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Abstract

The present paper presents a systematic technique to solve a linear
programming problem with bounded variables using dual simplex method
in the case when a starting dual feasible solution is not readily available.
The proposed technique involves the formulation of an augmented problem
which in turn solves the original problem. Some particular cases of linear
programming problem with bounded variables are discussed thereafter.
Numerical illustrations are included in support of the theory.
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1 Introduction

Operations research is a discipline that deals with the application of advanced
analytical methods to help make better decisions. Employing techniques from
mathematical sciences such as mathematical modelling, statistical analysis and
mathematical optimization, operations research arrives at optimal or near-optimal
solutions to complex decision-making problems. Within this very broad subject
area of optimization the most widely known and implemented technique for
modelling and simulation is the methodology of linear programming. Linear
programming is perhaps the core model of constrained optimization. Dantzig
(1951) invented the simplex method which for the first time efficiently solved the
linear programming problem (LPP) in most of the cases. Khachiyan (1980) in-
troduced ellipsoid method and Karmarkar (1984) proposed a projective method
for linear programming which were of landmark importance for establishing
the polynomial-time solvability of linear programs. Lemke (1954) gave a new
method called dual simplex method which can be described as a mirror image of
the simplex method. While implementing the linear programming models into
real life situations, one or more unknown variables are sometimes constrained by
lower as well as upper bound conditions. Therefore, it is worthwhile to study lin-
ear programming problems with bounded variables. Linear programming prob-
lem with bounded variables (LPPBV) has been considered by many researchers
(Dantzig, 1955; Wagner, 1958; Eisemann, 1964; Duguay, 1973; Murty, 1983;
Xia and Wang, 1995; Maros, 2003a; Maros, 2003b; Dahiya, 2006; Chowdhary
and Ahmad, 2012). LPPBV is a special type of linear programming problem
in which one or more decision variables have lower as well as upper bounds.
LPPBV can be mathematically stated as follows.

(P ) max Z = cTx =

n∑
j=1

cjxj

subject to Ax ≤ b
lj ≤ xj ≤ uj ∀ j = 1, 2, ...., n1

lj ≤ xj <∞ ∀ j = n1 + 1, ...., n

(1)

where c = (c1, c2, ..., cn)T ∈ Rn, x = (x1, x2, ..., xn)T ∈ Rn and b = (b1, b2, ..., bm)T ∈
Rm.
Here, A = (aij) ∈ Rm×n with rank as m. It is assumed (without any loss of
generality) that lj , uj ≥ 0 ∀ j.
Any LPPBV in general form (1) can be easily expressed in the following canon-
ical form.

(P ) ⇔ max Z = cTx =

n∑
j=1

cjxj

subject to (A I)

(
x
xs

)
= b

lj ≤ xj ≤ uj ∀ j = 1, 2, ..., n1

lj ≤ xj <∞ ∀ j = n1 + 1, ..., n

(2)
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where xs = (xn+1, xn+2, ..., xn+m)T ∈ Rm is a vector of slack variables.
Upper bounding technique (Dantzig, 1955), based on simplex method is one of
the earliest technique used to solve LPPBV. Sometimes it is much time taking
to solve the LPPBV using simplex like technique because of the difficulty arising
in finding the starting feasible solution due to the bound restrictions. Due to
this, the dual simplex method for solving LPPBV has attracted considerable
attention among the researchers (Wagner, 1958; Kostina, 2002; Huang, 2002;
Maros, 2003a,b; Dahiya, 2006) over the years. Maros (2003a,b) presented dual
simplex method to necessitate the design and implementation of a version of
dual simplex algorithm to the problems where variables of arbitrary type are
allowed. In particular, Maros’ discussion treated bounded primal variables ef-
ficiently by using the concept of bound swap. However, in order to apply dual
simplex algorithm, one requires a dual feasible solution to begin with. A dual
feasible solution refers to a point ‘x’ which is a feasible solution of the dual of the
given primal problem. Equivalently, a dual feasible solution is a point ‘x’ which
is an optimal solution of the primal problem. In order to solve LPPBV by dual
simplex method, the starting dual feasible solution may not be obtained by the
technique employed for the case of LPP with only non-negative variables. This
motivated us to investigate the case in LPPBV, where a starting dual feasible
solution is not readily available and develop a systematic technique for solving
it in such a case.
The current paper is organized as follows. Section 2 contains preliminaries,
discussing the brief outline of the dual simplex algorithm for solving LPPBV.
Section 3 develops a technique for solving LPPBV using dual simplex method
when a starting dual feasible solution is not available and also discusses the situ-
ation for two particular cases of LPPBV. Section 4 presents numerical examples
in support of theory. In the end, conclusions are drawn in Section 5.

