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NUMERICAL METHOD FOR THE NONLINEAR VOLTERRA
INTEGRAL EQUATIONS USING SIMPSON PRODUCT

INTEGRATION METHOD

M. JALALVAND AND M. NABTI

Abstract. In this paper we introduce and examine a numerical method for

solving the Volterra integral equation of the second kind when the kernel func-

tion contains a mild singularity. This method represents the solution of pro-
posed integral equations as a series generated by the Adomian decomposition

method and coefficients are evaluated by the Simpson product integration tech-
nique. We validate the proposed method using some examples and compare

numerical and analytical results to show the method’s accuracy.
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1. Introduction

The mathematical model a lot of physical and chemical phenomenon such as
soteriology, heat transfer, superfluidity, the reaction of heat from a semi infinite
solid may be derived as nonlinear weakly singular Volterra integral equations.
In this paper we consider nonlinear Volterra integral equations of the second kind,

u(t) = f(t) +
∫ t

0

p(t, s)K(t, s, u(s))ds, s ∈ [0, 1], (1.1)

where the kernel p is weakly singular and the given functions f and K are assumed
to be sufficiently smooth in order to guarantee the existence and uniqueness of a
solution u in C[0, 1] (see, for instance, [5], [7], [9], [10]). Typical forms of p(t, s) are

p(t, s) = (t− s)−α, 0 < α < 1,

or (1.2)
p(t, s) = log(t− s).

For regular Volterra integral equations the smoothness of the kernel and of the
forcing functionf(t) determines the smoothness of the solution on the closed inter-
val [0, 1]. Whereas if we allow weakly singular kernels, then the resulting solutions
are typically nonsmooth at the initial point of the interval. Some results concerning
the behavior of the uniqe solutions of equations of type (1.1) are given in [9]. Note
that the numerical solvability of weakly singular Volterra integral equations have
been investigated, see for example [8,14,17,18,20,21].
In recent years the applications of the Adomian decomposition method (ADM) in
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mathematical problems has been developed by scientists. This method continu-
ously transforms a complicated problem into a sequence of simpler problems which
can be easily solved. The ADM solves successfully different types of linear and non-
linear equations in deterministic and stochastic fields [3,4]. Application of ADM
for solving different types of integral equations has been discussed by many authors
[6,16,22]. The objective of the present paper is to approximate the solution of equa-
tion (1.1) using a new strategy of product integration, in conjunction with ADM.
This paper is organized as follows. In section 2, some basic concepts of Adomian
decomposition method (ADM) are presented. In section 3, we describe an algo-
rithm based on product integration method and ADM for numerical solution of
the nonlinear weakly singular Volterra integral equation (1.1). Section 4 is devoted
to the numerical examples selected from the literature in connection with Volterra
integral equations.

2. Adomian decomposition method

G. Adomian in [3], proposed a new and fruitful method for solving exactly non-
linear functional equations of various kinds (algebraic, differential, partial differen-
tial, integral, etc). Using this technique the solution of the nonlinear operator is
presented as a series of functions. Each term of this series is a generalized poly-
nomial called Adomian’s polynomial. The Adomian technique is very simple in
its principles. The difficulties consist in calculating the Adomian’s polynomials
and in proving the convergence of the introduced series. Some attempts to prove
convergence have been made in [1,12,13,15]. The main algorithm of Adomian’s
decomposition method applies to a general nonlinear equation of the form

u = Nu + f (2.1)

where N is a nonlinear operator from a Hilbert space H into H, and f is a known
function (see, [3,12,13]). We are looking for a solution u of (2.1) belonging to H.
We shall suppose that (2.1) admits a unique solution. The decomposition method
consists in looking for a solution having the series form

u =
∞∑

i=0

ui. (2.2)

The nonlinear operator N is decomposed as

N(u) =
∞∑

n=0

An, (2.3)

where the An are functions called Adomian’s polynomials. We remark that the An

are formally obtained from the relationship

An =
1
n!

dn

dλn
N(

∞∑
i=0

λiui)]λ=0. (2.4)
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For more details see [2,3,12,13]. Adomian polynomials are defined as

A0 = N(u0),
A1 = u1N

′(u0),

A2 = u2N
′(u0) +

1
2!

u2
1N

′′(u0),

A3 = u3N
′(u0) + u1u2N

′′(u0) +
1
3!

u3
1N

′′(u0), (2.5)

...

