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ABSTRACT 

As a member of the SRG (Statistical Research Group) at Columbia University, the 
mathematician Abraham Wald worked on the problem of vulnerability estimation in 
aircraft on combat situations.This problem became known as "operational 
problem", the approach proposed by Wald was used in different combat 
situations.This work aimed to revisit the problem and propose an alternative 
solution using the Swarm Intelligence method known as Firefly Algorithm (FA). As 
results it was possible to estimate numerically better information and with greater 
coherence regarding the database used. 
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1. INTRODUCTION 
 

During World War II, the Mathematician Abraham Wald, at the request of the Allied forces, 

developed a method to estimate the probability of survival of an aircraft under enemy fire, a 

problem otherwise known as the "operational problem". Wald's Method was largely used by the 

American Army during World War II, the Korean and Vietnam War, although there were only a 

few of researches dedicated to analyzing its efficiency. 

According to [1], the Operational Problem could be presented as such: An aircraft, returning to 

the base from a combat mission, had many of its parts damaged in combat. In order to raise the 

fighter's chance of survival, the operational commander has to decide: (i) Which tactic must be 

used in battle and (ii) where to apply extra platings to protect strategic points of the aircraft's hull. 

The operational problem, in its entirety, is complex, especially due to the lack of information during 

the War's time period. The only information available to Wald was in a spreadsheet, consisting 

of: (i) The total number of planes on flight; (ii) the number of returning aircrafts, which also served 

to know how many fell in battle, and (iii) the number of shots a surviving aircraft received. Nothing 

could be known about the missing planes, for they could have been shot down by the enemy or 

have crashed down due to some sort of mechanical failure, a common fact during the war. 

Therefore, this research has as objective the solution of the operational problem, utilizing the 

Firefly Swarm Method, based on Wald's original approach. Currently, swarming algorithms, as 

well as evolutionary algorithms and other stochastic methods, have proved very useful in solving 

a wide array of problems. Therefore, it is considered that firefly swarm algorithms (FA - Firefly 

Algorithm) stand out in relation to other stochastic optimization techniques. Studies show that FA 

is efficient in numerical optimization [5 – 7]. The algorithm can locate the global optimal, as well 

as all the local optimal points, simultaneously and very effectively. 

An additional advantage of the FA is that different fireflies work almost independently, therefore 

being particularly adequate to parallel implementation. It is a method superior to the Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) since the fireflies aggregate themselves 

closely to each optimal point. Interactions between distinct sub-regions are minimal in parallel 

implementations. [6,7] Among its many applications, the Firefly Algorithm is used in: Annual 

planning of harvests [11], parts design problems [10,13] and process management problems.[9] 

The FA presented good results in all of its applications, thus proving to be a robust and reliable 

problem-solving technique. 

2. THEORY REVIEW  
2.1 Wald's approach to the Operational Problem  
2.1.1 Defining the survival probability  
 

Initially, Wald considered the following variables to characterize the problem: The total number of 

aircrafts in flight (N), the number of surviving aircrafts (S), the number of aircrafts shot down by 

the enemy (L), the number of aircrafts that survived i enemy shots (Si), the number of aircrafts  
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that were shot down by i shots (Li), and the ratio of surviving planes to the total number of aircrafts, 

denoted by s. 

In order to begin the problem modeling, it was necessary to assume the following assumptions: 

(i)𝐿0 = 0, (ii)𝐿=∑𝐿𝑖=𝑁−𝑆 and (iii)𝐿𝑖+𝑆𝑖=𝑁𝑖, where i is the number of successful shots in the aircrafts. 