2 Dual Simplex Algorithm for Bounded Vari-
able LPPs

This section briefly discusses the dual simplex algorithm for solving an LPPBV.
For the simplicity of notations, the canonical form (2) of LPPBV is restated in
the following form (3) in this section.

max Z = cTx

subject to Ax = b

lj ≤ xj ≤ uj ∀ j = 1, 2, ...., n1

lj ≤ xj <∞ ∀ j = n1 + 1, ...., n

(3)

2.1 Notations

J = {1, 2, ..., n}.
B = {b1, b2, ..., bm} is the index set of basic variables.
N1 = {j ∈ J \B such that xj = lj} is the index set of non-basic variables which
are at their lower bounds.
N2 = {j ∈ J \B such that xj = uj} is the index set of non-basic variables which
are at their upper bounds.
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A = (AB AN1
AN2

) where AB , AN1
and AN2

are the sub matrices of A corre-
sponding to the index sets B, N1 and N2 respectively.
Then, Ax = b⇒ ABxB +AN1xN1 +AN2xN2 = b where xB , xN1 and xN2 are the
vectors of variables corresponding to the index sets B, N1 and N2 respectively
and x = (xB , xN1

, xN2
) is the basic solution.

yj = A-1
Baj ∀ j ∈ J (AB is non-singular being the basis matrix).

c = (cB , cN1
, cN2

) is the corresponding partition of c such that cTx = cTBxB +
cTN1

xN1 + cTN2
xN2 and Zj − cj = cTByj − cj ∀ j ∈ J .

2.2 Optimality criteria for LPPBV

Following theorem states the optimality criteria when an LPPBV is solved using
simplex method.

Theorem 1. A basic feasible solution x = (xB xN1
xN2

)T will be an optimal
basic feasible solution of the problem (3) iff Zj − cj ≥ 0 ∀ j ∈ N1 and Zj − cj ≤
0 ∀ j ∈ N2.

Proof. Proof Refer to Murty (1983).

Note 1. A basic solution of an LPPBV which satisfies the optimality criteria as
given in Theorem 1 is called a primal optimal or in other words, a dual feasible
solution. The corresponding basis AB is called a dual feasible basis. If such a
solution is a feasible solution of primal problem as well, then it is a primal as
well as dual feasible solution.

The basic idea of dual simplex approach is to begin with an initial dual
feasible but primal infeasible basis and then traverse through adjacent dual
feasible basic solutions to a terminal basis which is primal feasible as well as
dual feasible.

2.3 Algorithm

The main steps of the dual simplex algorithm (Dahiya, 2006; Maros, 2003b) for
solving LPPBV are as follows:
Step I. Start with a dual feasible basis and create a corresponding simplex
tableau.

Step II. If all basic variables are within bounds then the process must be ter-
minated since the current basic vector xB is an optimal solution. Otherwise
pick the basic variable which is not within its bounds. Let it be xBr

and corre-
sponding column of AB be abr . Let abr = ar. If xBr

is not unique, then select
xBr

which deviates maximum from its nearest bound. Depart xBr
and enter

some non-basic variable, say xj , which is selected as in Step III.

Step III. If xBr
is below its lower bound, i.e., xBr

< lBr
, then select entering

variable xj corresponding to which the ratio
Zj − cj
yrj

is as follows:

Zj − cj
yrj

= min

{∣∣∣∣Zj − cj
yrk

∣∣∣∣ : yrk < 0, k ∈ N1 : yrk > 0, k ∈ N2

}
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Here, if yrk ≥ 0 ∀ k ∈ N1 and yrk ≤ 0 ∀ k ∈ N2, then there does not exist any
feasible solution to the given problem.
On the other hand, if xBr

is above its upper bound, i.e., xBr
> uBr

, then xj is

to be selected for which the ratio
Zj − cj
yrj

is as follows:

Zj − cj
yrj

= min

{∣∣∣∣Zj − cj
yrk

∣∣∣∣ : yrk > 0, k ∈ N1 : yrk < 0, k ∈ N2

}
If yrk ≤ 0 ∀ k ∈ N1 and yrk ≥ 0 ∀ k ∈ N2, then there does not exist any feasible
solution to the given problem.
Note that such a choice of entering variable maintains the optimality of the
basic solution.

Step IV. Once aj is selected, then obtain the new simplex tableau having x̂B
as the basic solution.
If xBr

< lBr
, then

x̂B =

 x̂Bi
= xBi

−∆jyij ∀ i = 1, 2, ...,m; i 6= r
x̂Br

= x̂j = lj + ∆j if j ∈ N1

x̂r = lBr

and x̂B =

 x̂Bi
= xBi

+ ∆jyij ∀ i = 1, 2, ...,m; i 6= r
x̂Br = x̂j = uj −∆j if j ∈ N2

x̂r = lBr

where ∆j =
lBr
− xBr

|yrj |
and rest of the non-basic variables remain same.

