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ABSTRACT
In this paper a fixed charge bulk transportation problem is discussed in which only
n′ out of n destinations (n′ < n) are to be served in bulk by the given m sources
(m ≤ n′). This is assumed that the transportation is done in parallel from all sources
and each destination receive its demand from a single source but a source can serve
to more than one destination. The purpose is to find the optimal grouping of source-
destination pair which minimizes the total cost i.e the bulk cost and the fixed cost.
In order to find optimal grouping, lexi-search approach has been used. A heuristic
is proposed to find out the starting upper bound.
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Introduction

A Variant of transportation problem is Fixed Charge Transportation Problem
(FCTP) in which both variable cost and fixed cost are present. In case of classical
transportation problems, our aim is to find least expensive flow of the material
between source-destination pair. But in FCTP, the purpose is to find that schedule
flow of material through which the total cost is minimum which is the sum of
the variable and fixed cost. This fixed cost which may be the renting cost of a
vehicle, arrival charges at airport, set up charges in manufacturing a product etc. is
independent of the quantity shipped.

Mathematically FCTP can be stated as:
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min

m∑
i=1

n∑
j=1

(cijxij + fijyij)

Subject to

n∑
j=1

xij = ai, i = 1, 2, 3, . . . ,m

m∑
i=1

xij = bj , j = 1, 2, 3, . . . , n

xij ≥ 0 ∀(i, j)

yij =

{
1 xij > 0
0 xij = 0

m∑
i=1

ai =

n∑
j=1

bj ai, bj , cij , fij ≥ 0

Here,
I = {1, 2, . . . ,m} : number of sources
J = {1, 2, . . . , n} : number of destinations
ai = Availability at each source, bj = Requirement at each destination
xij = the quantity transported to destination j from source i
cij = transportation cost involved when a unit is supplied to destination j from source
i∑m

i=1 ai =
∑n

j=1 bj ; This shows the case of balanced transportation problem
fij = fixed cost involved when a unit is supplied to destination j from source i

Over the last few decades numerous methods have been proposed to find the
solution of FCTP either implicitly or explicitly(e.g, [1], [2], [4], [6], [7], [18], [21], [25]).
It was also found that the optimal solution of FCTP lies on the boundary of the
feasible region and is one of the extreme point, with some other properties ([19], [20],
[31]). Balinski [12] solved FCTP by making it as an integer program. Later on, many
computational studies have been claimed to find optimal solution. But among those
methods only two methods viz., branch and bound method([29], [22]) and ranking of
extreme points([24], [27]) are given. The ranking method requires analyzing almost
the whole distribution problem whereas branch-and-bound method shows exponential
behaviour. But these methods are restricted by limitation on computer time that is
why many researchers have turned to the heuristic approach for finding the solution
of FCTP([3], [5], [8], [13], [14], [15], [17], [26], [30]). A paradox in FCTP is also
discussed by S.R. Arora and Anu Ahuja [9].

Another variant of transportation problem is Bulk Transportation Problem (BTP) in
which the homogeneous material is transported in bulk between the source-destination
pair. In cost minimizing transportation problem our aim is to find minimum cost and
every unit which is transported depends on the quantity being transported. But in
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some situations the cost behaves as a bulk cost because it become independent of the
transported quantity which results to the Bulk Transportation Problem.

Mathematically BTP can be stated as:

min

m∑
i=1

n∑
j=1

cijxij

Subject to

n∑
j=1

gjxij ≤ di i ∈ (1, 2, 3, . . . ,m)

m∑
i=1

xij = 1 j ∈ (1, 2, 3, . . . , n)

xij =

{
1 if jth destination is supplied by ith source
0 otherwise

Where
di : availability at the ith source
gj : requirement at the jth destination
cij : transportation cost from source i to destination j and is independent of the quan-
tity shipped

