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wvishirabayashi@uem.br

Emerson Vitor Castelani
Department of Mathematics, State University of Maringá
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Abstract

This paper presents a study on the use of Chebyshev’s method for solving second-
order equations with boundary conditions. This study involves the production of an
algorithm for solving a family of second order problems with multiple points in the
boundary by finite difference scheme. The resulting nonlinear systems are solved by
iterative method of Chebyshev. A comparison with Newton’s method is accomplished.
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1 Introduction

The study of methods for solving nonlinear systems is not new, but the growing emergence
of real-world problems formulated under this optics has made these studies also focused
on practical efficacy of the methods.

A great example is the development of quasi-Newton methods which have no theoretical
power of the local quadratic convergence of Newton’s method, but are quite efficient in
practice [4, 18].

There are also methods of Chebyshev-Halley’s family [9, 10, 11, 12]. These methods
are of type tensorial and its main advantage is the cubic local convergence. On the other
hand its main drawback is the use of high computational processing and storage due to
structure tensorial.

The goal of this paper is to present an application of the Chebyshev’s method for
solving second order differential equations with two and three points on the boundary.
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More specifically, let us consider the following equations:{
u′′ = f(x, u, u′)
u(0) = u(1) = 0,

(1)

{
u′′ = f(x, u, u′)

u(0) = 0, u(1) = g(u(η)),
(2)

where f : [0, 1]→ R and g : R→ R are continuous nonlinear functions and η ∈ (0, 1).

The idea that we use is based on the finite difference scheme. Briefly, we discretize the
equations (1)-(2) and generate nonlinear systems to solve them. The performance of such
a scheme depends largely on the strategy that we use to solve the nonlinear system. In
this case, we will use Chebyshev’s method. We will see that the resulting structure of the
problem is favorable to use the Chebyshev’s method and will verify the efficiency of this
method by comparing it with Newton’s method.

This work is divided as follows. In Section 2 we present the methods of Newton and
Chebyshev. In section 3, we present the discretization of equations (1) and (2) and the
computation of the tensors. Sections 4 and 5 are devoted to algorithms and examples. In
section 6, we have the final considerations.

Remark. Finite difference scheme are widely used to solve differential equations. How-
ever, strategies that use the Chebyshev’s method are poorly explored due to the calculation
of the tensors. Moreover, considering the equation (2), we have that the numerical meth-
ods used in this class are fixed-point type [3], or using approximations in reproducing
kernel spaces [15]. Thus, in this article we provide a new algorithm for solving (2).

2 Newton and Chebyshev’s Methods for nonlinear systems

Let us consider a nonlinear function F : Rn → Rn and the problem of finding w ∈ Rn such
that:

F (w) = 0. (3)

There are several iterative methods to solve this problem and probably, the Newton’s
method is the most know. An important property of this method is its fast local con-
vergence. In general we assume that F is sufficiently smooth. The solution w∗ for the
problem (3) is called as degenerate or singular, if the Jacobian matrix F ′(w∗) is singular.
Else, the solution is called nondegenerate. Some interesting works related to development
of Newton’s method are Galántai [4] e Yamamoto [18].

In Newton’s method, if we have an approximation to the solution wk, the iterative
squeme is defined by:

wk+1 = wk + dk, (4)

where dk is solution of the following linear system:

F ′(wk)dk = −F (wk), (5)

and F ′(wk) is nonsingular.

The Newton’s method solves at each iteration a linear model to F around the point
wk. In recent years, some research has been focused on developing methods that have fast
local convergence [9, 10, 11, 12] but many of these methods have been known for decades
and have been rewritten and adapted to reduce the computational cost.
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In particular, if we consider scalar equations, methods with cubic local convergence
were gathered in a family called Chebyshev-Halley [12]. Subsequently, Gutirrez and Hern-
ndez [9] extended the results for equations in Banach spaces.
Notation: In the present text we will use the following terms:

Fk = F (wk), F ′k = F ′(wk), F ′′k = F ′′(wk),

As established in [9], methods of the Chebyshev-Halley’s family are defined by:

wk+1 = wk −
[
I +

1

2
(F ′k)−1F ′′k (F ′k)−1Fk

[
I − λ(F ′k)−1F ′′k (F ′k)−1Fk

]−1]
(F ′k)−1Fk, (6)

where λ ∈ [0, 1] is the parameter that defines each member of this family.