If xBr
> uBr

, then

x̂B =


x̂Bi

= xBi
−∆

′

jyij ∀ i = 1, 2, ...,m; i 6= r

x̂Br
= x̂j = lj + ∆

′

j if j ∈ N1

x̂r = uBr

and x̂B =


x̂Bi = xBi + ∆

′

jyij ∀ i = 1, 2, ...,m; i 6= r

x̂Br
= x̂j = uj −∆

′

j if j ∈ N2

x̂r = uBr

where ∆
′

j =
xBr
− uBr

|yrj |
and rest of the non-basic variables remain same.

Update the corresponding rows of the tableau by applying the pivot operations
as in traditional simplex algorithm. Calculate Ẑj − ĉj ∀ j.

Step V. In the new simplex tableau, if all x̂Bi
are with in their bounds, then

the optimal basic feasible solution is found. Otherwise, repeat the process until
either an optimal feasible solution has been obtained (in a finite number of
steps) or there is an indication of non-existence of a primal feasible solution.
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3 Method to solve LPPBV when a starting dual
feasible solution is not available

Dual simplex algorithm begins with an in hand dual feasible basis (ref. Step
I of Algorithm presented in Subsection 2.3) and then traverses to a terminal
basis which is primal as well as dual feasible. However, if an initial dual feasible
basis is not available, then it is not possible to apply dual simplex algorithm to
the given problem directly. This section discusses such a case in detail for an
LPPBV.

3.1 Theoretical development

LPPBV in canonical form (2) can be re-written as follows.

max Z where Z = cTx =

n∑
j=1

cjxj (4)

subject to

n∑
j=1

aijxj + xn+i = bi, i = 1, 2, ...,m (5)

lj ≤ xj ≤ uj ∀ j = 1, 2, ..., n1 (6)

lj ≤ xj <∞ ∀ j = n1 + 1, ..., n (7)

Let B = {n + 1, n + 2, ..., n + m} be the index set of basic variables so that
AB = (an+1 an+2 ... an+m) = Im×m is the basis matrix. Let N = {1, 2, ..., n}
be the index set of non-basic variables out of which N1 = {j ∈ N : xj = lj} and
N2 = {j ∈ N : xj = uj} are the index sets of non-basic variables which are at
their lower and upper bounds respectively.
Let xB be the basic solution yielded by the above choice of AB , AN1 and AN2 .
The case of interest occurs if xB is neither a dual feasible nor a primal feasible
basic solution.
The next subsection discusses the augmentation of an artificial constraint to
the original problem which leads to a dual feasible solution of the augmented
problem.

3.1.1 Formulation of an augmented problem Paug

Consider the constraint∑
j∈N1

(xj − lj) +
∑
j∈N2

(uj − xj) ≤M (8)

where M > 0 is a sufficiently large number, larger than any finite number with
which it will be compared in the computations.
Since the constraint added depends on the choice of B, N1 and N2, therefore,
the added constraint is a solution dependent constraint.
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Equivalently, the constraint (8) can be written as∑
j∈N1

(xj − lj) +
∑
j∈N2

(uj − xj) + xo = M (xo ≥ 0) (9)

or
∑
j∈N1

xj −
∑
j∈N2

xj + xo = M1 (xo ≥ 0) (10)

where M1 = M +
∑

j∈N1
lj −

∑
j∈N2

uj > 0 is again a sufficiently large number.

Now, consider the augmented problem P̂ obtained by adding constraint (8) to
problem P .

(P̂ ) maxZ = cTx =

n∑
j=1

cjxj

subject to the constraints (5), (6), (7) and (9).

Clearly, a basic solution to P̂ is given by

xn+i = bi ∀ i = 1, 2, ...,m,

xo = M,

xj = lj ∀ j ∈ N1,

and xj = uj ∀ j ∈ N2.

in which xn+1, ..., xn+m, xo are the basic variables.
Next, search for k such that

|ck| = max{ |cj | : cj > 0, j ∈ N1; cj < 0, j ∈ N2} (11)

Two cases arise. Either k ∈ N1 or k ∈ N2.

Case 1. k ∈ N1

Then, (10) implies

xk = M1 − xo −
∑
j∈N1
j 6=k

xj +
∑
j∈N2

xj (12)

Replacing xk by its value, (4) reduces to

Z = ckM1 − ckxo +
∑
j∈N1
j 6=k

(cj − ck)xj +
∑
j∈N2

(cj + ck)xj (13)

and (5) reduces to

⇔ − aikxo +
∑
j∈N1
j 6=k

(aij − aik)xj +
∑
j∈N2

(aij + aik)xj + xn+i = bi − aikM1, i = 1, 2, ...,m

(14)

Then, the augmented problem P̂ is equivalent to the augmented problem Paug.

