
AMO - Advanced Modeling and Optimization, Volume 19, Number 1, 2017 

                                                                                             69 
AMO - Advanced Modeling and Optimization. ISSN: 1841-4311 

 

Linearization Strategy for Boolean Least Squares Problem 

 
M. Safari Moghaddam, M. Salahi  

Department of Applied Mathematics, Faculty of Mathematical Sciences 

 University of Guilan, Rasht, Iran, 

salahim@guilan.ac.ir 

 

Abstract: In this paper, we use the linearization strategy using bilinear functions for 

solving NP-Hard boolean least squares problems. The new model is tighter than the 

classical linearization strategy. The quality of the solutions obtained by the new 

linearization strategy is compared with a known algorithm and the bound obtained by 

semdefinite relaxation showing the better performance of the new approach both in time 

and quality of the solutions. 
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1. Introduction 

Integer least squares (ILS) problem arises in various applications such as  position 

estimation by the Global Positioning System (GPS) [12],  maximum likelihood detection 

of boolean [13], mixed integer version of the least squares problem appears in data fitting 

applications [17], and may others that are mentioned in [14]. It has been the focus of 

several recent research. In this paper, we study the boolean version of ILS and call it BLS 

as follows: 
2
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By ignoring the constant term and letting , 2 ,T TA A c bQ A   we get the following 

problem: 
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It is worth to note that every ILS by introducing new variables can be transformed 

to BLS (2).  In general ILS and BLS are NP-Hard and several approximation algorithms 

are developed to give upper and lower bounds for its optimal objective value.  For  

example, in [8,9] the authors have proposed a reduction and search algorithm to solve 

box-constrained ILS and mixed integer least squares. The reduction is based on QR 
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factorization of A . In [15] the author has studied the sphere decoding method in 

communications and proposed a deterministic method for finding the radius of search 

sphere. Another widely used approach to deal with hard discrete optimization problems, 

is the so called semidefinite optimization (SDO) relaxation [2,3].  For example, the known 

maximum cut problem has been tackled by the SDO relaxation followed by a 

randomization algorithm led to the 0.87 approximation algorithm [10].  In a most recent 

work, Park and Boyd  used the SDO relaxation  to give  lower and upper bounds for BLS 

[14]. One may see several other algorithms for  mixed integer quadratic programming  in 

[3, 5-7].   

 

In this paper, we apply the other widely used linearization strategy for solving 

nonlinear mixed integer programming problems.  First, in Section 2 we present the 

classical linearization strategy. Then in Section 3, we give the linearization using bilinear 

function [16]. In Section 4, we compare  the new linearization strategy with the algorithm 

of [8] on several randomly generated test problems. The lower bound obtained by SDO 

relaxation  is also  provided for all test problems. Finally, some conclusions are given in 

Section 5. 

 

2. Classical linearization strategy 

         In this section, we discuss the classical linearization strategy for (2). In order to 

linearize Tx Qx , the following change of variables are done: 

         ,    .ij i jw x x i j    

Thus the quadratic term in (2) becomes as follows: 
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Now since  w x x
ij i j
 , then we have 
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Moreover, since or 10ix  , and Q  is symmetric, then  
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Therefore, (2) becomes 
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Now we linearize ij i jw x x .  Since  or 10ix  , then  it is equivalent to 

1,0},m {0,1},a 3x ){ (ij ijjiw x x w    

and/or 

, }, {0,1}. (4min ){ jij i ijww x x   

Moreover (3) and (4) are both equivalent to the following: 

1, {0,1}, (5)ij i ijjw x x w  

, , {0,1}. (6)jij i ij ijw x w x w    

Using these,  the linearized version of (2)  is as follows: 
1

1 1 1

( ) : min 2

(7). . 1,   ,

 , ,

,   {0,

,

1} .

n n n
T

ii i ij ij

i i j i

ij i j

ij i jij

n

QP c x Q x Q w

s t w x x i j

w x w x i j

x w



   

  
  

  

    

 



 

 

 

 

3. Linearization using bilinear functions 

In this section, using bilinear functions we give better linearization compared to  

(7).  First the following problems are solved: 

(min max) min max{ : } , (8)i

iQ x x X i    

where iQ  is 𝑖-th row of Q  and X  is an appropriate  relaxation of  X .  We further can 

write (8) as follows: 
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Using these notations and letting Qx  , we can write (2) as follows 
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From (8) we have  

. (10)γmin max    

We further let 
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Now  multiplying (10)  by ix  and ( )ix1 , we linearize Tx   as follows: 
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We further consider the following change of variables: 
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Now using (13), (12) becomes 
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           As we can easily see, (7) has 2( )O n  constraints and variables while (14) has ( )O n   

constraints and variables. This is significantly important when we are dealing with large 

scale problems.    