If λ = 0 we have the Chebyshev’s method, if λ =
1

2
, we have Halley’s method and if

we consider λ = 1, the method defined is called super-Halley, [12].
Classical results of quadratic local convergence for Newton’s method or cubic local

convergence for Chebyshev-Halley’s family are valid only ‖(F ′(w))−1‖ can be quoted in a
neighborhood of a solution w∗.

Gundersen and Steihaug in [5] showed that this family of methods can be defined as
follows:

wk+1 = wk + dN + d, (7)

where dN and d are solutions of the linear systems given by:

F ′kdN = −Fk, (F ′k + λF ′′k dN )d = −1

2
F ′′k dNdN , (8)

with λ ∈ [0, 1]. The operation F ′′k dNdN is the vector whose components are given by:

(F ′′k dNdN )l =
n−1∑
j=1

n−1∑
i=1

(F ′′k )i,j,l(dN )i(dN )j , l = 1, . . . , n− 1.

In [5, 6] the authors prove that for certain classes of problems, the ratio between the
cost per iteration of each method of Chebyshev-Halley’s family and Newton’s method is
independent of the size of problem, being asymptotically constant.

In this paper we use the Chebyshev’s method, because it is necessary to solving two
linear systems with the same coefficient matrix, and that generates an economy in the
calculation of directions.

In tests in [5, 6] for unconstrained optimization problems, the methods of Chebyshev-
Halley’s family had performance compatible with the Newton’s method.

3 Discrete formulation of the problems

In this section we discretize the equations (1) and (2). Then we define the parameters
needed to utilize the above-mentioned methods. Consider first the equation (1).

Let x0 = 0, x1 = x0 + h, ..., xn = xn−1 + h be a uniformly spaced mesh in [0, 1]. The
problem (1) can be discretized by finite difference formulas:

u′(xi) ≈ u′i =
ui+1 − ui−1

2h
(9)
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and

u′′(xi) ≈ u′′i =
ui+1 − 2ui + ui−1

h2
, (10)

where i = 1, ..., n−1. Thus replacing (9) and (10) into (1) we have the following nonlinear
system:

u2 − 2u1 − h2f(x1, u1,
u2
2h

) = 0,

ui+1 − 2ui + ui−1 − h2f(xi, ui,
ui+1 − ui−1

2h
) = 0, i = 2, ..., n− 2,

−2un−1 + un−2 − h2f(xn−1, un−1,
−un−2

2h
) = 0.

In order to use the Chebyshev’s method we need to compute the Jacobian matrix and
tensor of the function F : Rn−1 → Rn−1 defined by:

F (u1, ..., un−1) =



u2 − 2u1 − h2f(x1, u1,
u2
2h

)

u3 − 2u2 + u1 − h2f(x2, u2,
u3 − u1

2h
)

...

un−1 − 2un−2 + un−3 − h2f(xn−2, un−2,
un−1 − un−3

2h
)

−2un−1 + un−2 − h2f(xn−1, un−1,
−un−2

2h
)


.

Denoting the Jacobian matrix of F by F ′ = (F ′)i,j we have that F ′ is an tridiagonal
matrix. Consequently, if ∇i represents the i-th term of the gradient vector of f , we have:

F ′1,1 = −2− h2∇2f(x1, u1,
u2
2h

), F ′1,2 = 1− h

2
∇3f(x1, u1,

u2
2h

),

F ′i,i−1 = 1 +
h

2
∇3f(xi, ui,

ui+1 − ui−1
2h

), F ′i,i = −2− h2∇2f(xi, ui,
ui+1 − ui−1

2h
),

F ′i,i+1 = 1− h

2
∇3f(xi, ui,

ui+1 − ui−1
2h

), for i = 2, ..., n− 2,

and F ′i,j = 0 if j 6= i− 1, i, i+ 1.

F ′n−1,n−2 = 1 +
h

2
∇3f(xn−1, un−1,

−un−2
2h

),

F ′n−1,n−1 = −2− h2∇2f(xn−1, un−1,
−un−2

2h
).

