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Abstract

In this work, we propose a delayed SEIR epidemic model. The time delay, τ, is introduced to
model the latent period. The resulting model has two possible equilibria (free disease equilibrium
and endemic equilibrium). Our main contribution affirms the existence of non constant periodic
solutions which bifurcate from the endemic equilibrium when the delay crosses some critical val-
ues. Also we propose a comparison of a delayed SEIR model and its corresponding delayed SIR
model. Furthermore, some numerical simulations are presented to illustrate our theoretical results.
Keywords. SEIR epidemic model; generalized incidence rates; global asymptotic stability; Lyapunov-
LaSalle’s principle; Hopf bifurcation.

1 Introduction
The spread of an infectious disease in a population is a dynamic phenomenon. Such a phenomenon
can be modeled by differential systems [1, 2, 3, 4, 6, 11, 15, 16, 18, 5]. The behavior of the resulting
systems is very rich: stability, fluctuations, periodic oscillations or chaos. In particular, the existence
of non constant periodic solution which bifurcates from an equilibrium can be guaranteed by the Hopf
bifurcation theorem. This problem in epidemic models are analyzed in literature (see [8, 10, 12, 14,
17] and the references therein).
In this paper, we propose the following SEIR epidemic model with a discrete time delay and a general
nonlinear incidence function [17]:

dS
dt

= A− µS − f(S, I),
dE
dt

= f(S, I)− µE − σEτ ,
dI
dt

= σEτ − (µ+ γ)I,
dR
dt

= γI − µR.

(1)

Here A = µN, where N = S +E + I +R is the total number of population, S is the number of sus-
ceptible individuals, I is the number of infectious individuals, E is the number of exposed individuals,
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R is the number of recovered individuals, µ is the natural death of the population, f is the incidence
function, γ is the recovery rate of the infectious individuals, σ is the rate at which exposed individuals
become infectious and τ is the time delay.

The first three equation in system (1) do not depend on the fourth equation, and therefore this equation
can be omitted without loss of generality. System (1) can be rewritten as

dS
dt

= A− µS − f(S, I),
dE
dt

= f(S, I)− µE − σEτ ,
dI
dt

= σEτ − (µ+ γ)I.
(2)

With the initial conditions

S(θ) = ϕ1(θ), E(θ) = ϕ2(θ), I(θ) = ϕ3(θ),

where ϕi ∈ C such that ϕi(θ) ≥ 0, for i = 1, 2, 3. Here C denotes the Banach space C([−τ, 0],R) of
continuous functions mapping the interval [−τ, 0] into R with the supremum norm. From a biological
meaning, we assume that f is twice continuously differentiable function satisfaying:

(H0) f(S, 0) = f(0, I) = 0;

(H1) f is a strictly monotone increasing function of S ≥ 0, for any fixed I > 0, and f is a monotone
increasing function of I ≥ 0, for any fixed S ≥ 0;

(H2) φ(S, I) = f(S,I)
I

is a bounded and monotone decreasing function of I > 0, for any fixed S ≥ 0,
and K(S) = limI→0+ φ(S, I) is a continuous and monotone increasing function on S ≥ 0.

Xu and Liao [17] analyzed the stability and the local Hopf bifurcation for system (2) with bilinear
incidence function(f(S, I) = βSI). The aim of this paper is to use model (2) with a generalized
incidence function to investigate the global stability of the disease-free equilibrium and the existence
of periodic solutions bifurcating from the endemic equilibrium. The rest of the paper is organized as
follows: In Section 2, we prove the existence and uniqueness of the endemic equilibrium and by the
Lyapunov-LaSalle invariance principle to prove the global stability of the disease-free equilibrium.
In Section 3, by analyzing the characteristic equation, the local stability and the Hopf bifurcation of
the endemic equilibrium is established for some sufficient conditions. In section 4, we present some
application of the main result with particular incidence function, and some numerical simulations are
given. In Section 5, we present some concluding remarks.

2 Equilibria and global stability analysis of disease-free equilib-
rium

2.1 Equilibria
Note that the system (2) always has a disease-free equilibrium P0 = (A

µ
, 0, 0). On the other hand, The

existence of endemic equilibrium is determined by the following proposition:
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Proposition 1 Under the hypotheses (H0)− (H2), if

R0 =
σK(A

µ
)

(µ+ σ)(µ+ γ)
> 1,

then system (2) admits a unique endemic equilibrium P ∗ = (S∗, E∗, I∗), with

S∗ =
A

µ
− (µ+ σ)(µ+ γ)I∗

µσ
=, E∗ =

(µ+ γ)I∗

σ
,

and I∗ is the unique solution of the following equation:

f(A
µ
− (µ+σ)(µ+γ)I∗

µσ
, I)

I
− (µ+ σ)(µ+ γ)

σ
= 0.

