A note on the equivalence of Broyden and Block ABS methods

Wesley V. I. Shirabayashi
Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil
wesleyvagner@gmail.com
Ronaldo Lopes
IMECC, University of Campinas, 13083-859, Campinas, SP, Brazil
ronaldolps3@gmail.com
Emerson Vitor Castelani*
Department of Mathematics, State University of Maringá
87020-900, Maringá, PR, Brazil
evcastelani@uem.br

Abstract

In this paper we are considering a scaled linear system and presenting a result of equivalence between Broyden's Method and Block ABS Method applied to this system. As consequence, we have an alternative proof of finite termination for Broyden's method [6].

keywords. ABS Block Methods, Broyden's Method, Scaled Linear System

1 Introduction

The study about methods for solving linear systems is not new, but the growing emergence of real-world problems formulated under this optics has made these studies focused on practical efficacy and theoretical development of these methods. There are several work about this subject and we recommend $[7,5,10,8]$ and the references therein.

In this paper we are approaching one generalization of ABS methods. This class was proposed to solve determined and undetermined linear systems by J. Abaffy, C. Broyden and E. Spedicato [3], in 1984.

In [2], Abaffy and Spedicato proved that ABS methods (introduced in [3]) when used for n-squared systems and by certain choices of parameters have the property that 2 steps of Broyden's method are equivalent to one step of ABS method. Since ABS methods have finite termination, they showed an alternative proof of finite termination for Broyden's methods, complementing the early results proposed by Gay [6] in 1979.

Recently, Adib [4] by considering a scaled version of ABS methods for systems of type:

$$
\begin{equation*}
V^{T} A x=V^{T} b, \tag{1}
\end{equation*}
$$

[^0]where $V=V_{n \times n}$ is nonsingular, proved that by certain choice of parameters this version of ABS algorithm is related to Broyden's method too. Scaled linear systems appears naturally in ill-conditioned problems so it is a relevant topic in several practical algorithms.

Another important contribution given in [2] is the introduction of Block ABS methods class for solving scaled linear systems. In i-step ABS method we find the solution for the $i-1$ first equations. The Block ABS method is more flexible than ABS method because we can choose many equations to solve in each step. This flexible feature is obtained by segmentation of certain matrix by certain submatrix.

The goal of this paper is to consider the scaled system 1 and show an equivalence between Broyden's algorithm and Block ABS methods. Consequently we are complementing the results given in [4].

2 Background Material

Consider the linear system of equation $A x=b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $g(x)=A x-b$. We begin this section by describing the Broyden's method (Algorithm 1).

```
Algorithm 1 Broyden's algorithm (see [6])
    Choose a vector \(x_{0} \in \mathbb{R}^{n}\) as an initial guess and \(H_{0} \in \mathbb{R}^{n \times n}\) as nonsingular matrix
    for \(k=0,1,2, \ldots\) do
        Compute \(s_{k}=-H_{k} g\left(x^{k}\right)\)
        Update \(x_{k+1}=x_{k}+s_{k}\)
        Compute \(c_{k}=g\left(x_{k+1}\right)-g\left(x_{k}\right)\)
        if \(c_{k}=0\) then
            \(H_{k+1}=H_{k}\)
        else
            Choose \(z_{k} \in \mathbb{R}^{n}\) such that \(z_{k}{ }^{T} c_{k}=1\) and \(z_{k}{ }^{T} H^{-1} s_{k} \neq 0\)
            Update \(H_{k+1}=H_{k}+\left(s_{k}-H_{k} y_{k}\right) z_{k}^{T}\)
        end if
    end for
```

Note that H_{k} is a nonsingular matrix for all k. Furthermore, considering the difference between $g\left(x_{k+1}\right)$ and $g\left(x_{k}\right)$, we have:

$$
c_{k}=g\left(x_{k+1}\right)-g\left(x_{k}\right)=A x_{k+1}-b-\left(A x_{k}-b\right)=A s_{k}=-A H_{k} g\left(x_{k}\right) .
$$

