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SOLVING THE PROBLEM OF INDUSTRY BY FINDING
PARADOX IN FRACTIONAL PLUS FRACTIONAL

CAPACITATED TRANSPORTATION PROBLEM

KAVITA GUPTA AND RITU ARORA

Abstract. This paper discusses a paradox in a capacitated transportation
problem where the objective function is the sum of two fractional functions
consisting of variable costs only. A paradoxical situation arises in a trans-
portation problem when value of the objective function falls below the optimal
value and this lower value is attainable by shipping larger quantities of goods
over the same routes that were previously designated as optimal. Firstly, opti-
mality condition at which a feasible solution of fractional plus fractional capac-
itated transportation problem will be an optimal solution is established. Then
a sufficient condition for the existence of paradox is found. If paradox exists,
then the procedure for finding the best paradoxical pair is proposed which ul-
timately gives a paradoxical range of flows. Moreover, a method is proposed
to find the paradoxical solution for a specified flow . Developed algorithm is
applied on the real data taken from the account keeping books of the firm D.M
Chemicals, Delhi. The solution so obtained by using the developed algorithm
is compared with the existing data. Moreover, the solution obtained is verified
by a computing software Excel Solver.

1. Introduction

Capacitated transportation problem are bounded variable transportation prob-
lem where the decision variables such as number of goods shipped from various
sources to different destinations are bounded. Many researchers like Verma and
Puri [10], Misra and Das[8], Gupta and Arora [5, 6], Bit and Biswal[2] have con-
tributed a lot in this field.

Sometimes, in a transportation problem, it is possible to find a cheaper solution
than the optimal one by shipping more along the optimal routes in such a way
that no destination will receive less and no origin will ship less of the product.
This phenomenon is called paradox. The source of so-called transportation para-
dox is unclear. This usual phenomenon was first observed by Szwarc [9] in 1971.
Later on, many researchers studied paradox in different types of objective func-
tions under different set of constraints. In 2000, Arora and Ahuja [1] have studied
the paradoxical situation in a fixed charge transportation problem. Dahiya and
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Verma [3] had studied the paradox in a non-linear capacitated transportation
problem. Joshi and Gupta [7] developed a heuristic for finding the initial basic
feasible solution for linear plus linear fractional transportation problem and also
established the sufficient condition for the existence of a paradoxical solution in
2010. Gupta and Arora [4] studied paradox in a fractional capacitated trans-
portation problem.

Another class of transportation problem is a fractional transportation problem
where the objective function to be optimized is a ratio of two linear functions.
Optimization of a ratio of criteria often describes some kind of an efficiency mea-
sure for a system . Fractional programs finds its application in a variety of real
world problems such as stock cutting problem , resource allocation problems ,
routing problem for ships and planes , cargo - loading problem , inventory prob-
lem and many other problems.

The extensive literature on paradox and capacitated transportation problem
motivated us to study paradox in a fractional plus fractional capacitated trans-
portation problem where the objective function is the sum of linear and linear
fractional functions. We apply the developed algorithm on data taken from the
account keeping books of a trading firm D.M Chemicals, Delhi. This firm deals in
the trading of soap stone across various states in India. We contacted the man-
ager of the firm and asked him about the business transactions, sellers, buyers,
cartage , cost price per unit, selling price per unit etc. The manager told us that
he wishes to determine the quantity (in tons) of soap stone that the firm should
purchase from different sellers and sell it to the different buyers such that the
ratio of actual cartage to standard cartage plus ratio of purchasing cost to profit
is minimized provided the demand and supply conditions are satisfied. Surely,
the firm would be benefited if it is possible to supply more number of goods at
a cost lesser than the optimal one. Conversation that we had with the manager
and the data that we obtained from the books of the firm motivated us to study
paradox in a fractional plus fractional capacitated transportation problem.

This paper is organized as follows: In section 2, fractional plus fractional ca-
pacitated transportation problem is formulated. In section 3 optimality criterion
for the solution of fractional plus fractional capacitated transportation problem
is developed . In section 4, theory is developed for the existence of paradox. In
section 5,sufficient condition for the existence of a paradox is developed. In sec-
tion 6, method to determine the best paradoxical pair is proposed and in section
7, method to get a paradoxical solution for a specified flow within the paradox-
ical range of flows is developed . In section 8, an algorithm to find paradoxical
situation, best paradoxical pair, paradoxical range of flows and all possible para-
doxical pairs within this range is presented. In section 9, data taken from the
account keeping books of the firm D.M Chemicals, Delhi is presented. In section
10, the developed algorithm is applied on the data of the firm and the solution
so obtained is then compared with the existing data.
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2. Problem Formulation

Let I = {1, 2, .....,m} be the index set of m sellers.
J = {1, 2, ......., n} is the index set of n buyers.
xij =the number of units purchased from the ith seller and sold to the jth buyer.
cij = cost of purchasing one unit of a commodity from the ith seller and selling it
to the jth buyer.
dij = profit per unit earned from the jth buyer when the goods purchased from
the ith seller are supplied.
eij = actual cartage of transporting one unit of a commodity from the ith seller
to the jth buyer.
fij = standard cartage of transporting one unit of a commodity from the ith seller
to the jth buyer.
lij and uij are the lower and upper bounds on number of units to be transported
from the ith seller to the jth buyer.
ai = number of units available at seller i
bj = number of units demanded by the buyer j

Consider a fractional plus fractional capacitated transportation problem given
by :

(P0) : min{

∑
i∈I

∑
j∈J

cijxij∑
i∈I

∑
j∈J

dijxij

+

∑
i∈I

∑
j∈J

eijxij∑
i∈I

∑
j∈J

fijxij

}

subject to∑
j∈J

xij ≤ ai,∀i ∈ I

∑
i∈I

xij = bj,∀j ∈ J

lij ≤ xij ≤ uij and integers ∀i ∈ I,∀j ∈ J
It can be easily seen that the problem (P0) is equivalent to the following balanced
transportation problem.