(Paug) max Z = ckM1 − ckxo +
∑

j∈N1
j 6=k

(cj − ck)xj+
∑

j∈N2
(cj + ck)xj
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subject to the constraints (6), (7), (10) and (14).

Case 2. k ∈ N2

In this case, (10) implies

xk = −M1 + xo +
∑
j∈N1

xj −
∑
j∈N2
j 6=k

xj (15)

Substituting this value of xk, (4) reduces to

Z = −ckM1 + ckxo +
∑
j∈N1

(cj + ck)xj +
∑
j∈N2
j 6=k

(cj − ck)xj (16)

and (5) becomes

aikxo +
∑
j∈N1

(aij + aik)xj +
∑
j∈N2
j 6=k

(aij − aik)xj + xn+i = bi + aikM1, i = 1, 2, ...,m

(17)

Thus, in this case, the equivalent augmented problem Paug is

(Paug) maxZ = −ckM1 + ckxo +
∑

j∈N1
(cj + ck)xj +

∑
j∈N2
j 6=k

(cj − ck)xj

subject to the constraints (6), (7), (10) and (17).

Remark 1. For the non-basic variables with upper bound ‘∞’ we always set
those non basic variables at their lower bounds.

Next, we prove that there exists a ready starting dual feasible solution for the
augmented problem Paug as discussed in the next Subsection.

3.1.2 Dual feasible solution for problem Paug

Theorem 2. There exists a dual feasible solution for the augmented problem
Paug.

Proof. Proof According to equation (8), as discussed in previous subsection,∑
j∈N1

(xj − lj) +
∑
j∈N2

(uj − xj) ≤M

Depending on the case under which ‘k’ falls, a dual feasible solution for Paug

can be obtained as explained below.

Case 1. k ∈ N1.
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In this case, ck > 0. The augmented problem Paug is

(Paug) max Z =

n∑
j=0

ĉjxj + ckM1

subject to

−aikxo +
∑
j∈N1
j 6=k

(aij − aik)xj +
∑
j∈N2

(aij + aik)xj + xn+i =bi − aikM1, i = 1, 2, ...,m,

∑
j∈N1
j 6=k

xj −
∑
j∈N2

xj + xo + xk = M1,

lj ≤ xj ≤ uj ∀ j = 1, 2, ..., n1, lj ≤ xj <∞ ∀ j = n1 + 1, ..., n and 0 ≤ xo <∞.

where ĉj =


−ck if j = 0

(cj − ck) if j ∈ N1, j 6= k
(cj + ck) if j ∈ N2

0 if j = k


Consider xn+1, xn+2, ..., xn+m, xk as the basic variables. That is, consider
B̂ = B ∪ k as the index set of basic variables so that ÂB = I(m+1)×(m+1) is the

basis matrix corresponding to index set B̂. Take N̂1 = {j ∈ N1 : j 6= k}∪{0} as
the index set of non-basic variables at lower bounds and N̂2 = {j ∈ N2} = N2

as the index set of non-basic variables at upper bounds so that N̂ = N̂1 ∪ N̂2 is
the index set of all non-basic variables.
Let x̂B denotes the basic solution obtained by the above choice of B̂, N̂1 and
N̂2.

Then, ĉj =


−ck if j ∈ N̂1, j = 0

(cj − ck) if j ∈ N̂1, j 6= 0

(cj + ck) if j ∈ N̂2


From the choice of ck, it follows that ĉj ≤ 0 ∀ j ∈ N̂1 and ĉj ≥ 0 ∀ j ∈ N̂2.
Here, cost of each basic variable is 0 so that cost vector for the new basic solution
is 0, i.e., ĉB = 0.
Therefore, at the basic solution x̂B ,

Ẑj − ĉj = ĉB ŷj − ĉj = 0− ĉj = −ĉj ∀ j ∈ N̂
⇒ Ẑj − ĉj ≥ 0 ∀ j ∈ N̂1 and Ẑj − ĉj ≤ 0 ∀ j ∈ N̂2

Hence, in view of Theorem 1, x̂B is a dual feasible solution of Paug.