Consequently,

$$
g\left(x_{k+1}\right)=g\left(x_{k}\right)+c_{k}=g\left(x_{k}\right)-A H_{k} g\left(x_{k}\right)=\left(I-A H_{k}\right) g\left(x_{k}\right) .
$$

Let us define $F_{k}=I-A H_{k}$ and to present an important property related to this sequence.
Lemma 1. Let us suppose $k \leq 2 n-1$ odd. Let $c_{k} \neq 0, z_{k}^{T} c_{j-1} \neq 0, j=1, \ldots, k, z_{0} \in$ $\operatorname{Im}\left(F_{0}^{T}\right), F_{0}=I-A H_{0} \in \mathbb{R}^{n \times n}$ is nonsingular and $l \leq 2 n-1$ are odd indices. Then there exits a sequence $\left\{t_{l}\right\}$ of linearly independent vectors satisfying

$$
\begin{gathered}
t_{1}^{T} F_{j}=0, \forall j \geq 1 \\
t_{l}^{T} F_{j}=t_{l-2}^{T}, l=3,5,7, \ldots, k, \forall j \geq l .
\end{gathered}
$$

Moreover $t_{i}^{T} g\left(x_{j}\right)=0, j=i+1, i+2, \ldots, k$.

Proof. We recommend [9] for a detailed proof.
To elucidate the idea of Block scaled ABS method let us consider the Algorithm 2.

```
Algorithm 2 Block ABS algorithm (see [2])
    Choose a vector \(y_{0} \in \mathbb{R}^{n}\) as an initial guess, \(K_{0} \in \mathbb{R}^{n \times n}, V=\left[V_{0} V_{1} \ldots V_{r}\right] \in \mathbb{R}^{n \times n}\) as
    nonsingular matrix and \(V_{k} \in \mathbb{R}^{n \times s_{k}}, k=1, . ., r\) where \(s_{1}+\ldots+s_{r}=n\)
    for \(k=0,1,2, \ldots, r\) do
        Choose \(Z_{k} \in \mathbb{R}^{n \times n}\) and \(q_{k} \in \mathbb{R}^{s_{k}}\) such that
\[
\begin{gathered}
V_{k}^{T} A P_{k} q_{k}=V_{k}^{T} \bar{g}_{k} \text { where } \\
P_{k}=K_{k}^{T} Z_{k} \text { and } \bar{g}_{k}=A y_{k}-b \in \mathbb{R}^{n}
\end{gathered}
\]
        Update \(y_{k+1}=y_{k}-P_{k} q_{k}\)
        Choose \(W_{k} \in \mathbb{R}^{n \times s_{k}}\) satisfying \(\left[W_{k}^{T} K_{k} A^{T} V_{k}\right]=I_{s_{k} \times s_{k}}\)
        Update \(K_{k}\) by
            \(K_{k+1}=K_{k}-K_{k} A^{T} V_{k} W_{k}^{T} K_{k} \in \mathbb{R}^{n \times n}\).
    end for
```

By simplicity we are considering $g_{k}=g\left(x_{k}\right)$. Related to Algorithm 2, we have important properties.

Lemma 2. The following conditions hold:
i. $K_{j} A^{T} V_{k}=0, \forall k<j$;
ii. $K_{i} K_{j}=K_{j} K_{i}=K_{j}$ if $i \leq j$;
iii. If A is full rank then

$$
\operatorname{rank}\left(K_{k} A^{T} V_{k}\left|K_{k} A^{T} V_{k+1}\right| \ldots \mid K_{k} A^{T} V_{r}\right)=n-\left(s_{0}+s_{1}+\ldots s_{k-1}\right)
$$

iv. If $A \in R^{n \times n}$ is nonsingular, then

$$
\begin{aligned}
& K_{k} A^{k} V_{j}, j>k \text { spans } \operatorname{Im}\left(K_{k}\right) \text { and } \\
& A^{T} V_{j}, j>k \text { spans } \operatorname{Kernel}\left(K_{k}\right) .
\end{aligned}
$$

Proof. We recommend [1].