(P
′

0) : min{

∑
i∈I

∑
j∈J ′

cijxij∑
i∈I

∑
j∈J ′

dijxij

+

∑
i∈I

∑
j∈J ′

eijxij∑
i∈I

∑
j∈J ′

fijxij

}

subject to∑
j∈J ′

xij = ai, ∀i ∈ I

∑
i∈I

xij = bj,∀j ∈ J ′

lij ≤ xij ≤ uij and integers,∀i ∈ I,∀j ∈ J
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bn+1 =
∑
i∈I

ai −
∑
j∈J

bj

li,n+1 = 0;ui,n+1 ≥ 0; ci,n+1 = 0;∀i ∈ I

di,n+1 = 0; ei,n+1 = 0; fi,n+1 = 0;∀i ∈ I

where J = {1, 2, ......., n, n+ 1}

3. Optimality criteria for a fractional plus fractional
capacitated transportation problem

Theorem 3.1. Let X0 = {x0
ij}I×J be a feasible solution of problem (P0). Let

C0 =
∑
i∈I

∑
j∈J

cijx
0
ij;D

0 =
∑
i∈I

∑
j∈J

dijx
0
ij;E

0 =
∑
i∈I

∑
j∈J

eijx
0
ij;F

0 =
∑
i∈I

∑
j∈J

eijx
0
ij. Let B

be the set of cells (i, j) which are basic and N1 and N2 denotes the set of non-
basic cells (i, j) which are at their lower bounds and upper bounds respectively. Let
u1

i , u
2
i , u

3
i , u

4
i , v

1
j , v

2
j , v

3
j , v

4
j ; i ∈ I, j ∈ J be the dual variables such that u1

i + v1
j =

cij,∀(i, j) ∈ B;u2
i + v2

j = dij, ∀(i, j) ∈ B;u3
i + v3

j = eij,∀(i, j) ∈ B;u4
i + v4

j =

fij,∀(i, j) ∈ B;u1
i + v1

j = z1
ij,∀(i, j) /∈ B;u2

i + v2
j = z2

ij,∀(i, j) /∈ B;u3
i + v3

j =

z3
ij,∀(i, j) /∈ B;u4

i + v4
j = z4

ij,∀(i, j) /∈ B.Then a feasible solution X0 = {x0
ij}I×J

of problem (P0) with objective function value C0

D0 + E0

F 0 will be an optimal solution
if and only if the following conditions holds.

δ1
ij =

θij[D
0(cij − z1

ij)− C0(dij − z2
ij)]

D0[D0 + θij(dij − z2
ij)]

+
θij[F

0(eij − z3
ij)− E0(fij − z4

ij)]

F 0[F 0 + θij(fij − z4
ij)]

≥ 0;∀(i, j) ∈ N1

δ2
ij =

−θij[D
0(cij − z1

ij)− C0(dij − z2
ij)]

D0[D0 − θij(dij − z2
ij)]

−
θij[F

0(eij − z3
ij)− E0(fij − z4

ij)]

F 0[F 0 − θij(fij − z4
ij)]

≥ 0; ∀(i, j) ∈ N2

Proof. Let X0 = {x0
ij}I×J be a feasible solution of problem (P0) with equality

constraints. Let z0 be the corresponding value of objective function. Then

z = [

∑
i∈I

∑
j∈J

cijx
0
ij∑

i∈I

∑
j∈J

dijx0
ij

+

∑
i∈I

∑
j∈J

eijx
0
ij∑

i∈I

∑
j∈J

fijx0
ij

] =
C0

D0
+
E0

F 0

=

∑
i∈I

∑
j∈J

(cij − u1
i − v1

j )x0
ij +

∑
i∈I

∑
j∈J

(u1
i + v1

j )x0
ij∑

i∈I

∑
j∈J

(dij − u2
i − v2

j )x0
ij +

∑
i∈I

∑
j∈J

(u2
i + v2

j )x0
ij

+

∑
i∈I

∑
j∈J

(eij − u3
i − v3

j )x0
ij +

∑
i∈I

∑
j∈J

(u3
i + v3

j )x0
ij∑

i∈I

∑
j∈J

(fij − u4
i − v4

j )x0
ij +

∑
i∈I

∑
j∈J

(u4
i + v4

j )x0
ij
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=

∑ ∑
(i,j)∈N1

(cij − z1
ij)lij +

∑ ∑
(i,j)∈N2

(cij − z1
ij)uij +

∑
i∈I

∑
j∈J

(u1
i + v1

j )x0
ij∑ ∑

(i,j)∈N1

(dij − z2
ij)lij +

∑ ∑
(i,j)∈N2

(dij − z2
ij)uij +

∑
i∈I

∑
j∈J

(u2
i + v2

j )x0
ij

+

∑ ∑
(i,j)∈N1

(eij − z3
ij)lij +

∑ ∑
(i,j)∈N2

(eij − z3
ij)uij +

∑
i∈I

∑
j∈J

(u3
i + v3

j )x0
ij∑ ∑

(i,j)∈N1

(fij − z4
ij)lij +

∑ ∑
(i,j)∈N2

(fij − z4
ij)uij +

∑
i∈I

∑
j∈J

(u4
i + v4

j )x0
ij

=

∑ ∑
(i,j)∈N1

(cij − z1
ij)lij +

∑ ∑
(i,j)∈N2

(cij − z1
ij)uij +

∑
i∈I

aiu
1
i +

∑
j∈J

bjv
1
j∑ ∑

(i,j)∈N1

(dij − z2
ij)lij +

∑ ∑
(i,j)∈N2

(dij − z2
ij)uij +

∑
i∈I

aiu2
i +

∑
j∈J

bjv2
j

+

∑ ∑
(i,j)∈N1

(eij − z3
ij)lij +

∑ ∑
(i,j)∈N2

(eij − z3
ij)uij +

∑
i∈I

aiu
3
i +

∑
j∈J

bjv
3
j∑ ∑

(i,j)∈N1

(fij − z4
ij)lij +

∑ ∑
(i,j)∈N2

(fij − z4
ij)uij +

∑
i∈I

aiu4
i +

∑
j∈J

bjv4
j

Let some non-basic variable xij ∈ N1 undergoes change by an amount θrs where
θrs is given by min{urs − lrs;x