Given the first assumption, it is considered that all missing planes were shot down, in order to 

ignore mechanical failures, for example. The goal is to find the probability pi, that is the conditional 

chance of an aircraft crash, after receiving i number of shots. This probability was defined by Wald 

as: 

𝑝𝑖 =
𝐿𝑖

𝑁𝑖

 
(01) 

Therefore, 
𝐿𝑖 = 𝑝𝑖𝑁𝑖 (02) 

The following progression was defined, 

𝐿0 = 0 (03) 

𝐿1 = 𝑝1(𝑁 − 𝑆0 ) (04) 

𝐿2 = 𝑝2(𝑁 − 𝑆0 − 𝑆1 − 𝐿1)  (05) 

𝐿3 = 𝑝3(𝑁 − 𝑆0 − 𝑆1 − 𝑆2 − 𝐿1 − 𝐿2) (06) 

𝐿𝑖 =  𝑝𝑖 (𝑁 − ∑ 𝑆𝑚

𝑖−1

𝑚=0

− ∑ 𝐿𝑚

𝑖−1

𝑚=1

) 

(07) 

Thus, 

𝑞𝑖 = 1 − 𝑝𝑖 (08) 

By manipulating algebraically the presented progression, it is possible to arrive at the following 

expression, also known as Wald Basic Equation: 

∑
𝑠𝑖

∏ 𝑞𝑖

= 1 − 𝑠0 (09) 

For more details, see [2]. In this way it is possible to determine the values of qi by solving the 

following nonlinear programming problem: 

Minimize ∏ 𝑞𝑖 
(10) 

Subject to ∑
𝑠𝑖

∏ 𝑞𝑖

= 1 − 𝑠0 (11) 

 0 ≤ 𝑞𝑖 ≤ 1 (12) 

To Wald, the basic solution would be to consider that all values of qi are equal, therefore all 

possibilities of p would also be equal. Thus, the problem is summarized in finding the real roots 

of the following equation: 

Applying numerical methods, such as Newton's method, it is possible to define the value of q. The 

simplification employed is justified by the fact that computational tools were not so developed at 

the time. However, employing such simplification may lead to erroneous conclusions, which is. 
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why the Firefly Algorithm (FA) method will be applied to the multinomial optimization problem 

originally proposed 

 
2.1.2 Subdividing the aircraft into areas of equal vulnerability  
 

Having determined how to estimate the probability of survival, it would be necessary to subdivide 

the aircraft into areas of equal vulnerability and thereby define the probability of survival of an 

aircraft being shot i times in j areas, defined here as qi. For Wald, this probability is estimated as 

follows: 

𝑞𝑗 =  
𝜂𝑗

𝜃𝑗

𝑞𝑖 
(14) 

Where qi is the chance of survival previously estimated, θ𝑗 is the ratio of area j by the total area, 

thus being a parameter dependent on the physical aspect of the aircraft and therefore defined by:  

𝜃𝑗 =  
𝐴𝑗

𝐴𝑇

 
(15) 

𝜂𝑗 is a parameter from field observations and is related to the pattern observed in the received 

shots and the total number of shots received by the aircraft, its estimation is not as direct as the 

parameter θ𝑗. Wald observed that the distribution of the shots was characterized by the following 

equation: 

ℎ𝑗 =  𝑗𝜂𝑗ℎ𝑡 (16) 

where ht is the total number of shots received by the Si surviving aircrafts and hj is the number of 

shots observed in j areas, therefore: 

𝜂𝑗 =  
ℎ𝑗

𝑗ℎ𝑡

 
(17) 

And finally the probability of crashing is defined in a manner analogous to equation (8): 

𝑞𝑗 = 1 − 𝑝𝑗  (18) 

As noted, the estimation of the probability of survival 𝑞𝑖 has an important role in the total solution 

of the problem and therefore its adequate estimation can significantly alter the results of the study. 

In the next section, the FA will be formally presented.  

 

2.2. Firefly Algorithm (FA)  

 

Swarm Intelligence is a set of techniques based on the collective behavior of self-organized, 

distributed, autonomous, flexible, and dynamic systems. For [3], the purpose of computational 

swarm intelligence models is to model the simple behaviors of individuals and the local 

interactions with the environment and neighboring individuals, in order to obtain more complex 

behaviors that can be used to solve optimization problems.  