According to [6][Theorem 2], in unconstrained optimization, the structure of sparsity
of the tensor depends on the structure of sparsity of the Hessian matrix. In our case, as
the Jacobian matrix is tridiagonal we have that the tensor is sparse and its structure is
kind of diagonal. In fact, denoting the tensor by F ′′ = F ′′i,j,l of F , we have:

For l = 1,
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F ′′1,1,1 = −h2∇2
2,2f(x1, u1,

u2
2h

), F ′′1,2,1 = −h
2
∇2

2,3f(x1, u1,
u2
2h

),

F ′′2,1,1 = −h
2
∇2

3,2f(x1, u1,
u2
2h

), F ′′2,2,1 = −0.25∇2
3,3f(x1, u1,

u2
2h

).

For l = 2, ..., n− 2,

F ′′l−1,l−1,l = −0.25∇2
3,3fl, F ′′l,l−1,l = F ′′l−1,l,l, F ′′l+1,l−1,l = F ′′l−1,l+1,l,

F ′′l−1,l,l =
h

2
∇2

2,3fl, F ′′l,l,l = −h2∇2
2,2fl, F ′′l+1,l,l = F ′′l,l+1,l,

F ′′l−1,l+1,l = 0.25∇2
3,3fl, F ′′l,l+1,l = −h

2
∇2

2,3fl, F ′′l+1,l+1,l = F ′′l−1,l−1,l,

where ∇2
i,jfl = ∇2

i,jf(xl, ul,
ul+1 − ul−1

2h
).

For l = n− 1,

F ′′n−2,n−2,n−1 = −0.25∇2
3,3fn−1, F ′′n−1,n−2,n−1 = F ′′n−1,n−2,n−1,

F ′′n−2,n−1,n−1 = −h
2
∇2

2,3fn−1, F ′′n−1,n−1,n−1 = −h2∇2
2,2fn−1,

where ∇2
i,jfn−1 = ∇2

i,jf(xn−1, un−1,−
un−2
2h

).

The remaining terms F ′′i,j,l are null.

Thus the sparsity of the tensor of F provides the necessary structure to facilitate the
implementation of the Chebyshev’s method. Also,we can note that Jacobian matrix of F
can be rewritten as follows:

F ′ = A+ hA,

where

A =


−2 1 0 · · · 0

1 −2 1 · · · 0
...

...
. . .

...
0 0 · · · −2 1
0 0 · · · 1 −2
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and

A =



−h∇2f1 −1

2
∇3f1 0 · · · 0

1

2
∇3f2 −h∇2f2 −1

2
∇3f2 · · · 0

...
...

. . .
...

0 0 · · · −h∇2fn−2 −1

2
∇3fn−2

0 0 · · · 1

2
∇3fn−1 −h∇2fn−1


where ∇ifj = ∇if(xj , uj ,

uj+1 − uj−1
2h

) with ∇i represents i−th (i = 1, 2, 3) component

of the gradient vector of f . Thus, by taking h sufficiently small and observing that
A is negative defined, we have that F ′ is negative defined. Therefore, its eigenvalues
are negative and consequently there is inverse of F ′. Then, according Yamamoto [18] is
possible to obtain results of local cubic convergence.

Now, let us consider the second order boundary value problem given by (2). Let c

be an approximation to un = g(u(η)). Thus replacing the term
−un−2

2h
by

c− un−2
2h

on definitions of F , F ′ and F ′′, we get the necessary parameters in order to use the
Chebyshev’s method.

4 Solving a classical second order two point boundary value
problem

In what follows we define two algorithms that apply Newton and Chebyshev’s method to
solve (1).
Algorithm 1

Step 1. Set k ← 1 and define a uniformly spaced mesh {xj}.

Step 2. Discretize the problem by finite difference and choose an initial approximation
u0j = u0(xj).

Step 3. Solve:

a) F ′(uk)dN = −F (uk).

b) F ′(uk)d = −1

2
F ′′(uk)dNdN .

c) uk+1 = uk + dN + d.

Step 4. Set k ← k + 1 and go to step 3.

Algorithm 2

Step 1. Set k ← 1 and define a uniformly spaced mesh {xj}.

Step 2. Discretize the problem by finite difference and choose an initial approximation
u0j = u0(xj).

Step 3. Solve:

a) F ′(uk)dN = −F (uk).

b) uk+1 = uk + dN .
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Table 1: Comparison between Newton and Chebyshev’s method considering example 1
and n=10.