 

Theorem 1.   Problems (2) and (14) are equivalent in the sense that for each feasible 

solution to one of them, there exists a feasible solution to the other one which have the 

same objective value. 

 

Proof: Let  , ,x y s be a feasible solution of (14), then  as (14) is the result of change of 

variables in (2), thus x  is also feasible for (2). By letting  
min

T

i is s x   ,  we can see that 

they have equal objective values. 

 

4. Numerical experiments 

            In this section,  we compare the efficiency of the linearization strategy with Obils 

algorithm from [8]. We also provide the lower bounds using the SDO relaxation. 

Linearized problem  is solved using GAMS, Obils is implemented MATLAB and SDO 

relaxation also is solved using cvx on an Intel G3240, 3.1 GHz machine with 4GB of 

memory. For each dimension, we have generated 5 instances and the average of running 

times in seconds and objective values are reported in all tables. In tables,  ‘Limit’ means 

that the problem is not solved within 3600 seconds. 

 

Example 1: The aim of this example is to compare the classical linearization strategy with 

the new one. The data for this example are generated as follow and results are 

summarized in Table 1. 

  
  

100* , 5

 100 ;* ,1

;

5

A floor rand m n

b floor rand m

 

 
 

As we see, when the dimension increases, the time required by the classical 

method increases significantly compared to the two new linearization scheme. Thus for 

the rest of the tables, we do not include the results of the classical approach. 
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Table 1. Average computational time of two linearization approaches 

m  n  BP QP 

Average CPU times 

250 200 7.40 245.66 

300 250 16.27 902.30 

350 300 48.67 Limit 

 

  

Example 2: The data for this example are generated as follow. The matrix A is generated 

with density equal to 10%  from [ 5 5]  and the vector b also is generated with density 

equal to 10% from the set [1 100] . The corresponding Matlab’s  command are as follow: 

  
 

10* , ,0.1 ;

;

5

100* ( ,1)

A floor sprand m n

b floor rand m

 


 

 
Table 2. Comparison of  average computational times and objective values 

 

m  

 

n  

BP Obils SDO 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

60 40 0.37 208052.00 4.56 208052.00 1.62 208042.20 

80 60 0.49 260560.00 454.05 260560.00 1.95 260551.29 

100 80 0.70 310931.40 Limit N/A  2.01 310929.18 

 

As we see in Table 2, both BP and Obils give the same objective values with 

significantly different running time. The BP is significantly faster, moreover, for one 

problem Obils is not able to solve the problem within the time limit . Moreover, the SDO 

relaxation gives reasonably good lower bounds much faster than Obils. 

 

Example 3: The data for this example are generated as follow and results are summarized 

in Table 3. 

  
  

100* , 5

 100 ;* ,1

;

5

A floor rand m n

b floor rand m

 

 
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Table 3. Comparison of  average computational times and objective values 

 

m  

 

n  

BP Obils SDO 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

200 150 7.30 430463.65 3.00 430463.65 4.89 370766.92 

 250 200 21.35 604489.14 129.29 604489.14 9.51 519603.34 

300  250 50.59 685338.38 Limit N/A  18.15 572943.66 

 

From Table 3, we observe that for the first problem Obils is faster but for the second 

one it is much slower and it can not solve the last problem in the time limit. Unlike the 

previous table, the bounds provided by SDO relaxation  are much smaller than the 

optimal values obtained by the linearization approach and Obils. 

 

Example 4: The data for this example are generated as follow and results are summarized 

in Table 4. 

, 0.0

( , );

(100* ( ,1));

* (0 5, ,1);

A rand m n

xc floor randn n

b A xc normrnd m





   
 

Table 4. Comparison of  average of computational times and objective values 

 

m  

 

n  

BP Obils SDO 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

100 50 0.47 22705011.96 Limit N/A  2.33 22675609.40 

150 100 1.12 47082389.25 Limit N/A  5.23 47081244.22 

200 150 2.26 68936329.62 Limit N/A  18.57 68930663.13 

 

 

Example 5: The data for this example are generated as follow and results are summarized 

in Table 5. 

 
  
  

100* , 5

 100 ;* ,1

;

5

A floor rand m n

b floor rand m

 

 
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Table 5. Comparison of  average  computational times and objective values 

 

m  

 

n  

BP Obils SDO 

Average 

CPU 

times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

Average 

CPU times 

Average 

objective 

values 

500 450 203.37 1027785.43 Limit N/A  158.19 1019546.25 

600 550 404.94 2679539.97 Limit N/A  912.66 2593744.31 

700 650 748.16 4106597.93 Limit N/A  Limit N/A  

 

 

5. Conclusions 

 

           In this paper, the linearization strategy using bilinear functions is applied to solve  

the NP-Hard boolean least squares problem. Our experiments on several randomly 

generated test problems show that this approach performs better than the Obils 

algorithm and the classical linearization strategy.   
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