3 Main Result

This section is devoted to show an important relation between Broyden's Algorithm and Block ABS Algorithm. This relationship is formalized by the following theorem.

Theorem 1. Consider $A x=b$ a linear system where $A \in \mathbb{R}^{n \times n}$ is nonsingular. Let z_{k} and c_{k} as defined in Broyden's algorithm satisfying the Lemma 1. Let $\left(x_{0}, H_{0}\right)$ and $\left(y_{0}, K_{0}\right)$ initial choices for Algorithm 1 and 2 respectively with $x_{0}=y_{0}$. Then, for $2 m_{j}$ steps of Algorithm 1 it is possible to find Z_{j}, W_{j} and V_{j} such that

$$
x_{2 m_{j}}=y_{j+1}
$$

where m_{j} is the number of columns of $\bar{V}_{j}=\left[V_{0} V_{1} \ldots V_{j}\right]$. Consequently,

$$
x_{2 m_{r}}=y_{r+1}, \text { where } m_{r}=n
$$

Proof. Let $V=\left(t_{1} t_{3} \ldots t_{2 n-1}\right)$ with vectors $t_{i}^{\prime} s$ linearly independent which satisfy the Lemma 1. The proof will be made using induction arguments on indices of x and y. First, we will show there exist some choices of parameters in Algorithm 2 that obtain:

$$
\begin{equation*}
x_{2 m_{0}}=y_{1}, \tag{2}
\end{equation*}
$$

where m_{0} represents the number of columns of $\overline{V_{0}}$ defined by $V_{0} \in \mathbb{R}^{n \times m_{0}}$. Now, using Algorithm 1 we have

$$
\begin{equation*}
x_{p+1}=x_{p}+s_{p} \text { with } s_{p}=-H_{p} g_{p} . \tag{3}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
x_{2 m_{0}}=x_{0}-d_{1}, \text { where } d_{1}=\sum_{i=1}^{2 m_{0}-1} H_{i} g_{i} . \tag{4}
\end{equation*}
$$

By step 2 of Algorithm 2 we have

$$
\begin{equation*}
y_{1}=y_{0}-K_{0}^{T} Z_{0} q_{0} . \tag{5}
\end{equation*}
$$

So, we need to show that there exist choices for Z_{0}, q_{0} such that

$$
\begin{equation*}
K_{0}^{T} Z_{0} q_{0}=d_{1} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{0}^{T} A K_{0} Z_{0} q_{0}=V_{0}^{T} \bar{g}_{0} . \tag{7}
\end{equation*}
$$

The choices to satisfy (6) follow immediately from nonsingularity of K_{0}. Thus we need to show that these choices satisfy (7). In this case, we need to prove that

$$
V_{0}^{T} A d_{1}=V_{0}^{T} \bar{g}_{0} .
$$

In fact,

$$
\begin{equation*}
V_{0}^{T} A d_{1}=V_{0}^{T} A\left(\sum_{i=0}^{2 m_{0}-1} H_{i} g_{i}\right)=\sum_{i=0}^{2 m_{0}-1} V_{0}^{T} A H_{i} g_{i} \tag{8}
\end{equation*}
$$

or equivalently

$$
V_{0}^{T} A d_{1}=\left[\begin{array}{c}
\sum_{i=0}^{2 m_{0}-1} t_{1}^{T} A H_{i} g_{i} \\
\sum_{i=0}^{2 m_{0}-1} t_{3}^{T} A H_{i} g_{i} \\
\vdots \\
\sum_{i=0}^{2 m_{0}-1} t_{2 m_{0}-1}^{T} A H_{i} g_{i}
\end{array}\right] .
$$