It
Chebyshev Newton

εk εku εk εku
1 5.7493e-02 7.3065e-03 5.8231e-02 7.2954e-03
5 2.8428e-04 1.6841e-04 2.6216e-04 1.7448e-04
10 2.8740e-06 2.5760e-04 2.6498e-06 2.5768e-04
15 2.9052e-08 2.5860e-04 2.6785e-08 2.5860e-04
26 1.1844e-12 2.5861e-04 1.0920e-12 2.5861e-04
27 4.7254e-13 2.5861e-04 4.3567e-13 2.5861e-04

Table 2: Comparison between Newton and Chebyshev’s method considering example 1
and n=100.

It
Chebyshev Newton

εk εku εk εku
1 6.0196e-02 9.7326e-05 6.1040e-02 9.1017e-04
5 5.9204e-06 5.5496e-06 3.4479e-06 3.1738e-06
10 1.6729e-07 2.5256e-06 9.7422e-08 2.5552e-06
15 4.7268e-09 2.5944e-06 2.7527e-09 2.5953e-06
26 1.8493e-12 2.5964e-06 1.0770e-12 2.5964e-06
27 9.0619e-13 2.5964e-06 5.2774e-13 2.5964e-06

Step 4. Set k ← k + 1 and go to step 3.

Using examples, we present numerical results that elucidate the behavior of the meth-
ods discussed so far. In present numerical study we are considering

εk = max
i=1,...,n−1

|uk+1
i − uki |,

εku = max
i=1,...,n−1

|u(xi)− uki |

and It represents the number of iterations. The tests were run on a MacBook Pro with
4GB RAM and Core i5 2.4.

Example 1. Consider the problem:

u′′ = f(x, u, u′) = 4u− u2 + u′2 − 2 + x4 + (2 + x+ 4x2 − 2x3)ex−1 − (1 + 2x)e2x−2

u(0) = u(1) = 0.

An exact solution for this equation is u(x) = xex−1−x2. In this problem we consider a
discretization with n = 10 and n = 100 points and set the stopping criterion by εk < 10−12.
The tables in sequence provide the output of the methods at each case.

As we can be seen in Tables 1 and 2 (see εku) the accuracy of results is related and
depends on the approximation by finite differences. When we increase the number of
points we have a better approximation for derivatives and consequently more accurate
numerical results.

The runtime considering n = 10 was 0.162614 seconds to Chebyshev’s method and
0.132883 seconds to Newton’s method. Considering n = 100 the time increase to 0.361866
and 0.255741 seconds, respectively.
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Table 3: Comparison between Newton and Chebyshev’s method considering example 2
and n=10.

It
Chebyshev Newton

εk εku εk εku
1 2.2637e+00 1.4025e+00 2.2637e+00 1.4025e+00
5 4.9110e-02 1.6345e-02 6.8185e-02 4.2889e-02
10 1.3156e-07 1.6257e-02 2.9075e-05 1.6257e-02
15 9.3336e-13 1.6257e-02 2.1182e-10 1.6257e-02
18 - - 1.7258e-13 1.6257e-02

Example 2. Let’s consider in this example the following problem:

u′′ = −π2u+ u2(u′)2 + u3 + (u′)3 − sin2 xπ − π3 cos3 πx− π2 sin2 πx cos2 πx,

u(0) = u(1) = 0.

An exact solution is given by u(x) = sin(πx) and the stopping criterion is again
εk < 10−12. The results are expressed in Table 3.

The runtime to apply the first algorithm was 0.155053 seconds and to apply the second
method was 0.138070 seconds.

5 Solving a second order three-point boundary value prob-
lem

Our goal now is to adapt the previous methods to solve the following equation:

u′′ = f(x, u, u′)

u(0) = 0, u(1) = g(u(η)),

where η ∈ (0, 1) and g is possibly nonlinear. This equation is commonly referenced in the
literature as a second order three-point (or multi-point) boundary equation.

Due to various applications involving this type of equation, many authors have studied
aspects about the existence of solution (we recommend [13, 14, 1, 2, 7, 8, 16, 17]). However,
there are few numerical methods to solve it. To contribute in this direction, we present
below a new algorithm that uses Chebyshev’s method.
Algorithm 3

Step 1. Set k ← 1 and define a uniformly spaced mesh {xj}.

Step 2. Discretize the problem by finite difference and choose an initial approximation
u0j = u0(xj).

