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Abstract. The nonzero sum 5-person game has been considered. It is well known
that the game can be reduced to a global optimization problem [5, 7, 13]. By
extending Mills’ result [5], we derive global optimality conditions for a Nash
equilibrium. In order to solve the problem numerically, we apply the Curvilinear
Multistart Algorithm [2, 3] developed for finding global solutions in nonconvex
optimization problems. The proposed algorithm was tested on five person games.
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1 Introduction

It is well known that game theory plays an important role in applied mathematics, math-
ematical modeling, economics and decision theory. Game theory is a powerful tool for
modeling firm competitions at oligopoly market du to J.Nash [17]. There are many
works devoted to game theory [6, 8–12, 4]. Most of them deals with zero sum two per-
son games or nonzero sum two person games. Also, two person non zero sum game was
studied in [10, 14, 15] by reducing it to D.C programming[1]. The three person game
was examined in [2] by global optimization techniques.

This paper considers nonzero sum 5-person game. We consider 5-person game as a
special case of the nonzero sum n-person game. Based on the results [16], we develop a
computational algorithm for finding a Nash equilibrium. So far, less attention has been
paid to computational aspects of game theory, specially N -person game. Aim of this
paper to fulfill this gap. The paper is organized as follows. In Section 2, we formulate
non zero sum 5-person game and show that it can be formulated as a global optimiza-
tion problem with polynomial constraints. We formulate the problem of finding a Nash
equilibrium for non zero sum 5-person games as a nonlinear programming problem.
A Global search algorithm has been proposed in Section 3. Section 4 is devoted to
computational experiments.
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2 Nonzero Sum 5-person Game

Consider the 5-person game in mixed strategies with matrices (Aq, q = 1, 2, 3, 4, 5)
for players 1, 2, 3, 4, 5.

Aq =
(
aqi1i2i3i4i5

)
, q = 1, 2, 3, 4, 5,

i1 = 1, 2, . . . , k1; . . . ; i5 = 1, 2, . . . , k5.

Denote by Dp the set

Dp = {u ∈ Rp |
p∑

i=1

ui = 1, ui ≥ 0, i = 1, . . . , p}, p = k1, k2, k3, k4, k5.

A mixed strategy for player 1 is a vector x1 = (x11, x
1
2, . . . , x

1
k1
) ∈ Dk1

, where x1i
represents the probability that player 1 uses a strategy i. Similarly, the mixed strategies
for q-th player is xq = (xq1, x

q
2, . . . , x

q
kq
) ∈ Dkq

, q = 1, 2, 3, 4, 5. Expected payoff for
1-th person is given by:

f1(x
1, x2, x3, x4, x5) =

k1∑
i1=1

k2∑
i2=1

. . .

k5∑
i5=1

a1i1i2i3i4i5x
1
i1x

2
i2x

3
i3x

4
i4x

5
i5 .

and for q-th person

fq(x
1, x2, x3, x4, x5) =

k1∑
i1=1

k2∑
i2=1

. . .

k5∑
i5=1

aqi1i2i3i4i5x
1
i1x

2
i2x

3
i3x

4
i4x

5
i5 ,

q = 1, 2, 3, 4, 5.

Definition 2.1 A vector of mixed strategies x̃q ∈ Dkq , q = 1, 2, 3, 4, 5 is a Nash
equilibrium if

f1(x̃
1, x̃2, x̃3, x̃4, x̃5) ≥ f1(x1, x̃2, x̃3, x̃4, x̃5), ∀x1 ∈ Dk1

· · · · · · · · · · · · · · · · · ·
fq(x̃

1, x̃2, x̃3, x̃4, x̃5) ≥ fq(x̃1, . . . , x̃q−1, xq, x̃q+1, . . . , x̃5), ∀xq ∈ Dkq

· · · · · · · · · · · · · · · · · ·
f5(x̃

1, x̃2, x̃3, x̃4, x̃5) ≥ f5(x̃1, x̃2, x̃3, x̃4, x5), ∀x5 ∈ Dk5
.

