacation, Ch - Holding cost per customer, Co -
Operating cost per unit time, Cu - closedown cost per unit time. The length of cycle is the sum
of the idle period and busy period. Now the expected length of the cycle E(Tc) is obtained as

E(Tc) = E(I) + E(B) =
E(V )

P (J2 = 0)
+ E(C) +

E(T )

d0
.

Total Average Cost = Start-up cost + closedown cost per unit time + holding cost of number
of customers in the queue per unit time + operating cost per unit time × ρ - reward due to
vacation per unit time.

TAC =

[
Cs + Cu.E(c)− Cv.

E(V )

P (J2 = 0)

]
.

1

E(Tc)
+ Ch.E(Q) + Co.ρ,

where
ρ = ληE(X) [E(G1) + E(G2)] /b.

6 Numerical illustration

In this section, various performance measures which are computed in earlier sections are
verified numerically. Numerical example is analyzed using MATLAB, the zeros of the function
(zb − G̃1(λη − ληX(z))G̃2(λη − ληX(z))) are obtained and simultaneous equations are solved.
A numerical example is analyzed with the following assumptions:

1. Batch size distribution of the arrival is Geometric with mean two.
2. Single service time distribution is Exponential and service rate for first phase service is

µ1, second phase service is µ2.
3. Bulk service time distribution is Erlang - k with k = 2 and service rate for first phase

service is µ∗1, second phase service is µ∗2.
4. Vacation time and closedown time are exponential with parameter η = 9 and β = 7

respectively.
5. η=0.8
6. Start-up cost : Rs.3
7. Holding cost per customer: Rs. 0.50
8. Operating cost per unit time: Rs.2
9. Reward per unit time due to vacation: Rs.3
10. Closedown cost per unit time: Rs. 0.25.
Table 1, 2and 3 show the performance of various measures like E(Q), E(B), E(I) and E(W )

with the increment of arrival rate λ for the values of µ1 = 4, µ2 = 4.5, µ∗1 = 5, µ∗2 = 5.5, µ1 = 5,
µ2 = 5.5, µ∗1 = 6, µ∗2 = 6.5 and µ1 = 6, µ2 = 6.5, µ∗1 = 7, µ∗2 = 7.5 respectively. It is also evident
that the average queue length increases as the increase of arrival rate. However, average queue
length decreases as the increase of service rate.
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λ E(Q) E(W ) E(B) E(I)

0.5 1.5081 0.3770 0.2186 0.1103
1.0 1.9831 0.4958 0.2278 0.1095
1.5 2.2576 0.5644 0.2321 0.1052
2.0 2.7119 0.6780 0.2377 0.1011
2.5 3.3632 0.8408 0.2413 0.0096
3.0 3.8053 0.9513 0.2496 0.0064

Table 1: Arrival rate vs performance measures µ1 = 4, µ2 = 4.5, µ∗1 = 5, µ∗2 = 5.5

λ E(Q) E(W ) E(B) E(I)

0.5 1.3276 0.3319 0.2113 0.1172
1.0 1.6314 0.4079 0.2195 0.1138
1.5 1.9927 0.4982 0.2238 0.1105
2.0 2.3265 0.5816 0.2276 0.1088
2.5 2.8964 0.7241 0.2322 0.1041
3.0 3.1275 0.7819 0.2369 0.1013

Table 2: Arrival rate vs performance measures µ1 = 5, µ2 = 5.5, µ∗1 = 6, µ∗2 = 6.5

λ E(Q) E(W ) E(B) E(I)

0.5 1.2084 0.3021 0.2009 0.1198
1.0 1.3175 0.3294 0.2083 0.1153
1.5 1.6321 0.4080 0.2168 0.1121
2.0 1.8673 0.4668 0.2199 0.1100
2.5 2.2016 0.5504 0.2241 0.1075
3.0 2.8897 0.7224 0.2285 0.1057

Table 3: Arrival rate vs performance measures µ1 = 6, µ2 = 6.5, µ∗1 = 7, µ∗2 = 7.5

7 Conclusion and future work

In this paper, we have derived the PGF of the queue size for batch arrival single and bulk
service queue with two phases of service, closedown, multiple vacation and balking under the
steady-state case. Also we have obtained various performance measures and verified them nu-
merically. In future this work may be extended into a queueing model with multi stages of
service and modified vacation.
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