Proof. We prove the existence and the uniqueness of the endemic equilibrium P ∗. At a fixed point
(S,E, I) of system (2), the following equations hold.

A− µS − f(S, I) = 0, f(S, I)− (µ+ σ)E = 0, σE − (µ+ γ)I = 0.

A simple calculation gives the following system:
S = A

µ
− (µ+σ)(µ+γ)I

µσ
,

E = (µ+γ)I
σ

,
f(A

µ
− (µ+σ)(µ+γ)I

µσ
,I)

I
− (µ+σ)(µ+γ)

σ
= 0.

(3)

using the three equation in (3), we set

g(I) :=
f(A

µ
− (µ+σ)(µ+γ)I

µσ
, I)

I
− (µ+ σ)(µ+ γ)

σ
= 0.

By the hypotheses (H0), (H1), (H2) and R0 > 1, g is strictly monotone decreasing on ]0, σA
(µ+σ)(µ+γ)

]
satisfying:

lim
I→0+

g(I) = K(
A

µ
)− (µ+ σ)(µ+ γ)

σ

=
(µ+ σ)(µ+ γ)

σ
(

K(A
µ

)

(µ+σ)(µ+γ)
σ

− 1)

=
(µ+ σ)(µ+ γ)

σ
(R0 − 1) > 0

and

g(
σA

(µ+ σ)(µ+ γ)
) = −(µ+ σ)(µ+ γ)

σ
< 0.

Thus, there exists a unique I∗ such that g(I∗) = 0.
Hence, we conclude the existence and uniqueness of the endemic equilibrium P ∗.
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2.2 Global stability analysis of the disease-free equilibrium
Now, we discuss the global stability of the disease-free equilibrium P0 of system (2).

Proposition 2 If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically stable.

Proof. Define a Lyapunov functional

W0(t) = V0(t) + U0(t),

where

V0(t) =

∫ S

A
µ

(1−
K(A

µ
)

K(u)
)du,

and

U0(t) = E +
σ + µ

σ
I + µ

∫ t

t−τ
E(u)du.

We will show that dW0(t)
dt
≤ 0 for all t ≥ 0. We have :

dV0(t)

dt
= (1−

K(A
µ

)

K(S)
)Ṡ

= (1−
K(A

µ
)

K(S)
)(A− µS − f(S, I))

= µ(1−
K(A

µ
)

K(S)
)(
A

µ
− S)− f(S, I) +

K(A
µ

)

K(S)
f(S, I),

and

dU0(t)

dt
= f(S, I)− µE − σEτ + (σ + µ)Eτ

− (µ+ σ)(µ+ γ)

σ
I + µE − µEτ

= f(S, I)− (µ+ σ)(µ+ γ)

σ
I.

Then

dW0(t)

dt
= µ(1−

K(A
µ

)

K(S)
)(
A

µ
− S)

+
K(A

µ
)

K(S)
f(S, I)− (µ+ σ)(µ+ γ)

σ
I

= µ(1−
K(A

µ
)

K(S)
)(
A

µ
− S)

+
(µ+ σ)(µ+ γ)

σ
I[
φ(S, I)

K(S)
R0 − 1].
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By the hypothesis (H2), we obtain that

(1−
K(A

µ
)

K(S)
)(
A

µ
− S) ≤ 0,

Where equality holds if and only if S = A
µ
.

Furthermore, it follows from the hypothesis (H2) that

φ(S, I)

K(S)
R0 ≤ R0.

Therefore, R0 ≤ 1 ensures that dW0(t)
dt
≤ 0 for all t ≥ 0, where dW0(t)

dt
= 0 holds if (S,E, I) =

(A
µ
, 0, 0). Hence, it follows from system (2) that {P0} is the largest invariant set in

{
(S,E, I)|dW0(t)

dt
= 0
}

.
From the Lyapunov-LaSalle theorem, we obtain that P0 is globally asymptotically stable. This com-
pletes the proof.