We assume that N satisfies certain conditions so that equations (2.4)−(2.5) are well-
defined and the corresponding series (2.2) and (2.3) are convergent, see [1](Theorem
3.1). These definitions are only formal, and nothing is proved or supposed about
the convergence of the series

∑
ui and

∑
An. Putting (2.2) and (2.3) into (2.1)

leads to the relationship
∞∑

i=0

ui =
∞∑

i=0

Ai + f (2.6)

and Adomian’s method consists of identifying the u by means of the formulae

u0 = f,

u1 = A0,

u2 = A1,

...
un = An−1, (2.7)

...

3. Description of numerical procedure

In this section we introduce a three step algorithm based on the ADM and
modified product integration techniques to solve equation (1.1).
Step 1. Basic idea of ADM :
In the ADM, the solution u(t) of (1.1) is given by the series (2.2)

u(t) =
∞∑

n=0

un(t), (3.1)

and the nonlinear term is decomposed as

K(t, s, u(s)) =
∞∑

n=0

An(t, s, u0, u1, ..., un), (3.2)

Using ADM yields

u0(t) = f(t)

un+1(t) =
∫ t

0

p(t, s)An(t, s)dt, n ≥ 0. (3.3)

Step 2 . Discretization of problem :
According to the ADM, the solution of equation (1.1) may be derived using the
series introduced as (3.1).



232 M. JALALVAND AND M. NABATI

Many authors used the zeroes of Chebyshev and Legendre orthogonal polynomials
as collocation points. Here we discretize equation (1.2) at the collocation nodes
{zNi}N

i=1

⋃
{1}, which yields using orthogonal Chelyshkov polynomials PN,0(t) on

[0, 1] with the weight function 1, (see,[11]). These polynomials are defined as follows

PN,k(t) =
N−k∑
j=0

(−1)j(N−k
j )(N+k+1+j

N−k )tk+j , k = 0, 1, ..., N. (3.4)

The polynomials PN,k(t) have properties which are analogous to the properties
of the classical orthogonal polynomials. In the family of orthogonal polynomials
{PN,k(t)}N

k=0 every member has degree N with N−k simple roots. Hence for every
N, polynomial PN,0(t) has exactly N simple roots in (0, 1).
Using a quadrature which is based on N + 1 nodal points {zNi}N

i=1

⋃
{1} and se-

lecting collocation points to be the same as nodal points, we have

un+1(ti) =
∫ ti

0

p(ti, s)An(ti, s)ds =
i−2∑
k=0

∫ tk+2

tk

p(ti, s)An(ti, s)ds, i = 0, 1, ..., N, t0 = 0,

where {ti}N
i=1 are the roots of N th degree polynomials PN,0(t).

Step 3 . Product integration techniques :
To construct higher order methods directly, it is necessary to use more accurate
numerical integration rules. The next step is the product simpson method which
is constructed by approximating An(ti, s) by piecewise linear functions (for more
details see Linz, [18]), in particular

An(ti, s) =
(s− tk+1)(s− tk+2)

(tk − tk+1)(tk − tk+2)
An(ti, tk) +

(s− tk)(s− tk+2)
(tk+1 − tk)(tk+1 − tk+2)

An(ti, tk+1)

+
(s− tk)(s− tk+1)

(tk+2 − tk)(tk+2 − tk+1)
An(ti, tk+2), tk ≤ t ≤ tk+2 (3.5)

This leads to the integration formula

∫ ti

0

p(ti, s)An(ti, s)ds '
i−2∑
k=0

(ai,k+1An(ti, tk) + bi,kAn(ti, tk+1) + ci,kAn(ti, tk+2))

(3.6)

where

ai,k =
1

(tk − tk+1)(tk − tk+2)

∫ tk+2

tk

(s− tk+1)(s− tk+2)p(ti, s)ds (3.7)

bi,k =
1

(tk+1 − tk)(tk+1 − tk+2)

∫ tk+2

tk

(s− tk)(s− tk+2)p(ti, s)ds (3.8)

ci,k =
1

(tk+2 − tk)(tk+2 − tk+1)

∫ tk+2

tk

(s− tk)(s− tk+1)p(ti, s)ds (3.9)