0
ij − lij for all basic cells (i, j) with a (−θ) entry in

θ-loop;uij −x0
ij for all basic cells (i, j) with a (+θ) entry in θ-loop. Then the new

value of the objective function ẑ will be given by

ẑ =
C0 + θrs(crs − z1

rs)

D0 + θrs(drs − z2
rs)

+
E0 + θrs(ers − z3

rs)

F 0 + θrs(frs − z4
rs)

ẑ − z0 =
C0 + θrs(crs − z1

rs)

D0 + θrs(drs − z2
rs)
− C0

D0
+
E0 + θrs(ers − z3

rs)

F 0 + θrs(frs − z4
rs)
− E0

F 0

=
θrs[D

0(crs − z1
rs)− C0(drs − z2

rs)]

D0[D0 + θrs(drs − z2
rs)]

+
θrs[F

0(ers − z3
rs)− E0(frs − z4

rs)]

F 0[F 0 + θij(frs − z4
rs)]

= δ1
rs(say)

Similarly, when some non- basic variable xpq ∈ N2 undergoes change by an amount
θpq then

ẑ − z0 =
−θpq[D

0(cpq − z1
pq)− C0(dpq − z2

pq)]

D0[D0 − θpq(dpq − z2
pq)]

−
θpq[F

0(epq − z3
pq)− E0(fpq − z4

pq)]

F 0[F 0 − θpq(fpq − z4
pq)]

= δ2
pq(say)

Converse can be proved similarly. Hence X0 will be an optimal solution if and
only if δ1

ij ≥ 0; (i, j) ∈ N1 and δ2
ij ≥ 0; (i, j) ∈ N2. �

4. Theoretical Development

Let an optimal solution of (P0) yield value z0 of the objective function and
F 0 =

∑
i∈I

a
′
i =

∑
j∈J

b
′
j be the corresponding flow where a

′
i ≤ ai, i ∈ I; b

′
j = bj, j ∈

J .A paradox exists if more than F 0 is flown at an objective function value less
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than z0 . It may be observed that flow can be increased by an increase of a certain
a

′
i and b

′
j.This gives rise to the following problem (P1).

(P1) : min{

∑
i∈I

∑
j∈J

cijxij∑
i∈I

∑
j∈J

dijxij

+

∑
i∈I

∑
j∈J

eijxij∑
i∈I

∑
j∈J

fijxij

}

subject to∑
j∈J

xij ≥ a
′

i,∀i ∈ I∑
i∈I

xij ≥ b
′

j,∀j ∈ J

lij ≤ xij ≤ uij and integers,∀i ∈ I,∀j ∈ J
The feasible region of (P1) being larger than that of (P0) implies that the minimum
objective function value z1 of (P1) is not greater than z0 i.e z1 < z0 . So more
goods may be flown than that in (P0) at an objective function value less than
that of (P0). Hence a paradox may arise in this case. To solve (P1) , we consider
the related transportation problem (RP1) with an additional supply point and
an additional destination given by

(RP1) : min{

∑
i∈I′

∑
j∈J ′

c
′
ijyij∑

i∈I′

∑
j∈J ′

d
′
ijyij

+

∑
i∈I′

∑
j∈J ′

e
′
ijyij∑

i∈I′

∑
j∈J ′

f
′
ijyij

}

subject to∑
j∈J ′

yij = A
′

i,∀i ∈ I
′

∑
i∈I′

yij = B
′

j,∀j ∈ J
′

lij ≤ yij ≤ uij and integers,∀i ∈ I,∀j ∈ J

0 ≤ ym+1,j ≤
∑
i∈I

uij − b
′

j,∀j ∈ J

0 ≤ yi,n+1 ≤
∑
j∈J

uij − a
′

i, ∀i ∈ I

ym+1,n+1 ≥ 0 and integers

A
′

i =
∑
j∈J

uij,∀i ∈ I, A
′

m+1 =
∑
i∈I

∑
j∈J

uij = B
′

n+1;B
′

j =
∑
i∈I

uij, ∀j ∈ J

c
′

ij = cij, c
′

m+1,j = c
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, c′

m+1,n+1 = 0

d
′

ij = dij, d
′

m+1,j = d
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, d′

m+1,n+1 = 0

e
′

ij = eij, e
′

m+1,j = e
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, e′

m+1,n+1 = 0

f
′

ij = fij, f
′

m+1,j = f
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, f ′

m+1,n+1 = 0
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I
′
= {1, 2, · · ·,m,m+ 1}, J ′

= {1, 2, · · ·, n, n+ 1}
It can be easily shown that (P1) and (RP1) are equivalent .

Theorem 4.1. There is a one -to-one correspondence between the feasible solu-
tion to problem (P1) and the feasible solution to problem (RP1). [4]

Theorem 4.2. The value of the objective function of problem (P1) at a feasible
solution {xij}I×J is equal to the value of the objective function of (RP1) at its
corresponding feasible solution {yij}I′×J ′ and conversely.