Using Lemma 1 we have

$$
\begin{gather*}
t_{1}^{T}=t_{1}^{T} A H_{j}, \forall j \geq 1 \tag{9}\\
\vdots \tag{10}\\
\left(t_{k}^{T}-t_{k-2}^{T}\right)=t_{k}^{T} A H_{j}, \forall j \geq k \geq 3, \tag{11}\\
t_{k}^{T} g_{j}=0, \forall j>k
\end{gather*}
$$

Consequently,

$$
\begin{gather*}
\sum_{i=0}^{2 m_{0}-1} t_{1}^{T} A H_{i} g_{i}=t_{1}^{T} A H_{0} g_{0}+t_{1}^{T} A H_{1} g_{1}+\sum_{i=2}^{2 m_{0}-1} t_{1}^{T} A H_{i} g_{i} \tag{12}\\
=t_{1}^{T} A H_{0} g_{0}+t_{1}^{T} A H_{1} g_{1}+\sum_{i=2}^{2 m_{0}-1} t_{1}^{T} g_{i} \tag{13}\\
=t_{1}^{T} A H_{0} g_{0}+t_{1}^{T} A H_{1} g_{1} . \tag{14}
\end{gather*}
$$

By Algorithm 1 we have that $g_{k+1}=\left(I-A H_{k}\right) g_{k}$, for all $k \geq 0$. Thus

$$
\begin{align*}
\sum_{i=0}^{2 m_{0}-1} t_{1}^{T} A H_{i} g_{i} & =t_{1}^{T} A H_{0} g_{0}+t_{1}^{T} A H_{1}\left(I-A H_{0}\right) g_{0} \\
& =t_{1}^{T} A H_{0} g_{0}+t_{1}^{T}\left(I-A H_{0}\right) g_{0} \tag{15}\\
& =t_{1}^{T} A H_{0} g_{0}+t_{1}^{T} g_{0}-t_{1}^{T} A H_{0} g_{0} \\
& =t_{1}^{T} g_{0}
\end{align*}
$$

For the general case, let's consider $j \leq 2 m_{0}-1$ and odd. Therefore

$$
\begin{align*}
\sum_{i=0}^{2 m_{0}-1} t_{j}^{T} A H_{i} g_{i} & =\sum_{i=0}^{j} t_{j}^{T} A H_{i} g_{i}+\sum_{i=j+1}^{2 m_{0}-1} t_{j}^{T} A H_{i} g_{i} \\
& =\sum_{i=0}^{j} t_{j}^{T} A H_{i} g_{i}+\sum_{i=j+1}^{2 m_{0}-1}\left(t_{j}^{T}-t_{j-2}^{T}\right) g_{i} \tag{16}\\
& =\sum_{i=0}^{j} t_{j}^{T} A H_{i} g_{i}
\end{align*}
$$

Using (9) and (10) we have

$$
\begin{align*}
\sum_{i=0}^{j} t_{j}^{T} A H_{i} g_{i} & =\sum_{\substack{i=0 \\
j-2}}^{j-2} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{j-1} g_{j-1}+t_{j}^{T} A H_{j} g_{j} \\
& =\sum_{\substack{i=0 \\
j-2}} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{j-1} g_{j-1}+t_{j}^{T} g_{j}-t_{j-2}^{T} g_{j} \\
& =\sum_{\substack{i=0 \\
j-2}} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{j-1} g_{j-1}+t_{j}^{T} g_{j} \tag{17}\\
& =\sum_{\substack{i=0 \\
j-2}} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{j-1} g_{j-1}+t_{j}^{T} g_{j-1}-t_{j}^{T} A H_{j-1} g_{j-1} \\
& =\sum_{i=0} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} g_{j-1}
\end{align*}
$$

