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∗

Abstract. The duration of the latent period has the influence on the spread of infectious diseases in the infected

population. The introduction of this period into epidemiological models gave rise to different models: the SIRI

epidemic model with time delay and the SEIRI epidemic model. Taking into account the infected individuals who

died before the end of the latent period, we propose the modification of the existing SIRI model. The dynamics of

the obtained model is analyzed in terms of the global stability. A comparison with the existing versions is presented.

Numerical simulations are proposed to illustrate our results and finally a conclusion is given to close this work.
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1 Introduction

Recently, Global dynamics of mathematical models describing the propagation of infectious diseases
have been studied by several authors (see, for example, [2, 4, 6, 5, 7, 1, 9, 10]). special attention has
been paid to the study of the effect of the latent period on the spread of infectious diseases. These
studies have led to different models, namely the ordinary SEIR model [1, 3, 9], the SIR model with
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delay in the evolution equation of infectious individuals [6, 7, 11, 12] and SIR model with delay in
the evolution equations of susceptible individuals and infected individuals [1, 4, 8, 9].

Taking into account the infected individuals who died before the end of the latent period, we
propose the following SIRI epidemic model with a discrete time delay :

dS

dt
= A− µS − f(S, e−µτIτ ),

dI

dt
= f(S, e−µτIτ )− (µ+ γ)I + δR,

dR

dt
= γI − (µ+ δ)R,

(1)

here ψτ = ψ(t−τ) for any given function ψ, A = µN , where N is the total number of population, S
is the number of susceptible individuals, I is the number of infectious individuals, µ denote birth and
death rates, f is the incidence function, i.e. the number of susceptible individuals infected through
their contacts with the infectious individuals, γ is the recovery rate of the infectious individuals, δ
represents the rate that recovered individuals relapse and regain the infectious class and τ units of
time after infection. The terme e−µτ is the probability of surviving from time t− τ to time t.
The initial condition for the above system is

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ), θ ∈ [−τ, 0] (2)

with ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+ × C+ × C+, such that ϕi(θ) ≥ 0 (−τ ≤ θ ≤ 0, i = 1, 2, 3). Here C
denotes the Banach space C([−τ, 0],R) of continuous functions mapping the interval [−τ, 0] into R,
equipped with the supremum norm. The nonnegative cone of C is defined as C+ = C([−τ, 0],R+),
where R+ = {x ∈ R | x ≥ 0}.

The first model in this optic was proposed by Cooke in ([6], 1979). In ([12], 2004) Wanblao
Ma and al proposed a SIR model with a bilinear incidence rate. In ([7], 2011) Y. Enatsu and al
propose a generalization of the Wanblao et al model, they considered a general incidence rate and
a distributed latency period.

In this paper, it is shown that global stability of the system (1) can be attained under suitable
monotonicity conditions and it is established that the basic reproduction number R0 is a threshold
parameter for the stability of this model. The rest of the paper is organized as follows. Next,
in section 2, we establish the global stability of disease-free and endemic equilibria of the system
(1). Finally, a comparison with existing models is proposed and some numerical simulations are
provided in section 3.

2 Global stability analysis

Consider the incidence function f(S, e−µτI) that is a locally Lipschitz continuous function on R+×
R+ satisfaying f(0, e−µτI) = f(S, 0) = 0 for S ≥ 0, I ≥ 0 and the followings hold:

(H1) f(S, e−µτI) is a strictly monotone increasing function of S ≥ 0, for any fixed I > 0, and
f(S, e−µτI) is a strictly monotone increasing function of I ≥ 0, for any fixed S ≥ 0;
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(H2) φ(S, e−µτI) = f(S,e−µτ I)
I

is a bounded and monotone decreasing function of I > 0, for any fixed
S ≥ 0, and K(S) = limI→0+ φ(S, e−µτI) is a continuous and monotone increasing function on
S ≥ 0.

Let

R0 :=
K(A

µ
)

η
,

with η = (µ+ γ)− γδ
µ+δ

.

System (1) always has a disease-free equilibrium P0 = (A
µ
, 0, 0). The following proposition gives the

existence of a unique endemic equilibrium P ∗.

Proposition 2.1. Under the hypotheses (H1) and (H2), if R0 > 1, then system (1) also admits a
unique endemic equilibrium P ∗ = (S∗, I∗, R∗), where S∗, I∗ and R∗ satisfying the following system:

A− µS − f(S, e−µτI) = 0

f(S, e−µτI)− (µ+ γ)I + δR = 0

γI − (µ+ δ)R = 0

(3)

Proof. The proof goes in a way similar to the proof of Proposition 3 in [2].