Various authors developed branch and bound technique to solve BTP ([11], [16], [28]).
Sundara Murthy [23] solved this problem with some additional restriction that each
destination fulfill its demand from a single source but a source can serve to more
than one destination depending upon its capacity. A lexi search technique is used for
this purpose which works efficiently over branch and bound method. A Fixed Charge
Bulk Transportation (FCBTP) have combined the features of both fixed charge trans-
portation problem and bulk transportation problem. But in real world some situations
arise when instead of serving all the destinations only a few destinations can serve our
purpose. Hence, In this paper an algorithm is developed to find the optimal grouping
using lexi search approach which is based on ([10], [23]) and ensures the optimality in
a limited number of steps. The algorithm starts with the initial upper bound on the
objective value which is near to the optimal solution. The mathematical model of the
problem is shown in Section 1. Section 2 consists of some definitions and results based
on which an algorithm is presented in Section 3. A numerical illustration is shown
in Section 4 and computational details for some random problems are shown in Sec-
tion 5. Some conclusions based on the study are given towards the end in Concluding
Remarks.
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1. Problem Description

1.1. Fixed Charge Bulk Transportation Problem (FCBTP)

The fixed charge bulk transportation problem differs from classical transportation
problem because in this fixed cost combined with the bulk cost which makes the
objective a step function. Here, the set I = {1, 2, . . . ,m} denotes the number of
sources and J = {1, 2, . . . , n} the number of destinations. The availability at any
source i is repesented by di & the requirement at any destination j is denoted by gj .
Similarly, cij& fij defines the bulk cost & fixed cost from source i to destination j
respectively(∀i ∈ I, j ∈ J). The total fixed charge bulk cost is denoted by Z. There
is an assumption that demand of each destination is fulfilled by a single source but
a source can supply to any number of destination depending upon its capacity. Our
aim is to find the optimal feasible solution which gives the minimum total cost. As the
quantity is transported in bulk, therefore xij is defined as

xij =

{
1 Ifith source serves jth destination
0 otherwise

But in real world sometimes a situation arise in which instead of serving all the
destinations we want to serve only a few destinations because that fulfill our purpose
of optimality. It means from the given n destinations only n′(< n) destinations are to
be served. Hence the problem is to find the group of source-destination pair which
yield the minimum value of objective function.

Mathematical Model:

minZ =

m∑
i=1

n∑
j=1

(cijxij + fijyij)

Subject to

∑
j∈J

gjxij ≤ di, i ∈ I · · · · · · · · · (i)

∑
i∈I

xij = 1, j ∈ J · · · · · · · · · (ii)∑
j∈J

∑
i∈I

xij = n′, · · · · · · · · · (iii)

xij = 0 or 1 ∀(i, j) ∈ IXJ · · · · · · · · · (iv)

yij =

{
1 xij > 0
0 xij = 0

· · · · · · · · · (v)

A solution which satisfies equation (i),(ii),(iii),(iv),(v) give rise to be a feasible solution
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and a feasible solution which minimizes the total cost is called optimal feasible solution.

2. Theoretical Development

Some Definitions and Results

Notation
Zu : starting upper bound of objective function value
Iu : index of available sources
Ju : index of served destinations
] : Augmentation
∩ :Negation of augmentation
D : column vector consisting the entries of fixed bulk matrix in nondecreasing order
of their values.
e : index set of the entries in D
Er : index set of the unserved entries in D
J ′ : J − Ju : the set of unserved destinations

Fixed Bulk Matrix An mn matrix which is formed by taking sum of the bulk cost
and fixed cost matrix defines a Fixed Bulk Matrix. It is denoted by FB.

Alphabet Table This is a 3Xmn row matrix which is formed by an arrangement of
mn entries in three rows. The first row denoted by e shows the index set of the entries
in D, second row denoted by D consisting of the mn elements of FB matrix when they
are organised in non-decreasing order of their values, and the third row represented
by AB which is consisting of the positions of the entries in FB matrix and denoted
by an ordered pair of values. Any yth entry in AB is an ordered pair represented by
(at(y, 1), at(y, 2)), where at(y, 1) represent the row of the FB matrix in which the yth

entry of D lies, and the corresponding column is denoted by at(y, 2). So, for any y < z
the corresponding cost is cat(y,1)at(y,2) + fat(y,1)at(y,2) ≤ cat(z,1)at(z,2) + fat(z,1)at(z,2).