With similar ideas of (17) we can show that:

$$
\begin{equation*}
\sum_{i=0}^{l} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} g_{l+1}=\sum_{i=0}^{l-1} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} g_{l} \tag{18}
\end{equation*}
$$

for all $l \leq j$. In fact,

$$
\begin{align*}
\sum_{i=0}^{l} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} g_{l+1} & =\sum_{i=0}^{l-1} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{l} g_{l}+t_{j}^{T} g_{l+1} \\
& =\sum_{i=0}^{l-1} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{l} g_{l}+t_{j}^{T}\left(I-A H_{l}\right) g_{l} \\
& =\sum_{i=0}^{l-1} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} A H_{l} g_{l}+t_{j}^{T} g_{l}-t_{j}^{T} A H_{l} g_{l} \\
& =\sum_{i=0}^{l-1} t_{j}^{T} A H_{i} g_{i}+t_{j}^{T} g_{l} \tag{19}
\end{align*}
$$

Now, using (18) recursively we obtain

$$
\begin{align*}
\sum_{i=0}^{2 m_{0}-1} t_{j}^{T} A H_{i} g_{i} & =t_{j}^{T} A H_{0} g_{0}+t_{j}^{T} g_{1} \\
& =t_{j}^{T} A H_{0} g_{0}+t_{j}^{T}\left(I-A H_{0}\right) g_{0} \\
& =t_{j}^{T} A H_{0} g_{0}+t_{j}^{T} g_{0}-t_{j}^{T} A H_{0} g_{0} \\
& =t_{j}^{T} g_{0} . \tag{20}
\end{align*}
$$

Consequently,

$$
V_{0}^{T} A d_{1}=\left[\begin{array}{c}
\sum_{i=0}^{2 m_{0}-1} t_{1}^{T} A H_{i} g_{i} \\
\sum_{i=0}^{2 m_{0}-1} t_{3}^{T} A H_{i} g_{i} \\
\vdots \\
\sum_{i=0}^{2 m_{0}-1} t_{2 m_{0}-1}^{T} A H_{i} g_{i}
\end{array}\right]=\left[\begin{array}{c}
t_{1}^{T} g_{0} \\
t_{3}^{T} g_{0} \\
\vdots \\
t_{2 m_{0}-1}^{T} g_{0}
\end{array}\right]=V_{0}^{T} g_{0}=V_{0}^{T} \bar{g}_{0}
$$

terminating the first part of the induction argument.
Let's assume that

$$
x_{2 m_{k}}=y_{k+1}, \forall \quad 1 \leq k<r,
$$

where m_{k} represents the number of columns of $\bar{V}_{k}=\left[V_{0} V_{1} \ldots V_{k}\right]$. We will show $x_{2 m_{r}}=$ y_{r+1}.

Considering the Algorithm 1, we have

$$
\begin{equation*}
x_{2 m_{r}}=x_{2 m_{(r-1)}}-d_{r}, \text { where } d_{r}=\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} H_{i} g_{i} \tag{21}
\end{equation*}
$$

and considering the Algorithm 2, we have

$$
\begin{equation*}
y_{r+1}=y_{r}-K_{r}^{T} Z_{r} q_{r} . \tag{22}
\end{equation*}
$$

We need to show that exist Z_{r} and q_{r} such that

$$
\begin{equation*}
K_{r}^{T} Z_{r} q_{r}=d_{r} \tag{23}
\end{equation*}
$$

with $V_{r}^{T} A K_{r}^{T} Z_{r} q_{r}=V_{r}^{T} \bar{g}_{r}$. By Lemma 2, we have the equivalence:

$$
\begin{align*}
K_{r}^{T} Z_{r} q_{r}=d_{r} & \Leftrightarrow d_{r} \in \operatorname{Im}\left(K_{r}^{T}\right) \\
& \Leftrightarrow d_{r} \perp\left\{A^{T} V_{0}, A^{T} V_{1}, \ldots A^{T} V_{r-1}\right\} \tag{24}\\
& \Leftrightarrow d_{r} \perp A^{T} V_{k}, \text { for all } 0 \leq k \leq r-1
\end{align*}
$$