Proof. The value of the objective function of(RP1) at a feasible solution {yij}I′×J ′

is

z = [

∑
i∈I′

∑
j∈J ′

c
′
ijyij∑

i∈I′

∑
j∈J ′

d
′
ijyij

+

∑
i∈I′

∑
j∈J ′

e
′
ijyij∑

i∈I′

∑
j∈J ′

f
′
ijyij

]

= [

∑
i∈I

∑
j∈J

c
′
ijyij +

∑
j∈J

c
′
m+1,jym+1,j +

∑
j∈J

c
′
i,n+1yi,n+1 + c

′
m+1,n+1ym+1,n+1∑

i∈I

∑
j∈J

d
′
ijyij +

∑
j∈J

d
′
m+1,jym+1,j +

∑
j∈J

d
′
i,n+1yi,n+1 + d

′
m+1,n+1ym+1,n+1

]

+[

∑
i∈I

∑
j∈J

e
′
ijyij +

∑
j∈J

e
′
m+1,jym+1,j +

∑
j∈J

e
′
i,n+1yi,n+1 + e

′
m+1,n+1ym+1,n+1∑

i∈I

∑
j∈J

f
′
ijyij +

∑
j∈J

f
′
m+1,jym+1,j +

∑
j∈J

f
′
i,n+1yi,n+1 + f

′
m+1,n+1ym+1,n+1

]

= [

∑
i∈I

∑
j∈J

cijxij∑
i∈I

∑
j∈J

dijxij

+

∑
i∈I

∑
j∈J

eijxij∑
i∈I

∑
j∈J

fijxij

]

= value of objective function of problem(P1)at its corresponding feasible solution{xij}I×J .

because∀i ∈ I, j ∈ J

c
′

ij = cij, d
′

ij = dij, e
′

ij = eij, f
′

ij = fij

xij = yij

c
′

i,n+1 = c
′

m+1,j = d
′

i,n+1 = d
′

m+1,j = 0

e
′

i,n+1 = e
′

m+1,j = f
′

i,n+1 = f
′

m+1,j = 0

c
′

m+1,n+1 = d
′

m+1,n+1 = e
′

m+1,n+1 = f
′

m+1,n+1 = 0

The converse can be proved in a similar way. �

Theorem 4.3. There is a one -to-one correspondence between the optimal solu-
tion to (P1) and optimal solution to (RP1).[4]
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Definition 4.4. Paradoxical Pair : An objective function flow pair (Z, F ) of
problem (P1) is called a paradoxical pair if Z < Z0 and F > F 0.

Definition 4.5. Best Paradoxical Pair :The paradoxical pair (Z1, F 1) is called
the best paradoxical pair if Z1 = min{Z : (Z, F ) is a paradoxical pair} and
F 1 = max{F : (Z, F ) is a paradoxical pair}

Definition 4.6. Paradoxical Range of Flows:Paradoxical range of flows is
[F 0, F 1] where F 1 is the flow corresponding to the best paradoxical pair. All
objective function flow pairs in this range are paradoxical pairs.

5. Sufficient condition for the existence of a paradoxical
solution

Let X0 be the basic feasible solution of problem (P0) . Let B denotes the
set of cells (i, j) which are basic and N1 and N2 denotes the set of non- ba-
sic cells (i, j) which are at their lower bounds and upper bounds respectively.
Let z0 be the corresponding value of the objective function and F 0 =

∑
i∈I

a
′
i =∑

j∈J

b
′
j be the corresponding flow , where a

′
i ≤ ai, i ∈ I; b

′
j = bj, j ∈ J . Let

u1
i , u

2
i , u

3
i , u

4
i , v

1
j , v

2
j , v

3
j , v

4
j ; i ∈ I, j ∈ J be the dual variables such that u1

i + v1
j =

cij,∀(i, j) ∈ B;u2
i + v2

j = dij,∀(i, j) ∈ B;u3
i + v3

j = eij,∀(i, j) ∈ B;u4
i + v4

j =

fij,∀(i, j) ∈ B;u1
i + v1

j = z1
ij,∀(i, j) /∈ B;u2

i + v2
j = z2

ij,∀(i, j) /∈ B;u3
i + v3

j =

z3
ij,∀(i, j) /∈ B;u4

i + v4
j = z4

ij,∀(i, j) /∈ B. Then as in Theorem 1,

z0 =

∑ ∑
(i,j)∈N1

(cij − z1
ij)lij +

∑ ∑
(i,j)∈N2

(cij − z1
ij)uij +

∑
i∈I

a
′
iu

1
i +

∑
j∈J

b
′
jv

1
j∑ ∑

(i,j)∈N1

(dij − z2
ij)lij +

∑ ∑
(i,j)∈N2

(dij − z2
ij)uij +

∑
i∈I′

a
′
iu

2
i +

∑
j∈J ′

b
′
jv

2
j

+

∑ ∑
(i,j)∈N1

(eij − z3
ij)lij +

∑ ∑
(i,j)∈N2

(eij − z3
ij)uij +

∑
i∈I′

a
′
iu

3
i +

∑
j∈J ′

b
′
jv

3
j∑ ∑

(i,j)∈N1

(fij − z4
ij)lij +

∑ ∑
(i,j)∈N2

(fij − z4
ij)uij +

∑
i∈I′

a
′
iu

4
i +

∑
j∈J ′

b
′
jv

4
j

=
C0

D0
+
E0

F 0

Now suppose that a
′
p is replaced by a

′
p + λ and b

′
q by b

′
q + λ where λ > 0 is such

that same basis B remains optimal after replacement. Then the new value z1 of
the objective function is given by

z1 =
C0 + λ(u1

p + v1
q )

D0 + λ(u2
p + v2

q )
+
E0 + λ(u3

p + v3
q )

F 0 + λ(u4
p + v4

q )

z1 − z0 =
C0 + λ(u1

p + v1
q )

D0 + λ(u2
p + v2

q )
− C0

D0
+
E0 + λ(u3

p + v3
q )

F 0 + λ(u4
p + v4

q )
− E0

F 0
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=
λ[D0(u1

p + v1
q )− C0(u2

p + v2
q )]

D0(D0 + λ(u2
p + v2

q ))
+
λ[F 0(u3

p + v3
q )− E0(u4

p + v4
q )]

F 0(F 0 + λ(u4
p + v4

q ))

On simplifying the above equation, we get the denominator as -

D0(D0 + λ(u2
p + v2

q ))F 0(F 0 + λ(u4
p + v4

q ))

and numerator as-

λ[[D0(u1
p + v1

q )− C0(u2
p + v2

q )]F 0(F 0 + λ(u4
p + v4

q ))

+[F 0(u3
p + v3

q )− E0(u4
p + v4

q )]D0(D0 + λ(u2
p + v2

q ))]