Partial Word Let Pw be the partial word of length r.
Pw = (at(y1, 1)at(y1, 2), at(y2, 1)at(y2, 2) . . . . . . , at(yr, 1)at(yr, 2))
or Pw = ((i1, j1), (i2, j2), . . . . . . , (ir, jr)), r ≤ n
XPw represents the partial solution corresponding to the partial word Pw and
consists of solutions for r served destinations whereas (r+1, r+2, . . . , n′) destinations
are still to be served. Each partial word Pw of lenght r can be considered as a guide
or a leader of the group of words. These word are so generated that their contribution
to the objective function is in decreasing order. If at any stage let a partial word of
length r is under study, r ≤ n′ i.e Pw = (at(y1, 1)at(y1, 2), . . . . . . , at(yr, 1)at(yr, 2))
then it means that all the partial word which start with (at(y, 1)at(y, 2)) where,
1 ≤ y ≤ y1 − 1 have not generated value better than Zu. It is to be noted that we
may have that at(yp, 1) = at(yq, 1), for some p and q belonging to {1, 2, 3, ....., r} but
for Pw to contain a word w, at(yp, 2) 6= at(yq, 2)∀ p and q ∈ {1, 2, 3, ...., r} s.t p 6= q.
Contribution of Pw to the objective function is denoted by

Z(X)Pw=

m∑
i=1

n∑
j=1

(cij + fij)xij : xij = 1)
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Theorem 2.1. If a partial word given by
Pw = ((i1, j1), (i2, j2), · · · , (ir, jr))
= ((at(y1, 1), at(y1, 2)), · · · · · · , (at(yr, 1), at(yr, 2))), r ≤ n′,
is such that ∀yr ∈ Er either at(yr, 2) ∈ Ju or Z(XPw) ≥ Zu where Zu is the current
upper bound of objective function value, then
Pw = ((at(y1, 1), at(y1, 2)), (at(y2, 1), at(y2, 2)), · · · , (at(yr−1, 1), at(yr−1, 2)))
can’t generate a word with the better value of the objective than Zu.

Proof. Assume that Pw be a partial word of length r for which one of the following
holds

(1) For all yr ∈ Er either at(yr, 2) ∈ Ju.
(2) Z(XPw) ≥ Zu,

It means that either the destination at(yr, 2) has already been served or sup-
ply to the destination at(yr, 2) from sources at(yr, 1)∀yr ∈ Er when r −
1 destinations at(y1, 2), at(y2, 2), · · · , at(yr−1, 2) are being served by the sources
at(y1, 1), at(y2, 1), · · · , at(yr−1, 1) would not have the corresponding objective value
< Zu. This indicate that the partial word
Pw = ((at(y1, 1), at(y1, 2)), (at(y2, 1), at(y2, 2)), · · · , (at(yr−1, 1), at(yr−1, 2)))
would not produce a word corresponding to which Z(XPw) < Zu.

Remark 1. Let Pw = (at(y1, 1)at(y1, 2), at(y2, 1)at(y2, 2), . . . , at(yr, 1)at(yr, 2)) , r ≤
n′ be a partial word for which Z(X)Pw < Zu and

∑
i∈I

di
u ≥

∑
j∈J ′

gj then the current

partial word may generate a word with better objective value than Zu.

Remark 2. If ∀yr ∈ Er either at(yr, 2) ∈ Ju or Z(XPw) ≥ Zu then the partial word
is rejected as it would not generate a better feasible solution and the allocation of
some or all the the first r − 1 destinations must be altered.
Let Pw = (at(y1, 1)at(y1, 2), at(y2, 1)at(y2, 2), . . . , at(yr−1, 1)at(yr−1, 2)) be a partial
word s.t at(yr, 2) ∈Ju or Z(XPw) ≥ Zu. Then this partial word must undergo some
alteration i.e we try to find the possibility of choosing a destination at(y, 2), yr−1 <
y ≤ mn. If |Er| < n′ − (r− 1), then we try to find the possibility of choosing different
destination at (r − 2)th position and so on.

Remark 3. Let us assume that the next (n′ − r) elements from Alphabet Table are
arranged in non decreasing order of their value of the objective function. Let J ′(n

′−r)

be the index set of the first (n′ − r) destinations s.t
∑

j∈J ′(n′−r)

gj >
∑
i∈I

dui , then the

partial word Pw is rejected.