These systems are made of a population of simple computational agents capable of perceiving 

and modifying their environment locally. This capability makes communication possible between 

agents, who capture environmental changes generated by their counterparts' behaviors. Although 

there is no centralized control structure that establishes how agents should behave, and even if  



241 

 

Applying Firefly Optimization (FA) algorithms to the Wald Operational Problem 

there is no explicit model of the environment, local interactions between agents usually lead to 

the emergence of a global behavior approaching the solution of the problem [4]. 

Given such characteristics, those systems could have been inspired by: (i) The behavior of social 

insects, such as ants, bees, termites, and wasps; Or (ii) the ability of human societies to process 

knowledge. The Firefly Algorithms (FA) fit the first case. Summarizing, FA are metaheuristic 

algorithms inspired by the intermittent behavior of fireflies, social insects widely known for their 

luminescence and abdominal flashes, which are mostly used for mating. 

In an FA, the main purpose of a firefly's flash is to serve as a signaling system to attract other 

fireflies. Yang [5 – 7] formulated the algorithm assuming that: (i) All fireflies are unisex, meaning 

that a firefly can be attracted to all the other fireflies in the swarm; (ii) Attractiveness is proportional 

to the flash's brightness, therefore, between two fireflies, the one with the strongest flash will 

attract the dimmer one. The perceived brightness of an abdominal flash is diminished in proportion 

to distance, though, and if no other is brighter than a certain firefly, this agent will move randomly; 

(iii) The firefly's brightness is associated with the objective function. 

Since that, for those agents, attractiveness is proportional to luminous intensity, a firefly's 

attractiveness is defined in terms of the cartesian distance between a firefly j and a firefly k. In 

this case, the motion of the firefly k attracted by a brighter firefly j is determined by: 

𝑥𝑗 = 𝑥𝑗 + 𝛽0𝑒−𝛾𝑟𝑗𝑘
2

(𝑥𝑘 − 𝑥𝑗) + 𝛼(𝑟𝑎𝑛𝑑 −
1

2
) 

(19) 

where xj and xk are the positions of fireflies j and k, respectively, r is the Euclidean distance 

between them, 𝛽0 is the attractiveness among the agents when r equals 0, γ characterizes the 

variation of attractiveness, α is a random, binary parameter and rand is a random number 

generated by a uniform distribution, ranging from 0 to 1. 

It can be observed that, when γ = 0, the attractiveness will not be dependent of distance, making 

all fireflies flock to the global optimal point, a behavior usually seen in the Particle Swarm 

Optimization Algorithm (PSO). On the other hand, if γ →∞ , the agents' actions become purely 

random, characterizing a Random Search Algorithm. Therefore, the Firefly Algorithm will present 

a behavior between those two extremes, depending of the value of γ, this being a critical 

parameter for the method's good performance. The FA implementation procedure can be 

summarized as the pseudocode shown in figure 1: 
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1) Define algorithm parameters, including the γ factor; 

2) Generate an initial population of m fireflies xj (j=1, 2, ... , m), using uniform distribution in the search 

area; 

3) Evaluate the objective function F for all fireflies; 

4) Light intensity Ij in firefly xj is determined by F; 

5) Initialize generation count by setting Generation = 0; 

6) While Generation < Max Generation 

 Generation = Generation + 1 

 For j = 1, 2, ..., m 
  For k = 1, 2, ... , m 
  If (Ik > Ij), Move firefly j to proximity k according to (19) 
  Evaluate new solution and update I 
  End 
 End 
    End 

Figure 1. Pseudo code for implementation of the FA. Source: Adapted from [7].  
 

3. RESULTS 

3.1. Materials and Methods  

Algorithms and analyses were implemented on MATLAB version R2014.a. For the development 

of this study, the following database was considered: 

Table 1: Database used in the study, adapted from [1].    

