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Abstract

In this paper, in order to overcome the drawbacks of the Rubio’s mea-
sure theoretical approach, the last step of approximation in his approach
is omitted and the optimal control problems are approximated by the
nonlinear programming (NLP) problems. The usefulness of the approach
is confirmed by applying it on two examples.
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1 Introduction

The measure theoretical-based approach for approximating an optimal control
problem by a linear programming (LP) one, which has been theoretically es-
tablished by Rubio [4], has been applied to optimal control of the lumped and
distributed parameter systems; see [5], [3] and references therein. Nevertheless,
it has some drawbacks. One of them, is the use of sequential approximations
on an optimal control problem which dramatically affects the precision of the
method. Moreover, there are difficulties in solving the high dimensional LP
problems approximating the large scale optimal control problems. The authors
in [1] have used the metaheurestic algorithms to solve the NLP problem approx-
imation of the classic optimal control problems obtained by the Rubio’s measure
theoretical-based approach. Motivated by their work and in order to overcome
the mentioned drawbacks, in the next section we briefly review the measure the-
oretical approach to approximate the optimal control problems with the NLP
ones and we give a system of nonlinear equations as the necessary optimality
conditions which can be easily solved by using the optimization softwares such
as the MATLAB optimization toolbox. The efficiency of the method is demon-
strated through the two numerical experiments, in section 3. The last section
is the conclusion.
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2 The NLP approximation of optimal control
problems

Let J = [a, b] and A and U are, respectively, compact subsets of Rn and Rm
and f : Ω → Rn is a continuous function, where Ω = J ×A× U . If x : J → A
is a state function and u : J → U is a control function satisfying the control
system

ẋ(t) = f(t, x(t), u(t)), (1)

x(a) = xa, x(b) = xb, (2)

then, the pair p = (x, u) is called admissible. Let g : Ω → R is a continuous
function. Consider an optimal control problem (OCP), minimizing the func-
tional

J (p) =

∫ b

a

g(t, x(t), u(t))dt, (3)

over P, the set of all admissible pairs. Denote by C ′(B) the set of all real valued
continuously differentiable functions on B, an open ball in Rn+1 containing
J ×A. From (1) and (2), an admissible pair p = (x, u) ∈ P satisfies∫ b

a

φf (t, x(t), u(t))dt = ∆φ, for all φ ∈ C ′(B), (4)

where φf (t, x, u) = ∂φ
∂x (t, x).f(t, x, u)+ ∂φ

∂t (t, x) and ∆φ = φ(b, x(b))−φ(a, x(a)).
Therefore, we minimize the functional (3) subject to (4), as the first step of
approximating the OCP. According to the Riesz representation theorem, there

exists a unique positive Radon measure µ on Ω such that
∫ b
a
F (t, x(t), u(t))dt =∫

Ω
F (t, x, u)dµ ≡ µ(F ), F ∈ C(Ω), the space of all continuous real valued

functions on Ω. Hence, we make the second approximation on the OCP as

Minimize
µ∈M+(Ω)

µ(g) (5)

s.t. µ(φf ) = ∆φ, for all φ ∈ C ′(B), (6)

where M+(Ω) is the set of all positive Radon measure µ on Ω . Note that the
problem (5)-(6) is an infinite dimensional linear programming that the existence
of it’s optimal solution is guaranteed when M+(Ω) is equipped with the weak*-
topology [4]. Now, as the third step of approximating the OCP, we consider a
finite dimensional problem as

Minimize
µ∈M+(Ω)

µ(g) (7)

s.t. µ(φfj ) = ∆φj , j = 1, 2, ...,M, (8)

where M is a sufficiently large number and φj ’s are chosen from a countable
dense subset of C ′(B). As detailed in [4], the optimal solution of the problem
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(7)-(8), say µ∗M , tends to the optimal solution of the problem (5)-(6), as M tends

to infinity. Moreover, it is known that µ∗M =
∑M
k=1 α

∗
kδ(z

∗
k) with α∗k ≥ 0 and

z∗k ∈ Ω, where δ(z) is the unitary atomic measure characterized by δ(z)(F ) =
F (z), for all F ∈ C(Ω) and z ∈ Ω. Therefore, the problem (7)-(8) is equivalent
to

Minimize
αj≥0, zk∈Ω

M∑
k=1

αkg(zk) (9)

s.t.