Remark 4. Let Pw = (at(y1, 1)at(y1, 2), at(y2, 1)at(y2, 2), . . . , at(yr, 1)at(yr, 2)) , r ≤
n′ s.t |Er+1| < n′ − |Pw|, then the current partial word would not generate a word of
length n′ and hence the partial word
Pw = ((at(y1, 1), at(y1, 2)), (at(y2, 1), at(y2, 2)), · · · , (at(yr−1, 1), at(yr−1, 2))) must be
altered.

Theorem 2.2. If Pw = (at(y1, 1), at(y1, 2)) is the partial for which any one of the
following holds
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(i) Z(XPw) ≥ Zu

(ii) |E2| < n′ − 1

then Zu is the optimal value of objective function.

Proof. If for a partial word Pw, Z(XPw) ≥ Zu then this partial word is rejected
as it can not generate a word with objective value < Zu. Also as cat(y1,1)at(y1,2) +

fat(y1,1)at(y1,2) ≤ cat(z,1)at(z,2) + fat(z,1)at(z,2)∀z > y1, it follows that Z(XPw) ≥
Zu ∀ partial word P̃w = (at(z, 1), at(z, 2)). Therefore all partial word P̃w =
(at(z, 1), at(z, 2)), z > y1 & z ∈ E2 can not generate a word with the objective value
< Zu. If condition (ii) holds then from (Ref. Remark 4), Pw can not contain a word
of length n′. As |E2| < n′ − 1, this implies that mn − z < n′ − 1, ∀z ∈ E2. Hence
Pw = ((at(z, 1)at(z, 2)) can not produce a word of length n′ because the words are
so generated that their contribution to the objective function is in decreasi ng order.
Then any word which derived from the partial word (at(y, 1), at(y, 2)), y < y1 can not
generate a value better than Zu. Therefore, as we are not able to find a word with a
better value of the objective so the optimal value of the objective function is Zu.

Theorem 2.3. Let Pw = (at(y1, 1)at(y1, 2), . . . , (at(yi, 1)at(yi, 2), . . . , at(yr, 1)at(yr, 2)) ,
r ≤ n′ be the partial word of length r which is obtained from successive augmen-
tation from the partial word Pw = (at(y1, 1)at(y1, 2), . . . , (at(yi, 1)at(yi, 2)) . Let
Iu = {at(yi, 1)}, where at(yi, 1) 6= at(yp, 1), p = i+ 1, . . . , r

& Z(XPw) =
∑
j∈Ju

(cat(yi,1)j +fat(yi,1)j : xat(yi,1)j = 1). Let (cat(yi,1)j +fat(yi,1)j) ∈ J−Ju

be arranged in non decresing order of their values and J ′(n
′−r) be the index of the first

(n′ − r) cost in this ordering. If Z(XPw) ≥ Zu −
∑

J ′(n′−r)

(cat(yi,1)j + fat(yi,1)j), then the

partial word Pw is rejected.

Proof. As we are given that Iu = {at(yi, 1)}, where at(yi, 1) 6= at(yp, 1), p =
i+ 1, . . . , r

& Z(XPw) =
∑
j∈Ju

(cat(yi,1)j + fat(yi,1)j : xat(yi,1)j = 1). So, Z(XPw) ≥

Zu −
∑

J ′(n′−r)

(cat(yi,1)j + fat(yi,1)j) and it means that Z(XPw) +
∑

J ′(n′−r)

(cat(yi,1)j +

fat(yi,1)j)at(yi,1)j ≥ Zu. It implies that any word which is generated from the patial

word Pw would not have the value less than Zu. Hence this partial word Pw can’t
generate a better word and must be rejected.

3. Algorithm

In the algorithm partial word will be updated using the following two ways.