Consequently it is sufficient to show

$$
\begin{equation*}
V_{k}^{T} A d_{r}=0, \text { for all } 0 \leq k \leq r-1 \tag{25}
\end{equation*}
$$

Observe that

$$
{\overline{V_{r-1}}}^{T} A d_{r}=\left[\begin{array}{c}
V_{0}^{T} A d_{r} \tag{26}\\
V_{1}^{T} A d_{r} \\
\vdots \\
V_{r-1}^{T} A d_{r}
\end{array}\right]=\left[\begin{array}{c}
t_{1}^{T} A d_{r} \\
t_{3}^{T} A d_{r} \\
\vdots \\
t_{2 m_{(r-1)}-1}^{T} A d_{r}
\end{array}\right]
$$

Using, again, (9)-(11) we can obtain

$$
\begin{equation*}
t_{1}^{T} A d_{r}=t_{1}^{T}\left(\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} H_{i} g_{i}\right)=\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} t_{1}^{T} A H_{i} g_{i}=\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} t_{1}^{T} g_{i}=0 \tag{27}
\end{equation*}
$$

and with similar arguments, for $j \leq 2 m_{(r-1)}-1$ odd we have

$$
\begin{equation*}
t_{j}^{T} A d_{r}=t_{j}^{T}\left(\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} H_{i} g_{i}\right)=\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} t_{j}^{T} A H_{i} g_{i}=\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} t_{j}^{T} g_{i}=0 \tag{28}
\end{equation*}
$$

Thus, from (26), (27) and (28), we conclude (25). We need to prove that the choices of Z_{r} and q_{r} satisfy $V_{r}^{T} A K_{r}^{T} Z_{r} q_{r}=V_{r}^{T} \bar{g}_{r}$, or equivalently, $V_{r}^{T} A d_{r}=V_{r}^{T} \bar{g}_{r}$.

Considering $V_{r}=\left[t_{2 m_{(r-1)}+1} t_{2 m_{(r-1)}+3} \ldots t_{2 m_{r}-1}\right]$ we have

$$
V_{r}^{T} A d_{r}=\left[\begin{array}{c}
t_{2 m_{(r-1)}+1}^{T} A d_{r} \tag{29}\\
t_{2 m_{(r-1)}+3}^{T} A d_{r} \\
\vdots \\
t_{2 m_{r}-1}^{T} A d_{r}
\end{array}\right]
$$

Since $d_{r}=\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} H_{i} g_{i}$ we can obtain

$$
\begin{align*}
t_{2 m_{(r-1)}+1}^{T} A d_{r} & =t_{2 m_{(r-1)}+1}^{T} A\left(\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} H_{i} g_{i}\right) \\
& =\sum_{i=2 m_{(r-1)}}^{2 m_{r}-1} t_{2 m_{(r-1)}+1}^{T} A H_{i} g_{i} \tag{30}\\
& =\sum_{i=2 m_{(r-1)}}^{2 m_{(r-1)}+1} t_{2 m_{(r-1)}+1}^{T} A H_{i} g_{i}+\sum_{i=2 m_{(r-1)}+2}^{2 m_{r}-1} t_{2 m_{(r-1)}+1}^{T} A H_{i} g_{i}
\end{align*}
$$

