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ON INEXTENSIBLE FLOWS OF BINORMAL DEVELOPABLE
SURFACES IN EUCLIDEAN 3-SPACE E3

SELÇUK BAŞ, RIDVAN C. DEMIRKOL AND VEDAT ASIL

Abstract. In this study, we �rstly introduce fundamental de�nitions belong-
ing to a space curve in Euclidean 3-space. We also present some important
structures on the surfaces in an ordinary three dimensional structure. Then we
de�ne developable surfaces by investigating the inextensible �ows of binormal
developable surfaces in Euclidean 3-space E3. Finally, we obtain results for
minimal binormal developable surfaces in Euclidean 3-space E3.

1. Introduction

Flows of particles is an important active research �eld in the di¤erential geometry
studies and it is heavily studied for a long time and it is still under consideration.
Therefore, it introduces the miniature, architect, simulation of kinematic motion
or design of highways and mechanic tools. Park investigated inextensible �ows of
curves and surfaces in E3, [14].
One of the most e¤ective ways of forming new surfaces is to utilize the base

curve and the ruling. These ruled surface are said to be developable providing that
the tangent plane of the �xed ruling is constant throughout the �ow. It is formed
without tearing or strecthing. Thus, it has many substantial applications on the
designing and manufacturing of the products. They have also a crucial role in the
study of computer aided geometric design, modelling buildings, ship hulls, airplaane
wings, automobille parts, garments, etc [2; 3; 15].
Developable surfaces are also obtained by the construction of the inextensible

surface and curve �ows in space. These particular �ows of inextensible surface and
curve bring about to motions such that there is no strain energy induced [4� 12].

In this study, we �rstly introduce fundamental de�nitions belonging to a space
curve in Euclidean 3-space. We also present some important structures on the
surfaces in an ordinary three dimensional structure. Then we de�ne developable
surfaces by investigating the inextensible �ows of binormal developable surfaces in
Euclidean 3-space E3. Finally, we obtain results for minimal binormal developable
surfaces in Euclidean 3-space E3.

1991 Mathematics Subject Classi�cation. Primary 53A04.
Key words and phrases. Inextensible �ows, Developable surface, Euclidean 3-space.

*AMO - Advanced Modeling and Optimization. ISSN: 1841-4311
321
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2. Preliminaries

Frenet-Serret frame is used to describe the characterization of the intrinsic geo-
metrical features of the regular curve in space. This coordinate system is con-
structed by three orthonormal vectors e�(�); assuming the curve is su¢ ciently smooth
at each point. In particular, e�(0) is the unit tangent vector, e

�
(1) is the unit nor-

mal vector, and e�(2) is the unit binormal vector of the curve 
; respectively. Or-
thonormality conditions are summarized by e�(�)e

�
(�) = ��� ; where � is Euclid-

ean metric such that: diag(1; 1; 1) : For non-negative coe¢ cients �; �; and vectors
e�(i) (i = 0; 1; 2) following equations are valid [16].

r
0e�(0) = �e�(1);
r
0e�(1) = ��e�(0) + �e�(2);
r
0e�(2) = ��e�(1):

3. Inextensible Flows of Binormal Developable Surfaces

A surface M is ruled if through every point of M there is a straight line that
lies onM.
The binormal developable of 
 is a ruled surface

M (s; u) = 
 (s) + ue�(2) (s) :

Let $ be the standard unit normal vector �eld on a surfaceM de�ned by

(3.1) $ =
Ms ^Mu

jg (Ms ^Mu;Ms ^Mu)j
1
2

:

Hence, the �rst fundamental form I and the second fundamental form II of a
surfaceM are de�ned by, respectively,

I=Eds2 + 2Fdsdu+ Gdu2;(3.2)

II=eds2 + 2fdsdu+ gdu2;

where

(3.4) E=g (Ms;Ms) ; F=g (Ms;Mu) ; G=g (Mu;Mu) ;

e=�g (Ms; $s) = g (Mss; $) ;

f=�g (Ms; $u) = g (Msu; $) ;(3.5)

g=�g (Mu; $u) = g (Muu; $) :

Besides, the mean curvature H and the Gaussian curvature K are

H=
Eg�2Ff+Ge
2 (EG�F2) ;(3.7)

K=
eg � f2
EG�F2 ;(3.8)
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respectively.

De�nition 3.1. (see [14]) A surface evolutionM(s; u; t) and its �ow
@M
@t

are

said to be inextensible if its �rst fundamental form fE ;F ;Gg satis�es

(3.8)
@E
@t
=
@F
@t

=
@G
@t
= 0:

This de�nition states that the surfaceM(s; u; t) is, for all time t, the isometric
image of the original surface M(s; u; t0) de�ned at some initial time t0. For a
developable surface,M(s; u; t) can be physically pictured as the parametrization of
a waving �ag. For a given surface that is rigid, there exists no nontrivial inextensible
evolution.

De�nition 3.2. We can de�ne the following one-parameter family of binormal
developable ruled surface

(3.9) M (s; u) = 
 (s) + ue�(2) (s) :

Theorem 3.3. Let M is the binormal developable surface in E3: If
@M
@t

is

inextensible, then

(3.10)
@�

@t
= 0:

Proof. Assume that M (s; u; t) be a one-parameter family of binormal devel-
opable surface. We show thatM is inextensible.

Ms (s; u; t) = e
�
(0) � u�e�(1);

Mu (s; u; t) = e
�
(2) (s) :

If we compute �rst fundamental form fE ;F ;Gg, we obtain

E = u2�2 + 1;
F = g (Ms;Mu) = 0;(3.11)

G = g (Mu;Mu) = 1:

Using above system, we obtain

@E
@t
= 2u2�

@�

@t
:

@F
@t

= 0;

@G
@t
= 0:

Therefore,
@M
@t

is inextensible i¤

@�

@t
= 0:
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Corollary 3.4. Let M is the binormal developable surface in E3: If �ow of
this binormal developable surface is inextensible, then this surface is minimal i¤

(3.12)
1

N [u
2 @�

@s
� + u

@�

@s
� u2 @�

@s
�] = 0;

where N =
�
1 + u2�2

� 1
2 :

Proof. UsingMs andMu; we get

Mss = u��e
�
(0) + (�� u

@�

@s
)e�(1)�u�2e�(2);

Msu = ��e�(2);(3.13)

Muu = 0:

On the other hand, the standard unit normal vector �eld on a surfaceM is

$ = � 1
}
[e�(1) + u�e

�
(0)];

where } =
�
1 + u2�2

� 1
2 :

Components of second fundamental form of developable surface are

e = � 1

N [u
2��2 + �� u@�

@s
];

f =
�

N ;(3.14)

g = 0:

Therefore, using above system and Eq.(3.9), we obtain

(3.15) H =� 1

2}3
[u2��2 + �� u@�

@s
];

where } =
�
1 + u2�2

� 1
2 :

By using the relations Eq.(3.14) and Eq.(3.15), we obtain Eq.(3.12). This com-
pletes the proof.

Thus, we have the following result without proof.

Corollary 3.5. Let M is the binormal developable surface in E3: If 
 is a
helix, then this surface is minimal.
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