Case 2. k ∈ N2. It is clear that ck < 0 in this case.
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Here, the augmented problem Paug is

(Paug) max Z =

n∑
j=0

ĉjxj − ckM1

subject to

aikxo +
∑
j∈N1

(aij + aik)xj +
∑
j∈N2
j 6=k

(aij − aik)xj + xn+i =bi + aikM1, i = 1, 2, ...,m,

∑
j∈N1

xj −
∑
j∈N2
j 6=k

xj + xo − xk = M1 ⇔ − xo −
∑
j∈N1

xj+
∑
j∈N2
j 6=k

xj + xk = −M1,

lj ≤ xj ≤ uj ∀ j = 1, 2, ..., n1, lj ≤ xj <∞ ∀ j = n1 + 1, ..., n and 0 ≤ xo <∞.

where ĉj =


ck if j = 0

(cj + ck) if j ∈ N1

(cj − ck) if j ∈ N2, j 6= k
0 if j = k


Taking B̂ = B ∪ {k} as the index set of basic variables, N̂1 = N1 ∪ {0} as the
index set of non-basic variables at lower bounds and N̂2 = {j ∈ N2 : j 6= k} as
the index set of non-basic variables at upper bounds, we get ÂB = I(m+1)×(m+1)

as the basis matrix and x̂B as the basic solution of Paug.

Here, ĉj =


ck if j ∈ N̂1, j = 0

(cj + ck) if j ∈ N̂1, j 6= 0

(cj − ck) if j ∈ N̂2


Clearly, ĉj ≤ 0 ∀ j ∈ N̂1 and ĉj ≥ 0 ∀ j ∈ N̂2 in this case as well.
Also, ĉB = 0 so that at the basic solution x̂B ,

Ẑj − ĉj = cB̂ ŷj − ĉj = 0− ĉj = −ĉj ∀ j ∈ N̂
⇒ Ẑj − ĉj ≥ 0 ∀ j ∈ N̂1 and Ẑj − ĉj ≤ 0 ∀ j ∈ N̂2

which implies that x̂B is a dual feasible solution of Paug.

Thus, a starting dual feasible solution can be obtained for the augmented
problem Paug and dual simplex algorithm (ref. Subsection 2.3) can be applied
to solve Paug. The next subsection describes how to find an optimal feasible
solution (if exists) of problem P after solving Paug. It may be noted that
problem P may be infeasible or unbounded, which can also be interpreted by
solving Paug as discussed in the following subsection.

3.1.3 Finding an optimal solution of P from the augmented problem
Paug

In this subsection, we discuss the various situations arising in the termination
of dual simplex algorithm applied to solve Paug. After obtaining a dual feasible
solution (ref. Subsection 3.1.2) for Paug, dual simplex algorithm is applied to
Paug whose termination results into the following three possibilities.
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Possibility I. Paug has no feasible solution.
Then, the problem P also does not have a feasible solution.
This is because of the reason that every feasible solution (x1, x2, ..., xn)T to P
yields a feasible solution (xo, x1, x2, ..., xn)T to Paug, where

xo = M1 −
∑
j∈N1

xj +
∑
j∈N2

xj .

Possibility II. Paug has an optimal basic feasible solution, say x̃ and xo is a

basic variable in it. Let B̃ be the index sets of basic variables other than xo and
Ñ1 and Ñ2 be the index sets of non-basic variables at lower bounds and upper
bounds respectively corresponding to x̃.
Then, from the constraints (5),

(ÃBx̃B)i +
∑
j∈Ñ1

aij lj +
∑
j∈Ñ2

aijuj = bi, i = 1, 2, ...,m

or (ÃBx̃B)i = bi −
∑
j∈Ñ1

aij lj −
∑
j∈Ñ2

aijuj = b̄i, i = 1, 2, ...,m

Therefore, the values of the basic variable xo and xB in the optimal basic feasible
solution are given by(

1 ê

0 B̃

)(
xo
x̃B

)
=

(
M1

b̄i

)
=

(
M +

∑
j∈Ñ1

lj −
∑

j∈Ñ2
uj

bi −
∑

j∈Ñ1
aij lj −

∑
j∈Ñ2

aijuj

)
where ê is an m-vector with entries as +1 or -1 (ref. equation (10)).

⇒
(

xo
x̃B

)
=

(
1 ê

0 B̃

)-1(
M1

b̄i

)
=

(
1 ê(B̃)

-1

0 (B̃)
-1

)(
M1

b̄i

)
⇒ xo = M1 + (a constant independent of M)

= M + (a constant independent of M)

and x̃B = (B̃)
-1
b̄i

That is, all the basic variables are independent of M .
Since, xo > 0, we have at the optimal basic feasible solution,∑

j∈Ñ1

(xj − lj) +
∑
j∈Ñ2

(uj − xj) < M (18)

From (18), it follows that the values of the variables x̃B in the optimal basic
feasible solution of Paug are finite and constitute an optimal feasible solution to
the original program P . Because if not so, then there exist a feasible solution x
of P such that cx > c̃Bx̃B . This implies that x will also be a feasible solution of
Paug yielding the value of objective function greater than the value correspond-
ing to x̃B , contradicting the optimality of x̃B .
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Possibility III. Paug has an optimal basic feasible solution x∗ and xo is not a
basic variable in it.
If B∗, N∗1 and N∗2 are the index sets of basic variables, non-basic variables at
lower bounds and non-basic variables at upper bounds respectively correspond-
ing to x∗, then at the optimal basic feasible solution x∗,∑

j∈N∗1

(xj − lj) +
∑
j∈N∗2

(uj − xj) = M (19)