 Number Ratio 

Aircrafts in Flight 𝑁 = 400 1 

Returning Aircrafts 𝑆 = 380 0.95 

Missing Aircrafts 𝐿 = 20 0.05 

Undamaged Aircrafts 𝑆0 = 320 𝑠0 = 0.80 

Aircrafts that Survived 1 Shot 𝑆1 = 32 𝑠1 = 0.08 

Aircrafts that Survived 2 Shot 𝑆2 = 20 𝑠2 = 0.05 

Aircrafts that Survived 3 Shot 𝑆3 = 4 𝑠3 = 0.01 

Aircrafts that Survived 4 Shot 𝑆4 = 2 𝑠4 = 0.005 

Aircrafts that Survived 5 Shot 𝑆5 = 2 𝑠5 = 0.005 

 

Wald's original study was implemented with the planes available at that time, which had its weak 

spots subdivided in 4 regions, as shown in Table 2: 

Table 2: Database used in the study (cont.), adapted from [1]. 

j Área (square foot) 𝜽𝒋 𝒉𝒋 𝜼𝒋 

1 – Motors 35 0.269 20 0.193 
2 – Fuselage 45 0.346 39 0.386 

3 – Fuel System 20 0.154 16 0.154 
4 – Other parts 30 0.231 27 0.267 

Total 130 1 102 – 
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Given the information on Table 1 and applying the expression (10), the objective function F, 

minimized, is defined as: 

𝐹(𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, ) = ∏ 𝑞𝑖

5

𝑖=1

+ 𝜅 
(20) 

Where k is the penalty parameter used to treat the constraint function R, defined by applying 

Table 1 data into expression (11), therefore: 

𝑅(𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, ) =
0,08

𝑞1

+
0,05

𝑞1𝑞2

+
0,01

𝑞1𝑞2𝑞3

+
0,005

𝑞1𝑞2𝑞3𝑞4

+
0,005

𝑞1𝑞2𝑞3𝑞4𝑞5

 
(21) 

The Value of k is defined as: 

𝜅 = {
          0;  𝑖𝑓 0.19 < 𝑅 < 0.21 

103; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(22) 

The purpose of this approach is to eliminate the equality constraint from the original formulation. 

The 0.19<𝑅<0.21 condition is due to the fact that, for the case in study, 1− 𝑠0= 0.2. 

To implement the FA, the following parameters were considered: (i) Generations = 300; (ii) 

Number of fireflies (m=30); (iii) 𝛽0 = γ = 1 and (iv) α = 0.5. A total of 30 experiments were 

performed. The averages, minimum and maximum values of the best F values found for each 

experiment were calculated, as well as all the q values found. In this research, it was also 

considered that: 

𝜂𝑗

𝜃𝑗

~𝑁(𝜇, 𝜎) (23) 

in order to calculate qj, the following approximation was defined: 

𝑞𝑗 = 𝑍 (
𝜂𝑗

𝜃𝑗

) 𝑞𝑖 
(24) 

Where Z is the table value of the Gaussian distribution for the values estimated by the ratio 

originally proposed by Wald. Thus, the following values are defined for the ratios: 

Table 3: Z values for the ratio
𝜂𝑗

𝜃𝑗
. 

j 

𝜂𝑗

𝜃𝑗

 
Z 

1 0.717472 0.764238 

2 1.115607 0.868643 

3 1 0.84135 

4 1.155844 0.874928 
 

3.2. Results and Discussion 

After 30 experiments, the following results for F and qi were found: 
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Table 4: qi estimated. 

 Minimum  Mean Maximum Best 

F 0.091725966 0.099735070 0.135162729 0.091725966 

𝑞1 0.999985151 0.999999365 1 1 

𝑞2 0.978148896 0.998956622 1 1 

𝑞3 0.678725257 0.920668095 0.999845780 0.995287776 

𝑞4 0.228620686 0.723091596 0.997379809 0.923692426 

𝑞5 0.099773737 0.175586004 0.612209372 0.099773737 

 

Calculating the values of pi, according to the Expression (8), the following results could be 

reached: 

Table 5: pi estimated. 