A-I(Augmentation) Assume that the partial word represented by Pw is such that

Pw = ((at(y1, 1), at(y1, 2)), (at(y2, 1), at(y2, 2)), . . . , (at(yr, 1), at(yr, 2))),
Z(XPw) < Zu and is augmented with the (r + 1)th ordered pair, say
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(at(yr+1, 1), at(yr+1, 2)), i.e source at(yr+1, 1) is chosen to serve at(yr+1, 2) des-
tination. Then the partial word Pw is updated as follows:
Pw = Pw

⊎
(at(yr+1, 1), at(yr+1, 2))

duat(yr+1,1) = duat(yr+1,1) − gat(yr+1,2)

Iu = Iu
⋂
{at(yr+1, 1)} if duat(yr+1,1) < gj ∀ j ∈ J

′
. Otherwise, Iu remains the same.

Ju = {at(y1, 2), at(y2, 2), · · · , at(yr, 2)}
⊎
{at(yr+1, 2)}, J = J − {at(yr+1, 2)},

Set xat(yr+1,1)at(yr+1,2) = 1

A-II(Negation)Assume that the partial word represented by Pw is such that
Pw = (at(y1, 1), at(y1, 2), (at(y2, 1), at(y2, 2)), . . . , (at(yr, 1), at(yr, 2)))
for which one of the following holds:

(1) Z(XPw) ≥ Zu

(2) Any one of the conditions mentioned in (Ref. Remarks 2, 3, 4) or Theorem 2.1
holds

Then the partial word Pw is updated as follows:
Pw = Pw

⋂
(at(yr, 1), at(yr, 2))

duat(yr,1) = duat(yr,1) + gat(yr,2)

If at(yr, 1) is not an element of Iu, then Iu = Iu
⊎

(at(yr, 1)). Otherwise, Iu remains
the same. Ju = {at(y1, 2), at(y2, 2), · · · , at(yr, 2)}

⋂
{at(yr, 2)}, J = J + {at(yr, 2)},

Set xat(yr,1)at(yr,2) = 0.

3.1. Method to find initial upper bound Zu

Construct Alphabet Table AB, Ju = φ, Pw = φ, J = {1, 2 . . . , n},
I = {1, 2, . . . ,m}, e = 1, N = 1, go to Step (i).

Step (i) If at(e, 1) /∈ Iu or at(e, 2) ∈ Ju or dat(e,1) < gat(e,2), then go to Step (iii).
else update as in (A-I), find Pw, go to Step (ii).

Step (ii) If N < n′ and Iu 6= φ then set N = N + 1 and e = e+ 1 and then go to Step (i)
else go to Step (iv). If N = n′ we will get a word w and hence update Pw = w,
Zu = Z(Xw) and go to Step (v).

Step (iii) If e < mn, set e = e+ 1 and then go to Step(i) else go to Step (iv).

Step (iv) (a) If Pw 6= φ
If e < mn then update as in (A-II), find e = yN and set e = e+ 1 and then
go to Step (i).
If e = mn, then update as explained in (A-II) and set N = N − 1 then find
e = yN set e = e+ 1 and go to Step (i).

(b) If Pw = φ, set e = e+ 1 and then go to Step (i).
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Step (v) Hence Zu is the initial upper bound of objective function value. Stop.

3.2. Main Algorithm

Step 0 Find AB, Zu( Ref. Section 3.1) and let the corresponding word is denoted by w
i.e
w = (at(y1, 1), at(y1, 2) . . . (at(yn′ , 1), at(yn′ , 2)), Ju = φ, Pw = φ,
J = {1, 2 . . . , n}, I = {1, 2, . . . ,m}, e = 1 and N = 1, set Zopt = Zu and go to
Step 1.

Step 1 If at(e, 1) /∈ Iu or at(e, 2) ∈ Ju or dat(e,1) < gat(e,2), then go to Step 5.
else update as in (A-I), find Pw, go to Step 2.

Step 2 (a) If N < n′, for this Pw∑
j∈J ′(n′−r)

gj >

m∑
i=1

dui then go to Step 3.

Or if |Er+1| < n′ − |Pw|,
(i) |Pw| = 1, Go to Step 7.
(ii) |Pw| > 1, then update as in (A-II) and set N = N − 1, e = yN−1 and

then go to Step 3.
else go to Step 4.

(b) If N=n’, go to Step 4.

Step 3 (a) If Pw 6= φ
If e < mn then update as in (A-II), find e = yN and set e = e + 1 and go
to Step 1.
If e = mn, then update as explained in (A-II) and set N = N − 1 then find
e = yN , set e=e+1, go to Step 1.