Consequently, the values of the basic variables are functions of M .
Now, two possibilities arise according as the optimal value of Z, (say Zo) de-
pends upon M or not.
(a) If Zo is an explicit function of M for all M greater than some fixed value
M1.
Then, Zo → +∞ as M → +∞.
Note that Zo cannot approach −∞ because there is a feasible solution to Paug

which yields a finite value of Z. Therefore, Paug has an unbounded solution.
Since, both P and Paug have the same objective function and every feasible
solution to Paug yields a feasible solution to P .
Therefore, P also has an unbounded solution.
(b) If Zo is independent of M .
In this case, when M varies and is larger than M1, the hyperplane (19) is dis-
placed parallel to itself and the optimal vertex which is lying on this hyperplane
(xo = 0) moves out to an infinite edge of the polyhedron represented by the
set of feasible solutions to Paug. As Zo is not a function of M , the objective
hyperplane cTx = Zo contains this edge and therefore all the points on this
edge are optimal feasible solutions. In particular, there exists an optimal basic
feasible solution to P represented by the origin of this infinite edge which is
obtained by decreasing M until one of the variables which is a function of M
vanishes.
Thus, when a starting dual feasible solution cannot be obtained for an P , then
it can be solved by applying dual simplex algorithm to Paug rather than P itself.
The complete technique for the various possibilities is illustrated through nu-
merical examples in Section 4.

3.2 Particular cases of LPPBV

1. If both upper as well as lower bounds on all the variables of LPPBV
are finite and xB is not dual feasible, then dual feasible solution can be
obtained directly for the LPPBV. In this case, flip the bounds of the non
basic variables corresponding to xB where optimality is hampered and
update the values of the basic variables accordingly. Such a flip of bounds
will readily provide the new basic feasible solution which will be dual
feasible as explained in Numerical example 3 in Section 4.

2. If all variables have upper bound ∞ and lower bound 0, then the LPPBV
reduces to an ordinary LPP with non-negative variables. In that case,
N2 = φ, N1 = N and lj = 0 for all j ∈ N . Therefore, cut (8) reduces to
the following simplified form ∑

j∈N
xj ≤M.
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4 Numerical Examples

Example 1. Consider the following problem

(P1) max Z = 2x1 + x2 + 3x3

subject to x1 + x2 + x3 ≤ 5,

x1 + 5x2 + x3 ≥ 10,

0 ≤ x1 <∞, 1 ≤ x2 ≤ 4, 2 ≤ x3 ≤ 8

(20)

The given problem P1 can be expressed in canonical form as

max Z = 2x1 + x2 + 3x3

subject to x1 + x2 + x3 + x4 = 5,

− x1 − 5x2 − x3 + x5 = −10,

0 ≤ x1 <∞, 1 ≤ x2 ≤ 4, 2 ≤ x3 ≤ 8

0 ≤ x4 <∞, 0 ≤ x5 <∞

where x4 and x5 are slack variables.
Let AB = (a4 a5) = I, AN = (a1 a2 a3), AN1 = (a1 a3), AN2 = (a2).
This gives the basic solution x4 = −1, x5 = 12 and corresponding net evalua-
tions of the non-basic variables as Z1 − c1 = 0− 2 = −2, Z2 − c2 = 0− 1 = −1
and Z3 − c3 = −3 < 0.
Theorem 1 implies that this solution is not dual feasible.
Consider the constraint ∑

j∈N1

(xj − lj) +
∑
j∈N2

(uj − xj) ≤M

⇔ (x1 − 0) + (4− x2) + (x3 − 2) ≤M
⇔ (x1 − 0) + (4− x2) + (x3 − 2) + xo = M

⇔ x1 − x2 + x3 + xo = M (21)

where xo ≥ 0 and M > 0 is a sufficiently large number.
Then the augmented problem P̂1 is

(P̂1) max Z = 2x1 + x2 + 3x3

subject to x1 + x2 + x3 + x4 = 5

− x1 − 5x2 − x3 + x5 = −10

x1 − x2 + x3 + xo = M

0 ≤ x1 <∞, 1 ≤ x2 ≤ 4, 2 ≤ x3 ≤ 8

0 ≤ x4 <∞, 0 ≤ x5 <∞, 0 ≤ xo <∞

Here |ck| = max{|cj | : cj > 0, j ∈ N1; cj < 0, j ∈ N2} = max{ |2|, |3| } = 3 =
|c3|.
From (21), x2 = M + x1 − xo.