Step 3. Solve:

a) u(η) by using cubic spline interpolation.

b) F ′(uk)dN = −F (uk).

c) F ′(uk)d = −1

2
F ′′(uk)dNdN .

d) uk+1 = uk + dN + d.
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Table 4: Comparison between Newton and Chebyshev method’s considering example 3.

It
Chebyshev Newton

εk εku εk εku
1 4.4959e-01 4.8747e-01 4.1625e-01 4.9412e-01
5 3.4910e-02 3.8697e-02 4.1660e-02 4.7080e-02
10 1.3925e-03 1.4157e-03 1.7087e-03 1.7636e-03
15 5.4369e-05 2.3739e-04 6.6792e-05 2.2639e-04
18 7.7635e-06 2.7921e-04 9.5378e-06 2.7762e-04

Step 4. Set k ← k + 1 and go to step 3.

Naturally, an algorithm equivalent to Algorithm 3 can be obtained if we use the New-
ton’s method.
Algorithm 3

Step 1. Set k ← 1 and define a uniformly spaced mesh {xj}.

Step 2. Discretize the problem by finite difference and choose an initial approximation
u0j = u0(xj).

Step 3. Solve:

a) u(η) by using cubic spline interpolation.

b) F ′(uk)dN = −F (uk).

c) uk+1 = uk + dN .

Step 4. Set k ← k + 1 and go to step 3.

As we can see in Algorithms 3 and 4, each iteration requires an interpolation by cubic
spline. Therefore, it is desirable to save iterations once we can save considerable processing.
In this sense the Chebyshev’s method is an interesting tool. Using the following example
we will analyze the behavior of the algorithms. The presented results are obtained when
we use the stopping criterion given by εku < 10−5.

Example 3. Consider a three point boundary value problem given by:

f(x, u, u′) = u′2 − 9x4 + 3x2 − 6x− 0.25,

g(s) = s2 − 0.5180491164

and
η = 0.37

An exact solution for this problem is u(x) = 0.5x − x3. The results obtained by
applying the Algorithms 3 and 4 with n = 20 are given in Table 4.

The runtime of Algorithm 3 and 4 were, respectively, 0.183998 and 0.159683 seconds.

Example 4. Now consider the following problem:

f(x, u, u′) = u′(u′2 − u2 + 2xu′ + x2 − 2x− 1),

g(s) =
4

3
s

and
η = 0.75.
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Table 5: Comparison between Newton and Chebyshev method’s considering example 4.

It
Chebyshev Newton

εk εku εk εku
1 5.3551e-01 3.3113e-01 6.5472e-01 3.1971e-01
5 3.7546e-02 2.1154e-01 3.9660e-02 2.3436e-01
10 2.2918e-02 6.7411e-02 2.5227e-02 8.1517e-02
15 5.6537e-03 7.0790e-03 7.3152e-03 1.0290e-02
25 1.6789e-05 1.4404e-05 2.2764e-05 2.3670e-05
26 9.1665e-06 5.2371e-06 1.3585e-05 1.0085e-05
27 - - 9.5378e-06 2.7762e-04

An exact solution is u(x) = x. We define the discretizaton with n = 10 and initial
guess x0 = (0, 0.5, ..., 0.5) because the null vector is a solution of this problem. The result
of the numerical experiment are shown in Table 5. Using the Algorithm 3 the execution
time was 0.185904 seconds and using the Algorithm 4 was 0.167088 seconds.

6 Conclusion and final remarks

Although Chebyshev type methods have cubic convergence, its application in nonlinear
systems is limited due to the tensors calculation. Thus, nonlinear systems that allow good
use of the method need to have a favorable structure. In this paper, we showed that the
finite difference scheme for solving two classes of differential equations have this structure.
This is the main reason that justify this work.

This study includes advances in two fields: the first, on the applicability of the Cheby-
shev’s method and the second for solving second order three-point boundary value prob-
lems.

Naturally, the examples indicate that the runtime of algorithms using Newton’s method
were lower than the algorithms that use the method of Chebyshev. However, the use of the
Chebyshev’s method is promising in the following sense: In general, the algorithms that
are based on Chebyshev’s method consumed less iterations indicating that, with suitable
parallel programming techniques or automatic differentiation, may have a very efficient
algorithm for solving certain classes of nonlinear problems.
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