(b) If Pw = φ, set e = e+ 1 and go to Step 1.

Step 4 Find Z(XPw) and if
(a) Z(XPw) < Zu,

(i) If N = n′, go to Step 6.
(ii) If N < n′ and conditions mentioned in Theorem 2.3 holds then

If |Pw| = 1, go to Step 7.
If |Pw| > 1, update as in (A-II). Find e = yN and set N = N − 1 if
N > 1 else set N = 1 and then go to Step 3, else go to Step 6.

(b) Z(XPw) ≥ Zu, N > 1 then update as in (A-II) set N = N − 1, e = yN and
go to Step 3. If yr = mn then update as in (A-II). Set N = N − 1, e = yN ,
go to Step 3. If N = 1 then go to Step 7.

Step 5 If e < mn and Theorem 2.3 holds, go to Step 3 else set e = e+ 1 and go to Step
1. If e = mn, go to Step 3.

Step 6 If N < n′, set N = N + 1 and e = e + 1 and then go to Step 1. If N = n′ we
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found a word w and hence update w = Pw, Zu = Z(Xw). If Zu < Zopt then set
Zopt = Zu and go to Step 1 else go to Step 7.

Step 7 Stop. Zu is the optimal solution of FCBTP for some n′ < n.

4. Numerical Illustration

Consider a Fixed Charge Bulk Transportation Problem having three sources and five
destinations. It is given that demands of only four destinations are to be fulfilled.

Table 1. The entries of each cell in the upper left corner shows the bulk cost and lower right corner shows
the fixed cost of transportation. The availabilities and requirement at each source and destination is 7,8,9 &

3,5,4,6,2 respectively.

10 9 11 7 8 7

50 60 30 20 30

11 10 13 14 12 8

20 30 50 60 40

8 6 9 10 13 9

40 50 80 30 80

3 5 4 6 2

Fixed Bulk Matrix

Table 2.

60 69 41 27 38

31 40 63 74 52

48 56 89 40 93

Alphabet Table:-

Step 0 (Initialization) Construct alphabet table AB, Find Zu = 187 ( Ref. Section 3.1)
and the corresponding word is denoted by w i.e
w = ((1, 4), (2, 1), (2, 2), (3, 3)), Ju = φ, Pw = φ,
J = {1, 2, 3, 4, 5}, I = {1, 2, 3}, e = 1, N = 1, go to Step 1.
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Table 3.
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D 27 31 38 40 40 41 48 52 56 60 63 69 74 89 93

AB (1,4) (2,1) (1,5) (2,2) (3,4) (1,3) (3,1) (2,5) (3,2) (1,1) (2,3) (1,2) (2,4) (3,3) (3,5)

Step 1 Find at(1, 1) = 1 ∈ Iu, at(1, 2) = 4 /∈ Ju then update as in (A-I). Set Pw =
{(1, 4)}, du1 = 7− 6 = 1, Ju = {4}, go to Step 2.

Step 2 None of the condition satisfies then go to Step 4.

Step 4 Find Z(XPw) = 27 < Zu, go to Step 6.

Step 6 N = 1 < n′, Set N = 2, e = 2 and go to Step 1.

Step 1 Find at(2, 1) = 2 ∈ Iu, at(2, 2) = 1 /∈ Ju then update as in (A-I). Set Pw =
{(1, 4), (2, 1)}, du2 = 5, Ju = {4, 1}, go to Step 2.

Step 2 None of the condition satisfies then go to Step 4.

Step 4 Find Z(XPw) = 58 < Zu, go to Step 6.

Step 6 N = 2 < n′, Set N = 3, e = 3 and go to Step1.

Step 1 Find at(3, 1) = 1 /∈ Iu, at(3, 2) = 5 /∈ Ju then go to Step 5.

Step 5 If e = 3 < mn then set e = e+ 1 = 4 and then go to step 1.

Step 1 Find at(4, 1) = 2 ∈ Iu, at(4, 2) = 2 /∈ Ju then update as in (A-I). Set Pw =
{(1, 4), (2, 1), (2, 2)}, Ju = {4, 1, 2}, du2 = 0, go to Step 2.