Substituting this value of x2 in P̂1, we get the equivalent augmented problem
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Table 1: Initial dual feasible solution for P1aug

cj → -3 -1 4 0 0 0

Bounds lo l1 u2 b b b

cB B xB ao a1 a2 a3 a4 a5

0 ab1 = a4 −3−M -1 0 2 0 1 0
0 ab2 = a5 M + 14 1 0 -6 0 0 1
0 ab3 = a3 M + 4 1 1 -1 1 0 0

Z = 3M + 16 Zj − cj 3 1 -4 0 0 0

Table 2: Termination simplex table for P1aug

cj → -3 -1 4 0 0 0

Bounds b l1 b b l4 l5

cB B xB ao a1 a2 a3 a4 a5

0 ab1 = a2 5/4 0 0 1 0 -1/4 -1/4
0 ab2 = ao M − 5/2 1 0 0 0 -3/2 -1/2
0 ab3 = a3 15/4 0 1 0 1 5/4 1/4

Z = 50/4 Zj − cj 0 1 0 0 7/2 1/2

P1aug as

(P1aug) maxZ = 3M − x1 + 4x2 − 3xo

subject to − xo + 2x2 + x4 = 5−M
xo − 6x2 + x5 = −10 +M

xo + x1 − x2 + x3 = M

0 ≤ x1 <∞, 1 ≤ x2 ≤ 4, 2 ≤ x3 ≤ 8

0 ≤ x4 <∞, 0 ≤ x5 <∞, 0 ≤ xo <∞

Now, taking ÂB = (a4 a5 a3), ÂN1
= (ao a1), ÂN2

= (a2), obtain the initial
basic solution of P1aug which will be dual feasible as given in the simplex table
(Table 1).

It is clear from Theorem 1 that the above solution is dual feasible (primal
optimal) but not primal feasible. Further, to obtain the primal optimal feasible
solution, apply dual simplex method (Subsection 2.3) to problem P1aug. The
termination simplex table thus obtained is as given in Table 2.
The corresponding basic solution is an optimal feasible solution of P1aug and
xo is a basic variable in it. Therefore, in view of Subsection 3.1.3, rest of the
basic variables x2 and x3 constitute an optimal basic feasible solution of original
problem P1. The optimal solution thus obtained is as follows.

x1 = 0, x2 =
5

4
, x3 =

15

4
and Z =

50

4
.
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Example 2. Consider the following problem

(P2) max Z = 2x1 + 4x2

subject to x1 − x2 ≥ −1,

− x1 + 2x2 ≤ 4,

1 ≤ x1 <∞, 3 ≤ x2 ≤ 5

(22)

The given problem P2 can be expressed in canonical form as

max Z = 2x1 + 4x2

subject to − x1 + x2 + x3 = 1,

− x1 + 2x2 + x4 = 4,

1 ≤ x1 <∞, 3 ≤ x2 ≤ 5

0 ≤ x3 <∞, 0 ≤ x4 <∞

where x3 and x4 are slack variables.
Let AB = (a3 a4) = I, AN = (a1 a2), AN1 = (a1 a2), AN2 = φ yielding the
basic solution as x3 = −1, x4 = −1 with corresponding net evaluations of the
non-basic variables as Z1 − c1 = 0− 2 = −2, Z2 − c2 = 0− 4 = −4. Theorem 1
implies that this solution is not dual feasible.
Consider the constraint

∑
j∈N1

(xj − lj) +
∑
j∈N2

(uj − xj) ≤M

⇔ (x1 − 1) + (x2 − 3) ≤M
⇔ (x1 − 1) + (x2 − 3) + xo = M

⇔ x1 + x2 + xo = M (23)

where xo ≥ 0 and M > 0 is a sufficiently large number.
Then the augmented problem P̂2 is

(P̂2) max Z = 2x1 + 4x2

subject to − x1 + x2 + x3 = 1,

− x1 + 2x2 + x4 = 4,

x1 + x2 + xo = M

1 ≤ x1 <∞, 3 ≤ x2 ≤ 5,

0 ≤ x3 <∞, 0 ≤ x4 <∞, 0 ≤ xo <∞

Here |ck| = max{ |cj | : cj > 0, j ∈ N1; cj < 0, j ∈ N2} = max{ |2|, |4| } =
4 = |c2|.
From (21), x2 = M − x1 − xo.