 Minimum  Mean Maximum Best 

𝑝1 0.000014849 0.0000006 0 0 

𝑝2 0.021851104 0.0010434 0 0 

𝑝3 0.321274743 0.0793319 0.000154220 0.004712224 

𝑝4 0.771379314 0.2769084 0.002620191 0.076307574 

𝑝5 0.900226263 0.8244140 0.387790628 0.900226263 

 

As observed, the probability of an aircraft crash after one or two shots is minimal. The variability 

of responses increases considerably with 3 shots, although being relatively low (not so much in 

comparison to the earlier cases, but still low.)  

With 4 shots, the situation presents great uncertainty, since the results show the greatest 

variability among the others. Either more information is needed or implementing fine attunements 

to the algorithm could reduce the variability observed in this case. Finally, in the case of 5 shots, 

there was some variability in the estimates, however, a consensus can be reached that this is the 

case with the highest chance of slaughter among the available data set. According to the results, 

it can be inferred that most of the L felled aircrafts suffered five or more shots. 

Applying the progression (7) to the best-estimated answer and considering only integer values, 

the following table can be assembled: 

Table 6: Estimated L based on the progression (7). 

L = 20 Estimation 

𝐿1 0 

𝐿2 0 

𝐿3 0 

𝐿4 2 

𝐿5 18 
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As can be seen, the highest estimated number of airplanes shot down occurs when they suffer 

five or more shots. Ergo, it is possible to define the risk zone for crashing as between 5 or more 

shots. It is worth noting that there is still a chance of an aircraft surviving after receiving 5 shots, 

albeit it is very small. 

Comparatively, it is reasonable to apply Wald's approach in this data set. Initially, the following 

equation must be solved: 

0.08

𝑞
+

0.05

𝑞2
+

0.01

𝑞3
+

0.005

𝑞4
+

0.005

𝑞5
= 0.20 

(23) 

Using a numerical method, such as Newton's Method, the value of q is found as q = 0.851, and, 

therefore, p = 0.149. Applying those results in Progression (7), while considering integer numbers 

only, the following table was assembled, 

 

Table 7: Estimated L based on the progression (7) with Wald’s original approach. 

L = 20 Estimation 

𝐿1 12 

𝐿2 5 

𝐿3 2 

𝐿4 1 

𝐿5 0 

 

Based on the simplified approach, it is verified that the risk zone for crashing occurs when 

receiving a shot. Therefore, it is concluded that the largest portion of aircrafts crashed due to a 

single, fatal shot. By numerically evaluating the two results, it becomes clear that both meet the 

restriction R = 0,20. However, with different F values, Wald's original approach reached F = 0,446, 

while the optimal estimated answer was F = 0,091. Thus, it is pertinent to state that the results 

obtained by the method proposed by this study are more numerically reliable than the former. 

Data analysis clearly shows that there are considerably more aircrafts surviving a single shot than 

those that survived 5 shots, a fact in consonance with data observed in the battlefield. Evaluating 

the random variable p estimated by both methods, it is seen that, in Wald's approach, considering 

the same value of q in all cases, the probability of survival has, obviously, a constant behavior, 

therefore characterizing a uniform, discrete distribution. In contrast pi values, estimated by the FA 

method, clearly showing a behavior closer to that of an exponential distribution. 

Wald's original approach, despite having a lower numerical accuracy, is consistent with its 

assumption that q has the same value for all cases. In other words, what matters to this method 

is that at the moment a given aircraft is shot, on average, it has a survival chance of 0.851, a 

result quite close to the FA's estimations, calculated as 0.803. For decision making analyses and 

total solution of the Operational Problem, though, the information estimated by the FA approach 

is far more relevant, due to its numerical reliability and practical coherence. 
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Carrying on, with new information being estimated, it will be possible to continue the problem's 

resolution by defining where a certain aircraft should receive shielding reinforcement. Applying 

the data present in Tables 2 and 3, together, into Equations (14) and (20), with the estimated 

values of qi, it was possible to estimate the values of pj. 