Step 2 None of the condition satisfies then go to Step 4.

Step 4 Find Z(XPw) = 98 < Zu, go to Step 6.

Step 6 N = 3 < n′, Set N = 4, e = 5 and go to Step1.

Step 1 Find at(5, 1) = 3 ∈ Iu, at(5, 2) = 4 ∈ Ju then go to Step 5.

Step 5 If e = 5 < mn then set e = e+ 1 = 6 and go to step 1.

Step 1 Find at(6, 1) = 1 /∈ Iu, at(6, 2) = 3 /∈ Ju then go to Step 5.

Step 5 If e = 6 < mn then set e = e+ 1 = 7 and go to step 1.

Step 1 Find at(7, 1) = 3 ∈ Iu, at(7, 2) = 1 ∈ Ju then go to Step 5.

Step 5 If e = 7 < mn then set e = e+ 1 = 8 and go to step 1.

Proceeding likewise we reach a stage when N = n′

Step 6 N = 4 = n′

Set w = Pw = ((2, 1), (1, 5), (2, 2), (3, 4)) &Zu = Z(XPw) = 149.

This implies that we get a word w = ((2, 1), (1, 5), (2, 2), (3, 4)) and the corresponding
objective is the optimal value which is better than the initial upper bound. Hence,
the optimal value of the fixed charge bulk transportation problem is obtained using
lexi-search approach in which out of five destinations only four destinations are to be
served. The run time for the same problem is also found using MATLAB which is
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equal to 0.041662 seconds.

5. Computational Details

The algorithm has been coded in MATLAB and successfully verified for random gen-
erated FCBTP of different sizes. Implementation is done on Intel Processor i5 with
2.40 gigahertz, 4 gigabyte RAM on 64 - bit window operating system. Table 4 shows
the computational behaviour of the algorithm for some class of different sizes.

Table 4. Average run time (taken over 1000 instances) of FCBTP for randomly generated problem of different

sizes using MATLAB.

Source(m) Destination(n) Destinations to be served (n’) Run Time(sec)
10 10 8 0.041771
10 20 15 0.057594
20 20 18 0.087178
20 30 25 0.129657
30 30 28 0.187992
30 40 35 0.279782
40 40 38 0.389773
40 50 45 0.526476
50 50 48 0.632340
50 60 55 0.818588
60 60 58 1.044372
60 70 65 1.293830
70 70 68 1.555681
70 80 75 1.947334
80 80 78 2.323009
80 90 85 2.981653
90 90 88 3.475649
90 100 95 4.179205

Concluding Remarks

(1) An exact method to find solution of fixed charge bulk transportation problem is
proposed in which out of the total n destinations only n′ destinations (n′ < n)
using lexi search technique are serverd and converge to the optimal solution in
limited steps because
(a) The highest generated words are nm.
(b) Each new word created gives a more tight bound on the ideal estimation of

the optimal solution.
(c) Every Partial word generated in the process which yields the value greater

than the initial upper bound are rejected.
(d) Infeasible partial word are also rejected whenever encountered in the pro-

cess, therefore infeasible words are never generated.
(2) The algorithm has been coded in MATLAB and runs successfully for a variety

of test problems. This test problems have been generated randomly following a
uniform distribution for all the instances i.e, availabilities, demands, bulk cost,
fixed cost, sources and destinations.
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(3) The proposed study can also be extended to a more generalized case in which
there are bounds on the quantity to be transported from each source.

References

[1] Adlakha V, Kowalski K.: On the fixed-charge transportation problem. Omega. 27(27),
381-388(1999).

[2] Adlakha V, Kowalski K.: A simple heuristic for solving small fixed-charge transportation
problems. Omega. 31(3),205-211(2003).

[3] Adlakha V, Kowalski K.: A simple algorithm for source induced fixed-charge transporta-
tion problem. JORS J Oper Res Soc. 2004;55:1275-1280.

[4] Adlakha V, Kowalski K, Lev B.: A Branching method for the fixed-charge transportation
problem. OMEGA Int J Manag Sci. 2010;38:393-397.

[5] Adlakha V, Kowalski K, Vemuganti R. Heuristic algorithms for fixed-charge transporta-
tion problem. OPSEARCH. 2006;43:132-151.