Now, the denominator is always positive and λ > 0, therefore,z1 < z0 if
Condition (1) : [D0(u1

p + v1
q )− C0(u2

p + v2
q )]F 0(F 0 + λ(u4

p + v4
q ))

+[F 0(u3
p + v3

q )− E0(u4
p + v4

q )]D0(D0 + λ(u2
p + v2

q )) < 0

As λ > 0, D0, (D0 + λ(u2
p + v2

q ), F 0, (F 0 + λ(u4
p + v4

q )) > 0, condition (1) implies
that to obtain paradoxical solution , we consider only those cells (p, q) for which
any of the following conditions hold.
Condition(a) : [D0(u1

p +v1
q )−C0(u2

p +v2
q )] < 0 and [F 0(u3

p +v3
q )−E0(u4

p +v4
q )] < 0

Condition(b) : If any one of the expressions [D0(u1
p + v1

q ) − C0(u2
p + v2

q )] and

[F 0(u3
p + v3

q ) − E0(u4
p + v4

q )] are negative then condition(1)should hold for some
λ > 0. For simplicity, take λ = 1.
Thus if there exists a non- basic cell (p, q) for which either of the above two
conditions (a) or (b) holds true, then the new value z1 of the objective function
is less than z0. Hence the flow is increased by λ but the objective function value
is reduced i.e. a paradox exists. This result can be stated as :

Theorem 5.1. Let X0 be an optimal solution of the problem (P0) with the objec-

tive function value z0 = C0

D0 + E0

F 0 . If there exists a non- basic cell (p, q) such that
on changing ap by ap + λ and bq by bq + λ where λ > 0 and the basis remaining
the same , the condition (a) or (b) is satisfied , then there exists a paradox.

6. Best Paradoxical Pair

If a paradox exist, one would obviously be interested in the best paradoxical
pair. Theorem 6 below proves that the optimal solution of the problem (P1) yields
the best paradoxical pair.

Theorem 6.1. Global optimal solution of the problem (P1) yields the best para-
doxical pair. [4]

7. Paradoxical solution for a specified flow in [F 0, F 1]

Let F 0 =
∑
i∈I

a
′
i =

∑
j∈J

b
′
j be the flow corresponding to the optimal solution X0

of the problem (P0) where a
′
i ≤ ai; i ∈ I; b

′
j = bj; j ∈ J.Also let F 1 be the flow

corresponding to the optimal solution X1 of the problem (P1). Then [F 0, F 1] is
the paradoxical range of flows. Let the specified flow be P ∈ [F 0, F 1] . The
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paradoxical solution for P is given by the optimal solution of the problem (P2)
given below.

(P2) : min{

∑
i∈I

∑
j∈J

cijxij∑
i∈I

∑
j∈J

dijxij

+

∑
i∈I

∑
j∈J

eijxij∑
i∈I

∑
j∈J

fijxij

}

subject to∑
j∈J

xij ≥ a
′

i,∀i ∈ I∑
i∈I

xij ≥ b
′

j,∀j ∈ J∑
i∈I

∑
j∈J

xij = P

lij ≤ xij ≤ uij and integers,∀i ∈ I,∀j ∈ J
The problem (P2) is different from the problem (P1) because of the flow constraint.
To solve the problem (P2) , we consider the following related transportation
problem (RP2) with an additional origin and an additional destination.

(RP2) : min{

∑
i∈I′

∑
j∈J ′

c
′
ijyij∑

i∈I′

∑
j∈J ′

d
′
ijyij

+

∑
i∈I′

∑
j∈J ′

e
′
ijyij∑

i∈I′

∑
j∈J ′

f
′
ijyij

}

subject to∑
j∈J ′

yij = a
′′

i ,∀i ∈ I
′

∑
i∈I′

yij = b
′′

j ,∀j ∈ J
′

lij ≤ yij ≤ uij and integers,∀i ∈ I,∀j ∈ J

0 ≤ ym+1,j ≤
∑
i∈I

uij − b
′

j,∀j ∈ J

0 ≤ yi,n+1 ≤
∑
j∈J

uij − a
′

i,∀i ∈ I

ym+1,n+1 ≥ 0

a
′′

i =
∑
j∈J

uij,∀i ∈ I, a
′′

m+1 =
∑
i∈I

∑
j∈J

uij − P = b
′′

n+1; b
′′

j =
∑
i∈I

uij, ∀j ∈ J

c
′

ij = cij, c
′

m+1,j = c
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, c′

m+1,n+1 = M

d
′

ij = dij, d
′

m+1,j = d
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, d′

m+1,n+1 = M

e
′

ij = eij, e
′

m+1,j = e
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, e′

m+1,n+1 = M

f
′

ij = fij, f
′

m+1,j = f
′

i,n+1 = 0;∀i ∈ I,∀j ∈ J, f ′

m+1,n+1 = M
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where M is a large positive number.

I
′
= {1, 2, · · ·,m,m+ 1}, J ′

= {1, 2, · · ·, n, n+ 1}

Definition 7.1. Corner Feasible SolutionA basic feasible solution {yij}I′×J ′

of the problem (RP2) is called a corner feasible solution (cfs) if ym+1,n+1 = 0.

Theorem 7.2. A non- corner feasible solution of the problem (RP2) cannot pro-
vide a basic feasible solution of the problem (P2). [4]

Theorem 7.3. There is a one -to-one correspondence between the feasible solu-
tion of the problem (P2) and the corner feasible solution of the problem (RP2).
[4]

Remark 7.4. If the problem (RP2) has a cfs ,then since c
′
m+1,n+1 = M =

d
′
m+1,n+1 = e

′
m+1,n+1 = f

′
m+1,n+1, it follows that the non corner feasible solution

cannot be an optimal solution of the problem (P2) .