The numerical method for solving (1.1) is then

un+1(ti) =
i−2∑
k=0

(ai,k+1An(ti, tk) + bi,kAn(ti, tk+1) + ci,kAn(ti, tk+2)), (3.10)
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Hence we obtain the following numerical values by ADM as

u0(ti) = u0,i = f(ti), i = 1, ..., N,

u1(ti) ∼= u1,i =
i−2∑
k=0

(ai,k+1A0(ti, tk) + bi,kA0(ti, tk+1) + ci,kA0(ti, tk+2)), i = 1, ..., N,

... (3.11)

un+1(ti) ∼= un,i =
i−2∑
k=0

(ai,k+1An(ti, tk) + bi,kAn(ti, tk+1) + ci,kAn(ti, tk+2)), i = 1, ..., N.

Therefore the approximation of u(ti) may be obtained using the M -term partial
sum of the Adomian decomposition series solution as follows

u(ti) ' u0,i + u1,i + ... + un,i, n = 1, ...,M. (3.12)

4. Numerical examples

We evaluate the efficiency of our method using some examples by comparing the
numerical results with the analytical solution of the problem. Our benchmark for
accuracy is the error given by

EN = ‖u− û‖ = max
0≤i≤N

|ui − ûi| (4.1)

where ui denotes the exact solution and ûi denotes the approximate solution at the
nodes ti, i = 0, 1, 2, ..., N . We note that this error formula represents a reasonable
measure of the accuracy. To examine the accuracy of the algorithm proposed in
previous section, in the following examples, different degrees of Chelyshkov polyno-
mials {PN0(t)} are considered (N = 8, 16, 32, 64). In addition in our computations,
we consider a fixed M = 15. We evaluate the efficiency of our method using some
examples by comparing the numerical results with the analytical solution of the
problem.

Example 1. Consider the following integral equation

u(t) =
3
√

t

15
(t− 15) +

∫ t

0

y3(s)
3
√

t− s
ds.

One may see that u(t) = 3
√

t is the solution of this equation. Table 1. shows the
errors for different values of N .

N EN

8 1.54E − 2
16 5.32E − 3
32 1.54E − 4
64 5.32E − 5

Table 1. Results of Example 1.

Example 2. Consider the following integral equation

u(t) =
√

t− 1
2
t2lnt +

3
4
t2 +

∫ t

0

ln(t− s)u2(s)ds.
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One can obtain u(x) =
√

t as the solution of this equation. Table 2. shows the
error between exact and approximate solutions at the nodes ti, i = 1, · · · , N for
different values of N .

N EN

8 1.3E − 3
16 2.6E − 4
32 1.1E − 5
64 9.1E − 6

Table 2. Results of Example 2.

Example 2 is solved in [20] with variable transformation methods in combination
with the trapezoidal quadrature rule and the absolute error between the exact and
the approximate solution evaluated at the mesh points is presented. In compar-
isons with this method, our proposed method is very simple and the accuracy of
the numerical results obtained with this method is considerable.

Example 3. As the final example consider the following nonlinear integral equation

u(t) = t +
11
15

t3 − 1
3
t3lnt +

∫ t

0

ln(t− s)u2(s)ds.

One may show that the function u(t) = t is the solution of this equation.
N EN

8 1.44E − 6
16 1.34E − 7
32 3.50E − 8
64 7.45E − 10

Table 3. Results of Example 3.

Table 3. shows the error approximation solutions at the nodes ti, i = 1, · · · , N
for different values of N . Khater et al. [17] have been solved the example 3, by
Chebyshev polynomials expansion. Comparing results reported in [17] show that for
N = 128 and 64 issued maximum errors of this problem are O(10−6) and O(10−9),
respectively. Looking at Table 3, we can observe an improvement of the accuracy
for N = 64 in the case of our algorithm respect to methods in [17].

5. Conclusion

In this work, a class of nonlinear weakly singular Volterra integral equations
of the second kind is investigated by using an algorithm based on Adomian de-
composition method and product integration approaches. The method of product
integration is constructed with respect to a new family of orthogonal polynomials,
named Chelyshcov polynomials. The new orthogonal polynomials keep distinc-
tively of the classical orthogonal polynomials and give more accurate quadratures
and hence better results.
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