[6] Adlakha V, Kowalski K, Vemuganti RR,Lev B.: More-for-less algorithm for fixed charge
transportation problems. OMEGA Int J Manag Sci. 35(1),116-127(2007).

[7] Adlakha V, Kowalski K, Wang S, Lev B, Shen W.: On approximation of the fixed charge
transportation problem. Omega. 43,64-70(2014).

[8] Aguado J.: Fixed charge transportation problems: a new heuristic approach based on
lagrangean relaxation and the solving of core problems. Ann Oper Res. 172,45-69(2009).

[9] Arora S.R.,Ahuja A.: A Paradox in a Fixed Charge Transportation Problem. Indian J.pure
applMath. 31(7):809-822(2000).

[10] Arora S, Puri, M.C.: A variant of time minimizing assignment problem. Eur J Oper
Res.110,314-325(1998).

[11] Balas E, Glover F, Zionts S.: An additive algorithm for solving linear programs with zero
one variables. Operations Research. INFORMS. 13(4),517-549(1965).

[12] Balinski M.L.: Fixed-Cost Transportation Problems. Nav Res Logist Q. 8(01),41-54(1961).
[13] Cooper L, Drebes C.: An Approximate Solution Method For The Fixed Charge Problem.

Nav Res Logist Q. 14(1)(1967).
[14] Cooper L.: The fixed charge problem-I: A new heuristic method. Comput Math with

Appl. 1(1),89-95(1975).
[15] Cooper L, Olson A.M.: Random Perturbations and MI-MII Heuristics For The Fixed

Charge Problem.
[16] De Maio A, Roveda C.: An All Zero-One algorithm For A Certain Class Of Transportation

Problems. INFORMS. 19(6),1406-1418(1969).
[17] Denzler D.R.: An Approximative Algorithm For The Fixed Charge Problem. Nav Res

Logist Q. 16(3)(1969).
[18] Gray P.: Exact Solution of the Fixed-Charge Transportation Problem. Oper Res.

19(6),1529-1538(1971).
[19] Hirsch, W. M., Dantzig G. B.: The Fixed Charge Problem. Rand Corp. RM-1383:413-

424(1954).
[20] Hirsch, W. M., Dantzig G. B.: The fixed charge problem. Naval Research Logistics, 15:

413424 (1968).
[21] Kowalski K, Lev B.: On step fixed-charge transportation problem. OMEGA Int J Manag

Sci. 36(5),913-917(2008).
[22] Kowalski K, Lev B, Shen W, Tu Y.: A fast and simple branching algorithm for solving

small scale fixed-charge transportation problem. Oper Res Perspect. 1(1),1-5(2014).
[23] Murthy MS.: A Bulk Transportation Problem. OPSEARCH. 13(3-4),143-155(1976).
[24] Murty K.G.: Solving the Fixed Charge Problem by Ranking the Extreme Points. Oper

Res. 16(2),268-279(1968).

211



Bindu Kaushal and Shalini Arora

[25] Puri M.C, Swarup K.: A Systematic Extreme Point Enumeration Procedure For Fixed
Charge Problem. Trab Estad y Investig Oper. 25(1),99-108(1974).

[26] Robers P, Cooper L.: A study of the fixed charge transportation problem. Comput Math
with Appl. 2(2),125-135(1976).

[27] Sadagopan S, Ravindran A.: A Vertex Ranking Algorithm for the Fixed-Charge Trans-
portation Problem. J Optim Theory Appl. 37(2)(1982).

[28] Srinivasan V, Thompson GL.: An Algorithm for Assigning Uses to Sources in a Special
Class of Transportation Problems. INFORMS. 21(1),284-295(1973).

[29] Steinberg D.I.: The Fixed Charge Problem. Nav Res Logist Q. 17(2)(1970).
[30] Walker W.: A heuristic adjacent extreme point algorithm for fixed charge problem. Man-

age Sci. 22,587-596(1976).
[31] Warren M.H, Hoffman A.J.: Extreme Varieties, Concave Functions, and the Fixed Charge

Problem. Commun Pure Appl Math. XIV,355-369(1961).

212