Theorem 7.5. The value of the objective function of the problem (P2) at a feasible
solution {xij}I×J is equal to the value of the objective function of problem (RP2)
at its corresponding cfs {yij}I′×J ′ and conversely.[4]

Theorem 7.6. There is a one -to-one correspondence between the optimal so-
lution of the problem (P2) and an optimal solution among the corner feasible
solution of the problem (RP2).[4]

Theorem 7.7. Optimizing the problem (RP2) is equivalent to optimizing the
problem (P2) provided the problem (P2) has a feasible solution.[4]

8. Algorithm to find a paradoxical solution, best paradoxical
pair and paradoxical solution for specified flow

Step 1:Find a basic feasible solution of the problem (P0) by converting it in
to the problem (P

′
0) . Let B be its corresponding basis.

Step 2:Calculate dual variables u1
i , u

2
i , u

3
i , u

4
i , v

1
j , v

2
j , v

3
j , v

4
j ; i ∈ I, j ∈ J by using

the equations given below and taking one of the u′is or v
′
js as zero.

u1
i + v1

j = cij;u
2
i + v2

j = dij;u
3
i + v3

j = eij;u
4
i + v4

j = fij,∀(i, j) ∈ B
u1

i + v1
j = z1

ij;u
2
i + v2

j = z2
ij;u

3
i + v3

j = z3
ij;u

4
i + v4

j = z4
ij,∀(i, j) ∈ N1andN2.

N1 and N2 denotes the set of all non- basic cells (i, j) which are at their lower
bounds and upper bounds respectively.
Step 3:Calculate θij, cij − z1

ij; dij − z2
ij; eij − z3

ij; fij − z4
ij;∀i ∈ I, j ∈ J

′
for all

non- basic cells and also calculate C0 =
∑
i∈I

∑
j∈J ′

cijxij;D
0 =

∑
i∈I

∑
j∈J ′

dijxij;E
0 =∑

i∈I

∑
j∈J ′

eijxij;F
0 =

∑
i∈I

∑
j∈J ′

fijxij.

Step 4:Calculate δ1
ij and δ2

ij where

δ1
ij =

θij[D
0(cij − z1

ij)− C0(dij − z2
ij)]

D0[D0 + θij(dij − z2
ij)]

+
θij[F

0(eij − z3
ij)− E0(fij − z4

ij)]

F 0[F 0 + θij(fij − z4
ij)]

;∀(i, j) ∈ N1
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δ2
ij =

−θij[D
0(cij − z1

ij)− C0(dij − z2
ij)]

D0[D0 − θij(dij − z2
ij)]

−
θij[F

0(eij − z3
ij)− E0(fij − z4

ij)]

F 0[F 0 − θij(fij − z4
ij)]

;∀(i, j) ∈ N2

If δ1
ij ≥ 0;∀(i, j) ∈ N1 and δ2

ij ≥ 0;∀(i, j) ∈ N2, then the current solution so

obtained is the optimal solution of the problem (P
′
0) and subsequently of the

problem (P0).Then go to step 4. Otherwise some (i, j) ∈ N1 for whichδ1
ij ≤ 0 or

some (i, j) ∈ N2 for whichδ2
ij ≤ 0 will enter the basis. Go to step 3.

Step 5:Find the optimal cost z0 = C0

D0 + E0

F 0 and flow F 0 =
∑
i∈I

∑
j∈J

xij

Step 6:Let F 0 =
∑
i∈I

a
′
i =

∑
j∈J

b
′
j be the optimal flow where a

′
i ≤ ai, i ∈ I; b

′
j =

bj, j ∈ J . Choose a non- basic cell (p, q) for which either of the following two
conditions holds,
(a)[D0(u1

p + v1
q )− C0(u2

p + v2
q )] < 0 and [F 0(u3

p + v3
q )− E0(u4

p + v4
q )] < 0

(b)If any one of the expressions [D0(u1
p + v1

q )− C0(u2
p + v2

q )] and

[F 0(u3
p + v3

q )−E0(u4
p + v4

q )] are negative then the following condition should hold
for some λ > 0. For simplicity, take λ = 1.
[D0(u1

p + v1
q )− C0(u2

p + v2
q )]F 0(F 0 + λ(u4

p + v4
q ))

+[F 0(u3
p + v3

q )− E0(u4
p + v4

q )]D0(D0 + λ(u2
p + v2

q )) < 0
Then paradox exists.
Step 7:To find the best paradoxical pair, form the problem (P1). To solve prob-
lem (P1), formulate the related problem (RP1) and solve it as usual. Let the
paradoxical pair be (z1, F 1) where

∑
i∈I′

∑
j∈J ′

yij such that F 1 > F 0 and z1 < z0.

Then the paradoxical range of flows is [F 0, F 1]
Step 8:Now for the specified flow P ∈ [F 0, F 1], form the problem (P2). In order
to solve the problem (P2) , form the related problem (RP2) and solve it as usual.
Find the optimal cost z2 . We will observe that z1 < z2 < z0 . All objective
function flow pairs in the range [F 0, F 1] are paradoxical pairs.
Step 9:Repeat step 8 for all possible values of P such that P ∈ [F 0, F 1] to find
all paradoxical pairs.

9. Data taken from the account keeping books of a trading firm -
D.M Chemicals, Delhi

D.M Chemicals is a trading firm which deals in the trading of soap stone across
various states of India. Books of the firm provides the following information. The
firm purchases soap stone (in tons) from three sellers-

• Shree Shyam Grinding Udyog, RIICO Industrial Area, Ajitgarh, Ra-
jasthan
• Neejal Industries, 16 Duniya village, Halol 389350, District - Panchmahal,

Gujarat.
• Kev Minerals, 37, Alindra Malav Road, Ta Kalol District- Panchmahal,

Vadodra, Gujarat.
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The firm sells its product (in tons) to three buyers-

• Jindal Mechno Bricks Pvt Ltd, VPO - Badli District, Jhajjar, Haryana.
• Poplon Chemie, Jalandhar
• Maheshwari Industries, 73, third cross behind LVK, Kalyan Mandap Ka-

makshi Pallya, Bangalore.