It is clear that

f1(x̃
1, x̃2, x̃3, x̃4, x̃5) = maxx1∈Dk1

f1(x
1, x̃2, x̃3, x̃4, x̃5),

· · · · · · · · · · · ·
fq(x̃

1, x̃2, x̃3, x̃4, x̃5) = maxxq∈Dkq
fq(x̃

1, . . . , x̃q−1, xq, x̃q+1, . . . , x̃5),

· · · · · · · · · · · ·
f5(x̃

1, x̃2, x̃3, x̃4, x̃5) = maxx5∈Dk5
fn(x̃

1, x̃2, x̃3, x̃4, x5).

228



A Note on Solving 5-Person Game

Denote by

k1∑
i1=1

k2∑
i2=1

. . .

kq−1∑
iq−1=1

kq+1∑
iq+1=1

. . .

k5∑
i5=1

aqi1i2i3i4i5x
1
i1 . . . x

q−1
iq−1

xq+1
iq+1

. . . x5i5 ,

, ϕiq (x
1, . . . , xq−1, xq+1, . . . , x5) = ϕiq (x|xq),

iq = 1, 2, . . . , kq, q = 1, 2, 3, 4, 5.

For further purpose, it is useful to formulate the following statement.

Theorem 2.2 [16] A vector strategy (x̃1, x̃2, x̃3, x̃4, x̃5) is a Nash equilibrium if and
only if

fq(x̃) ≥ ϕiq (x̃|x̃q) (1)

for
x̃ = (x̃1, x̃2, x̃3, x̃4, x̃5)

iq = 1, 2, . . . , kq,

q = 1, 2, 3, 4, 5.

Theorem 2.3 [16] A mixed strategy x̃ is a Nash equilibrium for the nonzero sum
5-person game if and only if there exists vector p̃ ∈ R5 such that vector (x̃, p̃) is a
solution to the following bilinear programming problem:

max
(x,p)

F (x, p) =

n∑
q=1

fq(x
1, x2, x3, x4, x5)−

5∑
q=1

pq (2)

subject to :

ϕiq (x|xq) ≤ pq, iq = 1, 2, . . . , kq, (3)

3 The Curvilinear Multistart Algorithm

In order to solve the problem, we use curvilinear multistart algorithm. The algorithm
was originally developed for solving box-constrained optimization problems, therefore,
we convert our problem from the constrained to unconstrained form using penalty func-
tion techniques. For each equality constraint g(x) = 0, we construct a simple penalty
function ĝ(x) = g2(x). For each inequality constraint q(x) ≤ 0, we also construct the
corresponding penalty function as follows:

q̂(x) =

{
0, if q(x) ≤ 0,
q2(x), if q(x) > 0.
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Thus, we have the following box-constrained optimization problem:

f̂(x) = f(x) +
γ

2

∑
i

ĝi(x) +
γ

2

∑
j

q̂j(x)→ min
X
,

X =
{
x ∈ Rn|xi ≤ xi ≤ xi, i = 1, ..., n

}
.

where γ is a penalty parameter, x and x - are lower and upper bounds. For original
x-variables the constraint is the box [0, 1]; for p-variables box constraints are [0, pq].
Values of pq are chosen from some intervals. An initial value of a penalty parameter γ
is chosen not too large (something about 1000) and after finding some local minimums
we increase it for searching another local minimum.

Algorithm 1 The Curvilinear Multistart Algorithm
Input: x1 ∈ X – initial (start) point; K > 0 – iterations count; δ > 0; N > 0; εα > 0 —
algorithm parameters.
Output: Global minimum point x∗ and f∗ = f(x∗)

1: for k ← 1,K do fk ← f(xk)
2: generate stochastic point x̃1 ∈ X
3: generate stochastic point x̃2 ∈ X
4: generate stochastic α-grid:

−1 = α1 ≤ .... ≤ αi ≤ −δ ≤ 0 ≤ δ ≤ αi+1 ≤ ... ≤ αN = 1

5: Let x̂(α) = ProjX
(
α2

(
(x̃1 + x̃2)/2− xk

)
+ α/2

(
x̃2 − x̃1

)
+ xk

)
where

ProjX(z) - projection of point z onto set X .
//note that x̂(−1) = x̂1, x̂(1) = x̂2, x̂(0) = xk.