 

Table 8: pj estimated. 

 
1 

Shot 
2 

Shots 
3 

Shots 
4 

Shots 
5 

Shots 

Area 1 0.235762 0.235762 0.239363 0.294079 0.923749 

Area 2 0.131357 0.131357 0.13545 0.197641 0.913332 

Area 3 0.15865 0.15865 0.162615 0.222851 0.916055 

Area 4 0.125072 0.125072 0.129195 0.191836 0.912705 

 

Analyzing Table 8's content, it is safe to assume that the most vulnerable weak point will always 

be area 1, where the engines are located, followed by area 3, where the fuel system lies. Ergo, 

the shielding should be strengthened around the engines and, if possible, the fuel systems. 

The results are in agreement with the following reasoning: "the region that must be strengthened 

is precisely the one that suffered minimal damage to surviving airplanes." Observing Table 2, it is 

very noticeable that the areas that suffered the least damage in the studied aircraft consist exactly 

in the areas considered of greater risk by the estimates made. 

 

Table 8: pj estimated with Wald’s original approach. 

j pj 

1 0.349633 

2 0.260785 

3 0.284011 

4 0.255436 
 

Wald's approach, applied in this data set, reaches similar results, although not with the same 

information depth. As Table 8 shows, it can be stated without a shadow of a doubt that, most of 

the time and independent of how many shots were received, area 1 will be a permanent source 

of risk, while area 3 becomes one only after being shot 3 times. The other areas have minimal 

probabilities of survival after receiving 5 shots. 

Reviewing the results estimated by the Firefly Algorithm, it is observed a need for the analysis to 

be performed horizontally, evaluating the probability of each number of shots fired in a determined 

region. Therefore, in order to choose the area to be fortified, the evolution of the crashing chance 

over time should be used as a criterion, not just its isolated value. The reason being, according 

to Table 5, most of the destroyed planes received 5 or more shots and the probability of the 

aircraft crashing, after receiving 5 shots or more, in all vulnerable regions, is very close. In other 

words, the probability value by itself is not a sufficient criterion to make a decision. 
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4. CONCLUSION 

The operational problem aims to define the best strategy to increase the survival rate of a given 

aircraft in a scenario of war. The objective of this work was to solve a part of this problem by 

means of a contemporary swarm intelligence technique called Firefly Swarm Algorithm (FA). The 

problem under study was presented, partially demonstrating the origin of the functions and 

equations used, as well as the original approach used to solve part of the problem during World 

War II. Concepts related to the FA method and Swarm Intelligence were also discussed.  

With a field data set, survival estimates were calculated using the FA method along with the 

original approach, proving the efficiency of the former in estimating results with greater numerical 

accuracy and consistency in comparison to the original. 

It is important to note that Wald's method was proven as able to estimate areas of risk that should 

be strengthened. When using the FA approach to the original multinomial problem, however, 

certain flaws were identified, mainly due to the ratio 
𝜂𝑗

𝜃𝑗
. Firstly, this ratio was applied directly, as 

presented in Equation (14), but the approach ends up generating several numerical errors in the 

probabilities computation. To solve this problem, the ratio needed to be considered as it truly is: 

a random variable that could be approximated by a Gaussian distribution. Such an approach does 

not alter the calculations deeply, however it gives a greater numerical reliability to the achieved 

results. 

For future research, it is proposed: (i) To continue the resolution of the Original Problem, now 

taking into account the type of anti-aircraft artillery used at the time; (ii) To make comparisons 

with other methods of Swarm Intelligence or Evolutionary Algorithms; And (iii) to use Fuzzy Logic 

in order to solve the problem of estimating survival probabilities. 
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