Goods (soap stone) are supplied by two types of trucks- A large truck that has a
maximum capacity of supplying 50 tons of goods in one run and a small truck that
has a maximum capacity of supplying 20 tons in one run. But the truck driver
will not carry the goods in his truck if the quantity of goods to be supplied is less
than 5 tons. D.M chemicals purchases a minimum of 20 tons of soap stone per
month from each of the sellers . Moreover, each buyer has a minimum monthly
demand of 20 tons of soap stone . Maximum availability of soap stone at Neejal
Industries, Shree Shyam grinding Udyog and Kev Minerals is 70, 60 and 70 tons
respectively. All the buyers demanded 50 tons of soap stone monthly . Cost price
per ton, Selling price per ton, profit per ton, Standard cartage per ton and actual
Cartage per ton are shown in table (1). The manager of the company wishes to
determine how many tons of soap stone per month, the firm should purchase from
each seller and sell it to the different buyers so that the ratio of cost price to profit
plus the ratio of actual cartage to standard cartage is minimum and the reserve
stocks may also be kept whenever situation arises. The firm would be benefited
if maximum time of transporting goods is also minimized. Data from the books
of D.M Chemicals shows that the firm did the following business transactions-
Data from the books of D.M Chemicals shows that the firm did the following

business transactions-

• Purchased 30 tons of soap stone from Neejal industries and sold it to
Jindal mechno bricks.
• Purchased 10 tons of soap stone from Neejal industries and sold it to

Poplon Chemie.
• Purchased 20 tons of soap stone from Neejal industries and sold it to

Maheshwari Industries.
• Purchased 20 tons of soap stone from Shree Shyam Grinding Udyog and

sold it to Jindal mechno bricks.
• Purchased 20 tons of soap stone from Shree Shyam Grinding Udyog and

sold it to Poplon Chemie.
• Purchased 20 tons of soap stone from Shree Shyam Grinding Udyog and

sold it to Maheshwari Industries.
• Purchased 20 tons of soap stone from Kev Minerals and sold it to Poplon

Chemie.
• Purchased 10 tons of soap stone from Kev Minerals and sold it to Ma-

heshwari Industries.

Total Purchasing cost = Rs.194580
Total Profit earned = Rs.752840
Actual Cartage paid = Rs.307000
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Table 1. Cost in rupees(per ton)

Sellers↓ buyers → Jindal mechno Poplon Chemie Maheshwari Ind.
Neejal Industries actual cartage→ 2800 2500 2500

standard cartage→ 2000 3000 3000

C.P → 1148 1148 1148

S.P → 9690 10000 8000

Profit→ 8542 8852 6852

Shree Shyam actual cartage→ 600 800 1500

standard cartage→ 500 1000 1300

C.P → 1075 1075 1075

S.P → 1836 2000 3000

Profit→ 761 925 1925

Kev Minerals actual cartage→ 2850 3000 3000

standard cartage→ 2000 2500 3500

C.P → 2040 2040 2040

S.P → 8333 9000 8000

Profit→ 6293 6960 5960

standard Cartage = Rs.291000
Costprice

Profit
+ actualCartage

standardcartage
= 194580

752840
+ 307000

291000
= 1.313444

10. Solution by the developed algorithm

Problem of the firm can be formulated as follows:
Let the three sellers- Neejal Industries, Shree Shyam Grinding Udyog, Kev Min-
erals be denoted by O1, O2 and O3 respectively. Let the three buyers- Jindal
mechno bricks, Poplon Chemie, Maheshwari Industries be denoted by D1, D2 and
D3 respectively.
Let I = {1, 2, .....,m} be the index set of 3 sellers.
J = {1, 2, ......., n} be the index set of 3 buyers.
xij = quantity of soap stone (in tons) purchased from the ith seller and sold to
the jth buyer.
cij = cost price paid per ton when soap stone is purchased from the ith seller and
sold to the jth buyer.
dij = profit per unit earned from the jth buyer when the goods purchased from
the ith seller are supplied.
eij = actual cartage paid per ton when soap stone is purchased from the ith seller
and sold to the jth buyer.
fij = standard cartage per ton when soap stone is purchased from the ith seller
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and sold to the jth buyer.
lij and uij are the minimum and maximum quantity of soap stone (in tons) that
can be supplied by the large and small truck from the ith seller to the jth buyer.
ai = availability of soap stone at the seller i
bj = quantity of soap stone (in tons) demanded (per month) by the buyer j.
Then the problem of the manager can be formulated mathematically as -

(P0) : min{

3∑
i=1

3∑
j=1

cijxij

3∑
i=1

3∑
j=1

dijxij

+

3∑
i=1

3∑
j=1

eijxij

3∑
i=1

3∑
j=1

fijxij

}

subject to
3∑

j=1

x1j ≤ 70;
3∑

j=1

x2j ≤ 60;
3∑

j=1

x3j ≤ 70

3∑
i=1

xi1 = 50;
3∑

i=1

xi2 = 50;
3∑

i=1

xi3 = 50

5 ≤ x11 ≤ 50; 5 ≤ x12 ≤ 20; 5 ≤ x13 ≤ 50

5 ≤ x21 ≤ 50; 5 ≤ x22 ≤ 20; 5 ≤ x23 ≤ 50

5 ≤ x31 ≤ 50; 5 ≤ x32 ≤ 20; 5 ≤ x33 ≤ 50

In order to solve the problem (P0), we first convert it into balanced transportation
problem (P

′
0) and solve it. The solution of problem (P

′
0) is shown in table (2). In

Table 2. Solution of problem (P
′
0)

xij D1 D2 D3 D4 u1
i u2

i u3
i ui4

O1 10 20 40 0 0 0 0 0
O2 35 20 5 0 -73 -7781 -2200 -1500
O3 5 10 5 50 0 0 0 0
v1

j 1148 2040 1148 0
v2

j 8542 6960 6852 0
v3

j 2800 3000 2500 0
v4

j 2000 2500 3000 0

Notes.Entries of the form a and b represent non-
basic cells which are at their lower and upper
bounds respectively. Entries in bold are basic
cells.