In this section, we discuss the global stability of the disease-free equilibrium P0 and the endemic
equilibrium P ∗ of system (1). Since d

dt
(S+I+R) ≤ A−µ(S+I+R), we have lim sup(S+I+R) ≤ A

µ
.

Hence we discuss system (1) in the closed set

Ω =:
{

(ϕ1, ϕ2, ϕ3) ∈ C+ × C+ × C+ : ‖ϕ1 + ϕ2 + ϕ3‖ ≤ A/µ
}
.

It is easy to show that Ω is positively invariant with respect to system (1). Next we consider the
global asymptotic stability of the disease-free equilibrium P0 and the endemic equilibrium P ∗ of (1)
by Lyapunov functionals, respectively.

Proposition 2.2. If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically stable.

Proof. Define a Lyapunov functional

W0(t) =

∫ S

A
µ

(1−
K(A

µ
)

K(u)
)du+ I +

δ

µ+ δ
R + η

∫ t

t−τ
I(u)du

We will show that dW0(t)
dt
≤ 0 for all t ≥ 0. We have

dW0(t)

dt
= (1−

K(A
µ

)

K(S)
)Ṡ + f(S, e−µτIτ )

− (µ+ γ)I + δR + η(I − Iτ ) +
γδ

µ+ δ
I − δR

= (1−
K(A

µ
)

K(S)
)(A− µS)

+
K(A

µ
)

K(S)
f(S, e−µτIτ )− ηIτ

= µ(1−
K(A

µ
)

K(S)
)(
A

µ
− S)

+ ηIτ (
φ(S, e−µτIτ )

η

K(A
µ

)

K(S)
− 1)
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By the hypothesis (H1) , we obtain that

(1−
K(A

µ
)

K(S)
)(
A

µ
− S) ≤ 0

Where equality holds if and only if S = A
µ

.

Furthermore, it follows from the hypothesis (H2) that

K(A
µ

)

K(S)

φ(S, e−µτIτ )

η
≤
K(A

µ
)

K(S)

K(S)

η

≤
K(A

µ
)

η

≤ R0

Therefore, R0 ≤ 1 ensures that dW0(t)
dt
≤ 0 for all t ≥ 0, where dW0(t)

dt
= 0 holds if (S, I, R) = (A

µ
, 0, 0).

Hence, it follows from system (1) that {P0} is the largest invariant set in
{

(S, I, R)|dW0(t)
dt

= 0
}

.

From the Lyapunov-LaSalle asymptotic stability, we obtain that P0 is globally asymptotically stable.
This completes the proof.

The following lemma plays a key role to obtain Theorems 2.1.

Lemma 2.1. Under the hypotheses (H1) and (H2) , it holds that

g(yt)− g(ỹt,τ ) ≥ 0

for all t ≥ 0 and 0 ≤ τ ≤ h, where g(x) = x− 1− lnx ≥ 0, for x > 0 and

yt =
I

I∗
, ỹt,τ =

f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)
.

Proof. By the definitions of yt and ỹt,τ , we have that

ỹt,τ − 1 =
f(S(t+ τ), e−µτI)− f(S(t+ τ), e−µτI∗)

f(S(t+ τ), e−µτI∗)

and

yt − ỹt,τ =
I

I∗
− f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)

=
I

f(S(t+ τ), e−µτI∗)

{
φ(S(t+ τ), e−µτI∗)− φ(S(t+ τ), e−µτI)

}
Then , it follows from the hypotheses (H1) and (H2) that

(yt − ỹt,τ )(ỹt,τ − 1) =
I

f(S(t+ τ), e−µτI∗)2
{
φ(S(t+ τ), e−µτI∗)− φ(S(t+ τ), e−µτI)

}
×
{
f(S(t+ τ), e−µτI)− f(S(t+ τ), e−µτI∗)

}
≥ 0.

that is , either yt ≤ ỹt,τ ≤ 1 or yt ≥ ỹt,τ ≥ 1 holds for all t ≥ 0 and 0 ≤ τ ≤ h. Since g
′
(x) = 1− 1

x

for all x > 0 and g
′
(1) = 0, it follows that g(yt) ≥ g(ỹt,τ ) ≥ 0. This completes the proof.
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Theorem 2.1. If R0 > 1, then the endemic equilibrium P ∗ is globally asymptotically stable.

Proof. Firstly, we prove the existence and the uniqueness of the endemic equilibrium P ∗. At a fixed
point (S, I, R) of system (1), the following equations hold.