Substituting this value of x2 in P̂2, we get the equivalent augmented problem
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Table 3: Initial dual feasible solution for P2aug

cj → -4 -2 0 0 0

Bounds lo l1 b b b

cB B xB ao a1 a2 a3 a4

0 ab1 = a3 3−M -1 -2 0 1 0
0 ab2 = a4 7− 2M -2 3 0 0 1
0 ab3 = a2 M − 1 1 1 1 0 0

Z = 4M − 2 Zj − cj 4 2 0 0 0

Table 4: Termination table for P2aug

cj → -4 -2 0 0 0

Bounds lo b u2 b b

cB B xB ao a1 a2 a3 a4

0 ab1 = a3 M − 9 1 0 2 1 0
0 ab2 = a1 M − 5 1 1 1 0 0
0 ab3 = a4 M − 11 1 0 3 0 1

Z = 2M + 10 Zj − cj 2 0 -2 0 0

P2aug as

(P2aug) max Z = 4M − 2x1 − 4xo

subject to − xo − 2x1 + x3 = 1−M
− 2xo − 3x1 + x4 = 4− 2M

xo + x1 + x2 = M

1 ≤ x1 <∞, 3 ≤ x2 ≤ 5,

0 ≤ x3 <∞, 0 ≤ x4 <∞, 0 ≤ xo <∞

Now, taking ÂB = (a3 a4 a2), ÂN1 = (ao a1), ÂN2 = φ, obtain the initial
basic solution of P2aug which will be dual feasible as given in the simplex table
(Table 3).

It is clear from Theorem 1 that the above solution is dual feasible (primal
optimal) but not primal feasible. The termination simplex table obtained by
applying dual simplex method to problem P2aug is as given in Table 4.
The corresponding basic solution is an optimal feasible solution of P2aug but
xo is not a basic variable in it. Also Z is a function of M , therefore, in view of
Subsection 3.1.3, the problem P2aug has an unbounded solution. Consequently,
the original problem P2 also has an unbounded solution.

Example 3. Consider the problem having all the variables with both lower
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Table 5: Initial dual feasible solution

cj → 3 5 3 0 0

Bounds u1 u2 u3 b b

cB B xB a1 a2 a3 a4 a5

0 ab1 = a4 -1 1 2 1 1 0
0 ab2 = a2 -8 2 4 3 0 1

Z = 53 Zj − cj -3 -5 -3 0 0

and upper bounds finite.

(P3) max Z = 3x1 + 5x2 + 3x3

subject to x1 + 2x2 + x3 ≤ 19

2x1 + 4x2 + 3x3 ≤ 33

1 ≤ x1 ≤ 5, 2 ≤ x2 ≤ 7, 0 ≤ x3 ≤ 1

(24)

For solving this problem by dual simplex method, we need a starting dual feasi-
ble solution, which in this case can be easily obtained as explained in Subsection
3.2.
The above problem is equivalent to the canonical form

maxZ = 3x1 + 5x2 + 3x3

subject to x1 + 2x2 + x3 + x4 = 19

2x1 + 4x2 + 3x3 + x5 = 33

1 ≤ x1 ≤ 5, 2 ≤ x2 ≤ 7, 0 ≤ x3 ≤ 1,

0 ≤ x4 <∞, 0 ≤ x5 <∞

where x4 and x5 are slack variables. Let AB = (a4 a5) = I be the basis matrix.
Let AN = (a1 a2 a3), AN1

= (a3), AN2
= (a1 a2).

This gives the basic solution x4 = 0, x5 = −5 and corresponding to this basic
solution, Z1 − c1 = 0− 3 = −3, Z2 − c2 = 0− 5 = −5, Z3 − c3 = 0− 3 = −3.
Since Z3 − c3 < 0 and a3 ∈ AN2 , therefore this solution is not dual feasible
(Theorem 1). Therefore, flip the bound of x3, i.e. set x3 at its upper bound so
that the solution becomes dual feasible.
Take AB = (a4 a5) = I, AN = (a1 a2 a3), AN1

= φ, AN2
= (a1 a2 a3) and

obtain the starting dual feasible solution as given in the following simplex table
(Table 5).

It can be seen that this solution is dual feasible but primal infeasible, so
dual simplex method can be applied directly to the given problem to obtain the
optimal feasible solution as

x1 = 5, x2 =
23

4
, x3 = 0 and Z =

175

4

5 Concluding Remarks

1. In this paper, we have developed a systematic technique to solve a bounded
variable linear program using dual simplex approach for the case when a
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starting dual feasible solution is not readily available.

2. A particular case of linear programming problem with bounded variables
arises when all the variables have finite lower and upper bounds. For
finding a dual feasible solution for such a problem, a technique based on
the concept of flip of bounds is also described in the paper. However,
flipping the bounds fails for the problems where one or more variables do
not possess finite bounds.

3. For any given problem, the constraint (8) can also be modified by consid-
ering only those non-basic variables where optimality is hampered.

4. This situation can be explored further for linear fractional programming
problems with bounded variables.
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