table (2), C0 = 185660;D0 = 722165;E0 = 281750;F 0 = 296500; a
′
1 = 70; a

′
2 =

60; a
′
3 = 20 Since in table (3), δ1

ij ≥ 0;∀(i, j) ∈ N1 and δ2
ij ≥ 0;∀(i, j) ∈ N2 ,

therefore, the solution in table (2) is an optimal solution of problem (P
′
0) and

hence yields an optimal solution of (P0) with z0 = 185660
722165

+ 281750
296500

= 1.20734 and
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Table 3. Computation of δ1
ij and δ2

ij

NB O1D2 O2D2 O2D3 O2D4 O3D1 O3D3
θij 10 5 30 0 5 35

cij − z1
ij -892 -892 0 73 892 892

dij − z2
ij 1892 1746 2854 7781 -2249 -892

eij − z3
ij -500 0 1200 2200 50 500

fij − z4
ij 500 0 -200 1500 0 500

δ1
ij and δ2

ij 0.05305 0.00939 0.1163 0 0.01118 0.05957

flow F 0 = 150.We also verified this optimal solution by using a computing soft-
ware Excel Solver and obtained the following report.
Result: Solver found a solution. All Constraints and optimality conditions are
satisfied. Solver Engine Engine: GRG Nonlinear; Solution Time: 0.016 Sec-
onds;Iterations: 0 Subproblems: 0 Solver Options: Max Time Unlimited, Itera-
tions Unlimited, Precision 0.000001, Use Automatic Scaling Convergence 0.0001,
Population Size 100, Random Seed 0, Derivatives Forward, Require Bounds Max
Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, As-
sume NonNegative
On comparing this result with the existing data that we get from the books of the
firm, we will see that the difference in the ratio is 1.313444−1.207341 = 0.106103.
That is, the savings of the firm would increase by 8.07% if the transactions would
be done according to the developed algorithm (shown in table (2).
Existence of paradox:
Now,there exists a cell O2D3 with [D0(u1

p + v1
q )−C0(u2

p + v2
q )] = 722165(1075)−

185660(−929) = 948805515 > 0 and [F 0(u3
p + v3

q )−E0(u4
p + v4

q )] = 296500(300)−
281750(1500) = −333675000 < 0.
For λ = 1, [D0(u1

p +v1
q )−C0(u2

p +v2
q )]F 0(F 0 + (u4

p +v4
q )) + [F 0(u3

p +v3
q )−E0(u4

p +

v4
q )]D0(D0 + (u2

p + v2
q ))

= [948805515](296500)(296500 + 1500) − 333675000[722165](722165 − 929) =
−8.996148061× 1019 < 0
Therefore, a paradox exists in this case. Best paradoxical pair is found by solving
the problem (P1). Form the related problem (RP1) with an additional supply
point and an additional destination. Table (4) below shows an optimal solution
of the related problem (RP1). For (RP1),
0 ≤ x14 ≤ 50; 0 ≤ x24 ≤ 60; 0 ≤ x34 ≤ 100; 0 ≤ x41 ≤ 100; 0 ≤ x42 ≤ 10; 0 ≤

x43 ≤ 100;x44 ≥ 0; A
′
1 =

3∑
j=1

u1j = 120;A
′
2 =

3∑
j=1

u2j = 120;A
′
3 =

3∑
j=1

u3j =

120;A
′
4 =

3∑
i=1

3∑
j=1

uij = 360;B
′
1 =

3∑
i=1

ui1 = 150;B
′
2 =

3∑
i=1

ui2 = 60;B
′
3 =

3∑
i=1

ui3 =

150 Using excel solver, we verify that the solution given in table (4) is an opti-
mal solution of the problem (RP1) and consequently of the problem (P1) with
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Table 4. Best Paradoxical Pair

xij D1 D2 D3 D4 A
′
i

O1 10 20 50 40 120
O2 35 20 5 60 120
O3 5 10 50 55 120
O4 100 10 45 205 360

B
′
j 150 60 150 360

z0 = 288940
1058885

+ 441750
484000

= 1.185579 and flow F 0 = 205.Therefore, the best para-
doxical pair is (1.185579, 205). The paradoxical range of flow is [150, 205].The
firm would benefit more if the transactions would be done according to the best
paradoxical pair as shown in table (4). The savings of the firm would increase by
1.313444−1.185579

1.313444
× 100 = 9.74%

Paradoxical Solution for specified flow P = 160 Now, consider the para-
doxical pair with in this range for P = 160. For this, form the related problem
(RP2), b

′′
4 = a

′′
4 = 360 − 160 = 200;x44 = 0 Using excel solver, we verify that

Table 5. Paradoxical solution for P = 160

xij D1 D2 D3 D4 A
′
i

O1 8 20 50 42 120
O2 37 20 5 58 120
O3 5 10 5 100 120
O4 100 10 90 200

B
′
j 150 60 150 200

the solution given in table (5) is an optimal solution of the problem (RP2) and
consequently of the problem (P2) with z0 = 1.188767 and F 0 = 160.Therefore,
the paradoxical pair is (1.188767, 160).

11. Conclusion

This paper gives a sufficient condition for the existence of paradox in a frac-
tional plus fractional capacitated transportation problem. Moreover, an algo-
rithm is devised which provides the best paradoxical pair and paradoxical solu-
tion for any specified flow within the paradoxical range of flows. The developed
algorithm is used to solve the problem of the manager of a trading firm namely,
D.M Chemicals , Delhi. It is found that the firm would be benefited by 8.07%
if the business transactions would be done according to the developed algorithm.
Further, it is shown that the firm would benefit by 9.74% if the transactions
would be done according to the best paradoxical pair.

As future work, it is intended to apply the proposed algorithm to a sum of
n fractional functions when the decision variables are bounded. Moreover, the
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developed algorithm can also be applied in a solid fixed charge capacitated trans-
portation problem, indefinite quadratic transportation problem. Developed algo-
rithm can be applied on the problems of the real world.
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