A− µS − f(S, e−µτI) = 0,

f(S, e−µτI)− (µ+ γ)I + δR = 0,

γI − (µ+ δ)R = 0,

(4)

Substituting the third equation into the second equation of (4), we consider the following system:
A− µS − f(S, e−µτI) = 0,

f(S, e−µτI)− (µ+ γ − γδ

µ+ δ
)I = 0,

R =
γI

µ+ δ
,

(5)

Using the first and the second equations in (5), we conclude that

S =
A

µ
− (µ+ γ − δγ

µ+ δ
)
I

µ
. (6)

Substituting the equation (6) into the second equation of (4), we have

g(I) :=
f(A

µ
− (µ+ γ − δγ

µ+δ
) I
µ
, e−µτI)

I
− (µ+ γ − γδ

µ+ δ
) = 0.

By the hypothesis (H2), g is strictly monotone decreasing on ]0, A

(µ+γ− γδ
µ+δ

)
] satisfying:

lim
I→0+

g(I) = K(
A

µ
)− (µ+ γ − γδ

µ+ δ
)

= (µ+ γ − γδ

µ+ δ
)(

K(A
µ

)

(µ+ γ − γδ
µ+δ

)
− 1)

= (µ+ γ − γδ

µ+ δ
)(R0 − 1) > 0

and

g(
A

(µ+ γ − γδ
µ+δ

)
) = −(µ+ γ − γδ

µ+ δ
) < 0.

Thus, there exists a unique I∗ such that g(I∗) = 0. Hence, we conclude the existence and uniqueness
of the endemic equilibrium P ∗.
Finally, To prove global stability of the endemic equilibrium, we define a Lyapunov functional

W (t) = W1(t) +W2(t) +W3(t) +W4(t),

with

W1(t) = S − S∗ −
∫ S

S∗

f(S∗, e−µτI∗)

f(u, e−µτI∗)
du,



92 Amine Bernoussi, Abdelilah Kaddar and Said Asserda

W2(t) = (I − I∗ − I∗ ln
I

I∗
),

W3(t) =
δ

µ+ δ
(R−R∗ −R∗ ln

R

R∗
),

and

W4(t) = f(S∗, e−µτI∗)

∫ t

t−τ
g(
f(S(u+ τ), e−µτI(u))

f(S(u+ τ), e−µτI∗)
)du

The time derivative of the function W (t) along the positive solution of system (1) is

dW (t)

dt
=
(

1− f(S∗, e−µτI∗)

f(S, e−µτI∗)

)(
A− µS − f(S, e−µτIτ )

)
+
(
1− I∗

I

)(
f(S, e−µτIτ ) + δR− (µ+ γ)I

)
+

δ

µ+ δ

(
1− R∗

R

)(
γI − (µ+ δ)R

)
+ f(S∗, e−µτI∗)

(
g(
f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)
)− g(

f(S, e−µτIτ )

f(S, e−µτI∗)
)
)
.

(7)

Using the relation A = µS∗ + f(S∗, e−µτI∗), a simple calculations give that

dW (t)

dt
=
(

1− f(S∗, e−µτI∗)

f(S, e−µτI∗)

)(
− µ(S − S∗) + f(S∗, e−µτI∗)

)
+
f(S∗, e−µτI∗)

f(S, e−µτI∗)
f(S, e−µτIτ )

− (µ+ γ)I − I∗

I
f(S, e−µτIτ )− δ

I∗

I
R + (µ+ γ)I∗

+
δ

µ+ δ

(
γI − γIR

∗

R
+ (µ+ δ)R∗

)
+ f(S∗, e−µτI∗)

(
g(
f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)
)− g(

f(S, e−µτIτ )

f(S, e−µτI∗)
)
)
.

(8)

Here by using

(µ+ γ)I∗ − δ

µ+ δ
γI∗ = f(S∗, e−µτI∗),

(µ+ δ)R∗ = γI∗

and

ln
f(S, e−µτIτ )

f(S, e−µτI∗)
= ln

I

I∗
+ ln

f(S∗, e−µτI∗)

f(S, e−µτI∗)
+ ln

I∗

I

f(S, e−µτIτ )

f(S∗, e−µτI∗)
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a straightforward calculations give

dW (t)

dt
= −µ

(
1− f(S∗, e−µτI∗)

f(S, e−µτI∗)

)(
S − S∗

)
− f(S∗, e−µτI∗)

( I
I∗
− 1− ln

I

I∗

)
− f(S∗, e−µτI∗)

(f(S∗, e−µτI∗)

f(S, e−µτI∗)
− 1− ln

f(S∗, e−µτI∗)

f(S, e−µτI∗)

)
− f(S∗, e−µτI∗)

(I∗
I

f(S, e−µτIτ )

f(S∗, e−µτI∗)
− 1− ln

I∗

I

f(S, e−µτIτ )

f(S∗, e−µτI∗)