6: fk∗ ← fk

7: αk∗ ← 0
8: for i← 1, (N − 2) do

//Convex triplet
9: if f(x̂(αi)) > f(x̂(αi+1)) and f(x̂(αi+1)) < f(x̂(αi+2)) then

//Refining the value of minima using
//Golden-Section search method with accuracy εα

10: αk∗ ← GoldenSectionSearch(f, αi, αi+1, αi+2, εα)
11: if f(x̂(αk∗)) < fk∗ then
12: fk∗ ← f(x̂(αk∗))
13: αk∗ ← αk∗
14: end if
15: end if
16: end for

//Start local optimization algorithm
17: xk+1 ← LOptim(x̂(αk∗))
18: end for
19: x∗ ← xk

20: f∗ ← f(xk)
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The proposed algorithm starts from some initial point x1 ∈ X . At each k−th iter-
ation the algorithm performs randomly “drop” of two auxiliary points x̃1 and x̃2 and
generating a curve (parabola) which passes through all three points xk, x̃1 and x̃2. Then
we generate some random grid along this curve and try to found all convex triples in-
side the grid. For each founded triple we perform refining the triple minima value with
using golden section method. The best triple became a start point for local optimization
algorithm, the final point of which will be a start point for the next iteration of global
method. Details are presented in Algorithms 1 and 2.

Algorithm 2 The Local Optimization Algorithm
Input: x1 ∈ X – initial (start) point; εx > 0 — accuracy parameter.
Output: Local minimum point x∗ and f∗ = f(x∗)

1: repeat
2: dk = xk − ProjX(xk −∇f(xk))

//Perform local relaxation step, for example, with using standard convex interval capture
technique.

3: xk+1 = argmin
α≥0

f(xk + αdk)

4: until ‖xk+1 − x‖2 ≤ εx

4 Computational Experiments

The proposed method was implemented in C language and tested on compatibility
with using the GNU Compiler Collection (GCC, versions: 4.8.5, 4.9.3, 5.4.0), clang
(versions: 3.5.2, 3.6.2, 3.7.1, 3.8) and Intel C Compiler (ICC, version 15.0.6) on both
GNU/Linux, Microsoft Windows and Mac OS X operating systems.

The proposed algorithm was applied for numerically solving number of problems
with 5 players. The problems were created by the well-known GAMUT [18] generator.
In all cases, Nash equilibrium points were found successfully.

Problem 1. GAMUT Random Game 2× 2× 2× 2× 2:

f∗ x1∗, x
2
∗, x

3
∗, x

4
∗, x

5
∗ p
∗
1, p
∗
2, p
∗
3, p
∗
4, p
∗
5

−3.09 · 10−5
x1∗ = (0.94, 0.06) p∗1 = 31.97
x2∗ = (0.58, 0.42) p∗2 = 54.01
x3∗ = (1, 0) p∗3 = 60.87
x4∗ = (0.9, 0.1) p∗4 = 67.78
x5∗ = (0.99, 0.01) p∗5 = 41.19

6.12 · 10−8
x1∗ = (0.93, 0.07) p∗1 = 32.06
x2∗ = (0.59, 0.41) p∗2 = 53.77
x3∗ = (1, 0) p∗3 = 61.05
x4∗ = (0.89, 0.11) p∗4 = 67.27
x5∗ = (1, 0) p∗5 = 42.12

Problem 2. GAMUT Random Game 6× 2× 4× 5× 3:
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f∗ x1∗, x
2
∗, x

3
∗, x

4
∗, x

5
∗ p∗1, p

∗
2, p
∗
3, p
∗
4, p
∗
5

1.86 · 10−3
x1∗ = (0, 0, 0.66, 0.29, 0, 0.05) p∗1 = 51.87
x2∗ = (0.49, 0.51) p∗2 = 44.4
x3∗ = (0.18, 0.32, 0.5) p∗3 = 53.17
x4∗ = (0, 0.19, 0.06, 0.07, 0.68) p∗4 = 48.81
x5∗ = (0.42, 0.1, 0.48) p∗5 = 44.8

−7.83 · 10−5
x1∗ = (0, 0.29, 0.48, 0, 0.23) p∗1 = 53.65
x2∗ = (0.35, 0.65) p∗2 = 37.89
x3∗ = (0, 0.58, 0.22, 0.20) p∗3 = 51.54
x4∗ = (0, 0.78, 0, 0.19, 0.03) p∗4 = 52.08
x5∗ = (0.17, 0.17, 0.66) p∗5 = 53.54
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