M∑
k=1

αkφ
f
j (zk) = ∆φj , j = 1, 2, ...,M. (10)

Rubio approximated the NLP problem (9)-(10) with an LP problem by replac-
ing the decision variables zks with the points of a grid on the set Ω, which
also contains another step of approximation as well. Moreover, the numeri-
cal experiments show that the method is highly sensitive to choosing the grid
points. On the other hand, if Ω is a large set in sense of measure then we
have a huge number of grid points which requires enormous computational ca-
pacity. In order to overcome these difficulties, we directly focus on solving the
NLP problem (9)-(10); since, nowadays there are optimization software pack-
ages to solve the NLP problems. For computational simplicity, we introduce
the new decision variables βj and wj related to αj and zj through αj = β2

j

and zj = M+m
2 + M−m

2 sin(wj), where m ≤ zj ≤ M . In this way, the NLP
problem (9)-(10) is converted into an equivalent one with unbounded decision
variables. To find the optimal solutions β∗ and w∗ we define L(β,w, λ) =∑M
j=1 β

2
j ḡ0(wj)+λ1(

∑M
j=1 β

2
j φ̄

f
1 (wj)−∆φ1)+...+λM (

∑M
j=1 β

2
j φ̄

f
M (wj)−∆φM ),

where ḡ0(w) = g(M+m
2 + M−m

2 sin(w)) and λ is the lagrange multiplier. Ac-
cording to the necessary optimality conditions, there is λ∗ such that the triple
(β∗, w∗, λ∗) satisfies a system of nonlinear equations as

∂L

∂βj
= 2βj

(
ḡ0(wj) + λ1φ̄

f
1 (wj) + ...+ λN φ̄

f
M (wj)

)
= 0, (11)

∂L

∂wj
= β2

j

(
∇ḡ0(wj) + λ1∇φ̄f1 (wj) + ...+ λN∇φ̄fM (wj)

)
= 0, (12)

∂L

∂λj
=

M∑
k=1

β2
kφ̄

f
j (wk)−∆φj = 0, (13)

for j = 1, ...,M . Obviously, we can solve the equations (11)-(13) by using the
fminsearch optimization toolbox in MATLAB. We note that the total functions
in (9)-(10) can be chosen as monomials of t and x. In special case, the function
φ(t, x, t) = t gives the constraint α1 + ... + αM = b − a, which is necessary
to build the suboptimal piecewise constant control function from α∗j , z∗j =

(t∗j , x
∗
j , u
∗
j ), j = 1, ...,M , as u∗(t) =

∑M
k=1 u

∗
kχ
[∑k−1

j=0 α
∗
j ,

∑k
j=0 α

∗
j

)(t), where α∗0 =

a and χA is the characteristic function of a set. Moreover, we can set φ(t, x, t) =
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Figure 1: The control function and the state function of example 1.

xjψ(t), j = 1, ..., n, where ψ is a differentiable function with compact support

in (a, b) such as ψ(t) = sin
( 2π(t−a)

b−a
)

and ψ(t) = 1− cos
( 2π(t−a)

b−a
)
.

3 Numerical Results

Example 1. Minimize the functional J =
∫ 1

0
u2(t)dt subject to ẋ = x2sin(x)+

u, x(0) = 0, x(1) = 0.5. We have solved this OCP with A = [0, 0.5], U =
[0.25, 0.5], φ1 = x, φ2 = x2 and φ3 = xsin(2πt). The resulting piecewise
control and the state function are depicted in figure 1.
Example 2. Consider a mathematical model for chronic myelogenous leukemia
(CML) introduced in [2] as

dx1

dt
= s1 − u2d1x1 − k1x1

(
x3

x3 + η

)
,

dx2

dt
= α1k1x1

(
x3

x3 + η

)
+ α2x2

(
x3

x3 + η

)
− u2d2x2 − γ2x3x2,

dx3

dt
= (1− u1)r3x3ln

(
xmax
x3

)
− u2d3C − γ3x3x2,

where x3(t), x1(t) and x2(t), respectively, denote the cancer cell population, the
naive T cell population and the effector T cell population at time t and u1(t)
and u2(2) are time dependent drug efficacy. The interpretation of the model
and the value of parameters are presented in [2]. The goal of cancer treatments
like chemotherapy and radiation therapy is to destroy cancerous cells in the
body while minimizing the systemic costs to the body of drugs. Therefore,

we minimize the objective functional as J =
∫ 250

0
x3(t) + w1u

2
1(t) + w2u

2
2(t)dt,

where w1 and w2 are weight coefficients denoting the relative importance of the
drugs cost. We have solved this OCP with A = [0, 1510] × [0, 40] × [0, 10000],
U = [0, 0.9] × [1, 1.47], φj = xj , φ3+j = sin

(
πt
125

)
xj , j = 1, 2, 3. The resulting

control functions and the corresponding state functions are depicted in figure 2.
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Figure 2: The state function and the control function of example 2.

4 Conclusion

In this paper we omitted the last approximation in Rubio’s measure theoretical
approach and approximated the optimal control problems by the NLP ones,
which can be solved by the nonlinear programming softwares developed in re-
cent years. Numerical results shows that the necessary optimality conditions
which are a system of nonlinear equations can be solved by using the fminser-
ach optimization toolbox in MATLAB.
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