)
+ f(S∗, e−µτI∗)g(

f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)
)

+
δγI∗

µ+ δ

(
2− I∗R

IR∗
− IR∗

I∗R

)
= −µ

(
1− f(S∗, e−µτI∗)

f(S, e−µτI∗)

)(
S − S∗

)
+ f(S∗, e−µτI∗)

{
g(
f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)
)− g(

I

I∗
)

}
− f(S∗, e−µτI∗)

{
g(
f(S∗, e−µτI∗)

f(S, e−µτI∗)
) + g(

I∗

I

f(S, e−µτIτ )

f(S∗, e−µτI∗)
)

}
− δγI∗

µ+ δ

(√I∗R

IR∗
−
√
IR∗

I∗R

)2
.

(9)

It follows from (H1) that

−µ
(

1− f(S∗, e−µτI∗)

f(S, e−µτI∗)

)(
S − S∗

)
≤ 0,

With strict equality holds if and only if S(t) = S∗, and using Lemma 2.1, we have

g(
f(S(t+ τ), e−µτI)

f(S(t+ τ), e−µτI∗)
)− g(

I

I∗
) ≤ 0 , for all 0 ≤ τ ≤ h.

Furthermore, since the function g(x) = 1 − x + lnx is always non-positive for any x > 0, and

g(x) = 0 if and only if x = 1, then dW (t)
dt
≤ 0, for all t ≥ 0, where the equality holds only at the

equilibrium point (S∗, I∗, R∗). Thus {P ∗} is the largest invariant set in
{

(S, I, R)
∣∣∣dW (t)

dt
= 0
}

.

Consequently, we obtain , by the Lyapunov-LaSalle asymptotic stability theorem, that P ∗ is globally
asymptotically stable. This completes the proof.

3 Comparison

In this section we propose a comparison between the model (1) and the following model [4]:

dS

dt
= A− µS − f(S, I),

dI

dt
= e−µτf(Sτ , Iτ )− (µ+ γ)I + δR,

dR

dt
= γI − (µ+ δ)R,

(10)
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The principal result of the model (10) is recalled in the following theorem.

Theorem 3.1. [4] Assume that (H1) and (H2) hold.

If R01 :
K(A

µ
)e−µτ

η
> 1, then the endemic equilibrium P ∗ of the system (10) is globally asymptotically

stable.

To facilitate the comparison, we summarize in the following table the main results of the two
proposed models.

Model (1) (10)

Basic reproduction number, R0
K(A

µ
)

η

K(A
µ
)e−µτ

η

Key to global stability R0 R0

Table 1: The principal characteristics of the two models (1) and (10).

From Table 1, we note that the basic reproduction number R0 is the key parameter of the global
stability analysis for the two proposed cases. Consequently the models (1) and (10) generate iden-
tical global asymptotic behavior (see Figure 1 and Figure 2).

Figure 1: The dynamic behavior of the model (1) for the incidence function f(S, I) = βSI
1+α1S+α2I

[8] and the parameters A = 5, µ = 0.005, α1 = 0, α2 = 0.9, γ = 0.02, β = 0.1, δ = 0.2, τ = 10,
S(0) = 999, I(0) = 1, R(0) = 0.

4 Conclusion

This paper investigates the effect of latent period (delay) in the stability of the following SIRI
model: 

dS

dt
= A− µS − f(S, e−µτIτ ),

dI

dt
= f(S, e−µτIτ )− (µ+ γ)I + δR,

dR

dt
= γI − (µ+ δ)R,

(11)

In conclusion, the fundamental objective of the above formulation is to study the role of time
delay on the existence of the endemic equilibrium and his stability. By using the reproduction
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Figure 2: The dynamic behavior of the model (10) for the incidence function f(S, I) = βSI
1+α1S+α2I

and the parameters A = 5, µ = 0.005, α1 = 0, α2 = 0.9, γ = 0.02, β = 0.1, δ = 0.2, τ = 10,
S(0) = 999, I(0) = 1, R(0) = 0.

number R0, to establish the stability of the endemic equilibrium point, we used a Lyapunov function
and the assumptions of monotony on the incidence function for a rigorous mathematical treatment.

In addition, we present a comparison of the model (11) with the following version:

dS

dt
= A− µS − f(S, I),

dI

dt
= e−µτf(Sτ , Iτ )− (µ+ γ)I + δR,

dR

dt
= γI − (µ+ δ)R,

(12)

It is shown through theoretical analysis and numerical simulations, that the two models (11) and
(12) have the same properties. It is also shown that, unlike other existing work, the model (11) has
a basic reproduction number which depend on the time delay.
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