3 Stability and Hopf bifurcation of the endemic equilibrium
In this section, we discuss the local asymptotic stability of the endemic equilibrium P ∗ and we use the
Hopf Bifurcation theorem to derive sufficient conditions for the bifurcation of nonconstant periodic
solutions from this nontrivial equilibrium.
Let x = S − S∗, y = E − E∗ and z = I − I∗. Then the linearized equation around the equilibrium
point P ∗ is given as follows:

dx
dt

= (−µ− ∂f
∂S

(S∗, I∗))x(t)− ∂f
∂I

(S∗, I∗)z(t),
dy
dt

= ∂f
∂S

(S∗, I∗)x(t) + ∂f
∂I

(S∗, I∗)z(t)− µy(t)− σy(t− τ),
dz
dt

= σy(t− τ)− (µ+ γ)z(t).

(4)

The Jacobian matrix M(λ) of equation (4) is defined as follows:

M(λ) =

 λ+ µ+ ∂f
∂S

(S∗, I∗) 0 ∂f
∂I

(S∗, I∗)

− ∂f
∂S

(S∗, I∗) λ+ µ+ σe−λτ −∂f
∂I

(S∗, I∗)
0 −σe−λτ λ+ (µ+ γ)


The characteristic equation of the equation (4) takes the general form:

∆(λ, τ) = λ3 + Aλ2 +Bλ+ C + [Dλ2 + Eλ+ F ]e−λτ = 0, (5)

where

A = (2µ+ γ) + (µ+
∂f

∂S
(S∗, I∗)), B = µ(µ+ γ) + (2µ+ γ)(µ+

∂f

∂S
(S∗, I∗)),

C = µ(µ+ γ)(µ+
∂f

∂S
(S∗, I∗)), D = σ, E = σ(µ+ γ)− σ∂f

∂I
(S∗, I∗) + σ(µ+

∂f

∂S
(S∗, I∗)),

F = (µ+
∂f

∂S
(S∗, I∗))(µ+ γ)σ − σ(µ+

∂f

∂S
(S∗, I∗))

∂f

∂I
(S∗, I∗) + σ

∂f

∂S
(S∗, I∗)

∂f

∂I
(S∗, I∗).

In order to investigate the local stability of the endemic equilibrium P ∗, we begin by considering
the case without delay τ = 0.
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Lemma 3 Suppose that the hypotheses (H0)− (H2) hold.
For τ = 0, if R0 > 1, then the endemic equilibrium P ∗ is locally asymptotically stable.

Proof. When τ = 0 the characteristic equation (5) reads as

λ3 + (A+D)λ2 + (B + E)λ+ (C + F ) = 0. (6)

Firstly, from hypothesis (H1), we have ∂f
∂S

(S∗, I∗) ≥ 0, which implies that (A + D) > 0. Secondly,
from the formula (µ+σ)(µ+γ)

σ
= f(S∗,I∗)

I∗
, we find that

C + F = µ(µ+ γ)(µ+
∂f

∂S
(S∗, I∗)) + σ(µ+ γ)(µ+

∂f

∂S
(S∗, I∗))− µσ∂f

∂I
(S∗, I∗)

= µσ
((µ+ σ)(µ+ γ)

σ
− ∂f

∂I
(S∗, I∗)

)
+ (µ+ γ)(µ+ σ)

∂f

∂S
(S∗, I∗)

= µσ
(f(S∗, I∗)

I∗
− ∂f

∂I
(S∗, I∗)

)
+ (µ+ γ)(µ+ σ)

∂f

∂S
(S∗, I∗),

and

(A+D)(B + E)− (C + F ) = (2µ+ γ)
(

(2µ+ γ)(µ+
∂f(S∗, I∗)

∂S
) + σ(µ+

∂f(S∗, I∗)

∂S
)
)

+ (µ+
∂f(S∗, I∗)

∂S
)(2µ+ γ)(µ+

∂f(S∗, I∗)

∂S
) + σ(µ+

∂f(S∗, I∗)

∂S
)2

+ σ(2µ+ γ)(µ+
∂f(S∗, I∗)

∂S
) + σ2(µ+

∂f(S∗, I∗)

∂S
)

+ σ
(

(2µ+ γ) + (µ+
∂f(S∗, I∗)

∂S
) + σ

)((µ+ γ)(µ+ σ)

σ
− ∂f(S∗, I∗)

∂I

)
+ σµ

∂f(S∗, I∗)

∂I
− µ(µ+ γ)(µ+

∂f(S∗, I∗)

∂S
)− σ(µ+ γ)(µ+

∂f(S∗, I∗)

∂S
)

= (2µ+ γ)
(

(2µ+ γ)(µ+
∂f(S∗, I∗)