Note that $2 m_{(r-1)}+1<2 m_{(r-1)}+2$ and using Lemma 1 we get from (30) that

$$
\begin{align*}
t_{2 m_{(r-1)}+1}^{T} A d_{r} & =\sum_{i=2 m_{(r-1)}}^{2 m_{(r-1)}+1} t_{2 m_{(r-1)}+1}^{T} A H_{i} g_{i}+\sum_{i=2 m_{(r-1)}+2}^{2 m_{r}-1}\left(t_{2 m_{(r-1)}+1}-t_{2 m_{(r-1)}-1}\right) g_{i} \\
& =\sum_{i=2 m_{(r-1)}}^{2 m_{(r-1)}+1} t_{2 m_{(r-1)}+1}^{T} A H_{i} g_{i} \\
& =t_{2 m_{(r-1)}+1} A H_{2 m_{(r-1)}} g_{2 m_{(r-1)}}+\left(t_{2 m_{(r-1)}+1}-t_{2 m_{(r-1)}-1}\right) g_{2 m_{(r-1)}+1} \\
& =t_{2 m_{(r-1)}+1} A H_{2 m_{(r-1)}} g_{2 m_{(r-1)}}+t_{2 m_{(r-1)}+1}\left(I-A H_{2 m_{(r-1)}}\right) g_{2 m_{(r-1)}} \\
& =t_{2 m_{(r-1)}+1}^{T} g_{2 m_{(r-1)}}
\end{align*}
$$

With similar argument given in (16)-(20) we can conclude

$$
\begin{equation*}
t_{k}^{T} A d_{r}=t_{k}^{T} g_{2 m_{(r-1)}}, \text { for all } 2 m_{(r-1)}+1 \leq k \leq 2 m_{r}-1 \tag{32}
\end{equation*}
$$

Since $g_{2 m_{(r-1)}}=\bar{g}_{r}$, we obtain

$$
V_{r}^{T} A d_{r}=\left[\begin{array}{c}
t_{2 m_{(r-1)}+1}^{T} A d_{r} \tag{33}\\
t_{2 m_{(r-1)}+3}^{T} A d_{r} \\
\vdots \\
t_{2 m_{r}-1}^{T} A d_{r}
\end{array}\right]=\left[\begin{array}{c}
t_{2 m_{(r-1)}+1}^{T} g_{2 m_{(r-1)}} \\
t_{2 m_{(r-1)}+3}^{T} g_{2 m_{(r-1)}}^{T} \\
\vdots \\
t_{2 m_{r}-1}^{T} g_{2 m_{(r-1)}}
\end{array}\right]
$$

4 Conclusion

This work has the same direction of [4]. However, we consider the Block ABS Method instead of ABS method and we show that $2 n$ steps of Broyden's Method is equivalent to one step of the ABS Block Method, when the block size is n. Since the ABS Block Method has finite termination, we provide another proof for Gay's theorem [6].

References

[1] J. Abaffy and A. Galantai. Conjugate Direction Methods for Linear and Nonlinear Systems of Algebraic Equations. In Colloquia Mathematica Societatis Janos Bolyai, pages 481-502, 1986.
[2] J. Abaffy and E. Spedicato. ABS Projection Algorithms: mathematical techniques for linear and nonlinear equations. Halsted Press, 1989.
[3] Joszef Abaffy, Charles Broyden, and Emilio Spedicato. A class of direct methods for linear systems. Numerische Mathematik, 45(3):361-376, 1984.
[4] Majid Adib. A handy proof of Gays theorem. Numerical Linear Algebra with Applications, 15(April):637-642, 2008.
[5] Howard C Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations. PhD thesis, Yale University New Haven, Conn, 1982.
[6] David M Gay. Some convergence properties of broyden's method. SIAM Journal on Numerical Analysis, 16(4):623-630, 1979.
[7] Frank L Lewis. A survey of linear singular systems. Circuits, Systems and Signal Processing, 5(1):3-36, 1986.
[8] J M Martinez. Practical quasi-Newton methods for solving nonlinear systems. Journal of Computational and Applied Mathematics, 124:97-121, 2000.
[9] Dianne P O'Leary. Why broyden's nonsymmetric method terminates on linear equations. SIAM Journal on Optimization, 5(2):231-235, 1995.
[10] Valeria Simoncini and Daniel B Szyld. Recent computational developments in krylov subspace methods for linear systems. Numerical Linear Algebra with Applications, 14(1):1-59, 2007.

[^0]: * Corresponding author