∂S
) + σ(µ+

∂f(S∗, I∗)

∂S
)
)

+ σ(µ+
∂f(S∗, I∗)

∂S
)2 + σ2(µ+

∂f(S∗, I∗)

∂S
)

+
∂f(S∗, I∗)

∂S
(2µ+ γ)(µ+

∂f(S∗, I∗)

∂S
)

+ σµ
∂f(S∗, I∗)

∂I
+ µ2(µ+

∂f(S∗, I∗)

∂S
) + µσ(µ+

∂f(S∗, I∗)

∂S
)

+ σ
(

(2µ+ γ) + (µ+
∂f(S∗, I∗)

∂S
) + σ

)(f(S∗, I∗)

I∗
− ∂f(S∗, I∗)

∂I

)
.

Hence, by hypothesis (H1) and Kaddar’s lemma (see Lemma 4.1 in [7]), we have C + F ≥ 0 and
(A + D)(B + E) − (C + F ) ≥ 0. Thus, according to the Routh-Hurwitz criterion, the endemic
equilibrium P ∗ is locally asymptotically stable.

We assume in the sequel that hypotheses (H0) − (H2) are true and we return to the study of
equation (5) with τ > 0.
Equation (5) has a purely imaginary root iω (ω > 0) if and only if

− Aω2 + C = (Dω2 − F ) cos(ωτ)− Eω sin(ωτ) (7)
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ω3 −Bω = (Dω2 − F ) sin(ωτ) + Eω cos(ωτ) (8)

Squaring and adding the squares together, we obtain

ω6 + aω4 + bω2 + c = 0, (9)

with a = A2 −D2 − 2B, b = B2 − 2AC −E2 + 2DF, c = C2 − F 2, where A,B,C,D,E and F
are given by (5).
Letting z = ω2, equation (9) becomes the following cubic equation

h(z) = z3 + az2 + bz + c = 0. (10)

Lemma 4 [13] Define
∆ = a2 − 3b

(i) If c < 0, then equation (10) has at least one positive root.

(ii) If c ≥ 0 and ∆ ≤ 0, then equation (10) has no positive roots.

(iii) If c ≥ 0 and ∆ > 0, then equation (10) has positive roots if and only if z := 1
3
(−a +

√
∆) > 0

and h(z) ≤ 0.

Suppose that equation (10) has positive roots. Without loss of generality, we assume that equation
(10) has three positive roots, denoted by z1, z2 and z3, respectively. Then equation (9) has three
positive roots, say

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3

Let

τl =
1

ωl
[arccos

((Aω2
l − C)(F −Dω2

l ) + (ω3
l −Bωl)Eωl

(Dω2
l − F )2 + E2ω2

l

)
], l = 1, 2, 3.

Then ±iωl is a pair of purely imaginary roots of equation (5) with τ = τl, l = 1, 2, 3. Thus, we can
define

τ0 = τl0 = min
l=1,2,3

(τl), ω0 = ωl0 . (11)

To investigate the local stability and the existence of periodic solutions bifurcating from the en-
demic equilibrium, we need the following results:

Lemma 5 Suppose that (H0)− (H2) hold.

(i) If one of the following:

(N1) c ≥ 0 and ∆ ≤ 0;

(N2) c ≥ 0 ∆ > 0 and z ≤ 0;

(N3) c ≥ 0 and ∆ > 0, and h(z) ≤ 0.
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is true, then all roots of equation (5) have negative real parts for all τ ≥ 0.

(ii) If c < 0, or c ≥ 0, ∆ > 0, z > 0, and h(z) ≤ 0, then all roots of equation (5) have negative real
parts when τ ∈ [0, τ0),

where ∆ and z are defined in lemma 4 and τ0 is defined by (11).

Proof. The proof follows from the lemmas 3 and 4.

To guarantee the transversality condition of the Hopf bifurcation theorem [9], we establish the
following result:

Lemma 6 Suppose that (H0)− (H2) re satisfied and that λ(τ) = u(τ) + iω(τ) is a root of equation
(5).
If one of the following:

(S1) c < 0 and h
′
(ω2

0) 6= 0,

(S2) c ≥ 0, ∆ > 0, z > 0 and h(z) < 0,

is true, then
du

dτ
(τ0) 6= 0,

where τ0, and ω0 are defined in (11).

Proof. λ(τ) = u(τ) + iω(τ), is a root of equation (5) if and only if

u3 − 3uω2 + Au2 − Aω2 +Bu+ C = −e−uτ
(
Du2 cos(ωτ)−Dω2 cos(ωτ) (12)

+Eu cos(ωτ) + F cos(ωτ) + 2Duω sin(ωτ) + Eω sin(ωτ)
)

and
3u2ω − ω3 + 2Auω +Bω = −e−uτ

(
−Du2 sin(ωτ) +Dω2 sin(ωτ) (13)

−Eu sin(ωτ)− F sin(ωτ) + 2Duω cos(ωτ) + Eω cos(ωτ)
)

Let u(τ) and ω(τ) satisfying u(τ0) = 0, and ω(τ0) = ω0.
By differentiating equations (12) and (13) with respect to τ in τ = τ0, we get

g1
du(τ0)

dτ
+ g2

dω(τ0)

dτ
= g3, (14)

− g2
du(τ0)

dτ
+ g1

dω(τ0)

dτ
= g4, (15)

where

g1 = −3ω2
0 +B + (E +Dω2

0τ0 − Fτ0) cos(ω0τ0) + (2Dω0 − Eω0τ0) sin(ω0τ0),
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g2 = −2Aω0 + (E +Dω2
0τ0 − Fτ0) sin(ω0τ0) + (−2Dω0 + Eω0τ0) cos(ω0τ0),

g3 = (−Dω3
0 + Fω0) sin(ω0τ0)− Eω2

0 cos(ω0τ0),

and
g4 = (−Dω3

0 + Fω0) cos(ω0τ0)− Eω2
0 sin(ω0τ0).

Solving for du(τ0)
dτ

we get
du(τ0)

dτ
=
g1g3 − g2g4
g21 + g22

, (16)

Therefore, we have
du(τ0)

dτ
=
ω2
0h
′
(ω2

0)

g21 + g22
(17)

Thus, if h
′
(ω2

0) 6= 0 we have the transversally condition:

du(τ0)

dτ
6= 0.

If du(τ0)
dτ

< 0 for τ < τ0 and close to τ0, then equation (5) has a root λ(τ) = u(τ) + iω(τ) satisfying
u(τ) > 0, which contradicts (ii) of Lemma 4. This completes the proof.

From lemmas 3, 5 and 6, we obtain the following theorem.

Theorem 7 Assume that (H0)− (H2) hold and R0 > 1.

(a) If (i) of lemma 5 holds, then the equilibrium P ∗ of system (2) is locally asymptotically stable for
all τ ≥ 0.

(b) If (S1) or (S2) of lemma 6 holds, then there exists a positive τ0 such that, when τ ∈ [0, τ0) the
endemic equilibrium P ∗ is locally asymptotically stable, and when τ = τ0, a non constant
periodic solution bifurcates from this equilibrium, where τ0 is given by

τ0 =
1

ω0

arccos
((Aω2

0 − C)(F −Dω2
0) + (ω3

0 −Bω0)Eω0

(Dω2
0 − F )2 + E2ω2

0

)
, (18)

and ω0 is the leat simple positive root of equation (9), with A,B,C,D,E and F are defined in
(5).

4 Numerical simulations
In this section, we give some numerical simulations to illustrate the theoretical analysis. Let

f(S, I) =
βSI

1 + αI
.

We take the parameters of the system (1) as follows:

A = 10, α = 0.9, µ = 0.005, γ = 0.02, β = 0.1 and σ = 0.5.

By theorem 7, we have if τ < τ0 = 3.1621, then P ∗1 is locally asymptotically stable (see Figure 1). If
we increase the value of τ, then a periodic solution occurs at τ0 = 3.1621, (see Figure 2), with the
initial condition (S(0), E(0), I(0)) = (86.36577, 16.2469, 381.7174).
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Figure 1: For τ = 2.2182 Solutions (S,E, I) of a discrete SEIR epidemic model (1) are locally
asymptotically stable and converge to the endemic equilibrium P ∗1

Figure 2: For τ = τ0 = 3.1621 a Hopf bifurcation occurs and periodic solutions appean of a discrete
SEIR epidemic model (1).

5 Concluding remarks
In this work, we have proposed a generalization of the delayed SEIR epidemiological model set forth
by Xu et al. [17]. Our contribution consists to consider this model with a generalized incidence
function.
By the Hopf bifurcation theorem, we have proved that the introduction of time delay in the SEIR
model can destabilize this system, giving rise to a branch of periodic solutions bifurcated from the
endemic equilibrium. This result confirms the result obtained by Xu et al. in the particular case of the
incidence function (f(S, I) = αSI) [17].
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