A Tool for NCPs

Christian Bidard^{*}

Abstract

The non-existence of a solution to a nonlinear complementarity problem implies the existence of solutions for a related set of nonlinear complementarity problems.

AMS Classification. 65K05, 90C33

In economics, the Gale-Nikaido-Debreu lemma ([3], [4], [5]) provides the key to solve the general equilibrium problem, which is a nonlinear complementarity problem.

GND Lemma. Let s be a continuous function defined on a convex compact set $K \subset \mathbb{R}^n$, with values in \mathbb{R}^n , and which satisfies the Walras identity $\mathbf{x}^T s(\mathbf{x}) = 0$. There exists \mathbf{x}^* in K such that $\mathbf{x}^T s(\mathbf{x}^*) \ge 0$ for any $\mathbf{x} \in K$.

Proof. Let *H* be a compact convex subset of \mathbb{R}^n containing the image s(K), and φ be the upper-semi continuous correspondence from *H* to *K* defined by $\varphi(\mathbf{y}) = \left\{ \mathbf{x}; \mathbf{x} \in K, \mathbf{x}^T \mathbf{y} = \min_{\mathbf{z} \in K} \mathbf{z}^T \mathbf{y} \right\}$. The product correspondence $s \times \varphi$ from the convex compact set $K \times H$ into itself is upper-semicontinuous. By the Kakutani theorem, it admits a fixed point $(\mathbf{x}^*, \mathbf{y}^*)$, for which $\min_{\mathbf{x} \in K} \mathbf{x}^T \mathbf{x}(\mathbf{x}^*) = \min_{\mathbf{x} \in K} \mathbf{x}^T \mathbf{y}^* = \varphi(\mathbf{y}^*)^T \mathbf{y}^* = \mathbf{x}^{*T} \mathbf{y}^* = \mathbf{x}^{*T} s(\mathbf{x}^*) = 0$. Let $\|\mathbf{x}\| = \sum_i |x_i|$. When function *s* is defined on the unit simplex $S = \sum_{i=1}^{n} |x_i|$.

 $\{\mathbf{x} \in \mathbb{R}^n; \mathbf{x} \ge 0, \|\mathbf{x}\| = 1\}$ and satisfies the Walras identity, the lemma shows the existence of a solution to the nonlinear complementarity problem NCP(s): $\mathbf{x} \ge 0, s(\mathbf{x}) \ge 0, \mathbf{x}^T s(\mathbf{x}) = 0$. When the Walras identity is not met, we may force it by introducing one more dimension ([1]) and considering the extension $\overline{s}(\mathbf{x}, t) = (s(t^{-1}\mathbf{x}), -t^{-1}\mathbf{x}^T s(t^{-1}\mathbf{x}))$, which is defined on the set $S_{\varepsilon} = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1}; \mathbf{x} \ge 0, t \ge \varepsilon, \|\mathbf{x}\| + t = 1\}$.

^{*}University Paris Nanterre, EconomiX, 200 avenue de la République, 92001 Nanterre (France). E-mail: christian.bidard@u-paris10.fr

Theorem 1 Let $f: \mathbb{R}^n_+ \to \mathbb{R}^n$ be a continuous function such that NCP(f) has no solution. For any positive vector \mathbf{u} , there exist infinitely many semipositive vectors \mathbf{z}_k with $\|\mathbf{z}_k\| \to \infty$ and positive scalars λ_k such that

$$f(\mathbf{z}_k) + \lambda_k \mathbf{u} \ge \mathbf{0} \quad [\mathbf{z}_k] \tag{1}$$

Proof. If the result holds for some positive vector \mathbf{u} , it holds for any positive vector \mathbf{v} by applying it to function g defined by $g_i(\mathbf{z}) = v_i^{-1} u_i f_i(\mathbf{z})$. We may therefore assume $\mathbf{u}^T = \mathbf{u}_n^T = (1, ..., 1)$. By the GND lemma applied to the extension of f, there exists $(\mathbf{x}_{\varepsilon}, t_{\varepsilon})$ in S_{ε} such that

$$\forall (\mathbf{x}, t) \in S_{\varepsilon} \quad \mathbf{x}^{T} f(t_{\varepsilon}^{-1} \mathbf{x}_{\varepsilon}) - t t_{\varepsilon}^{-1} \mathbf{x}_{\varepsilon}^{T} f(t_{\varepsilon}^{-1} \mathbf{x}_{\varepsilon}) \ge 0$$
(2)

We have $(\mathbf{x}_{\varepsilon}, t_{\varepsilon}) \neq (\mathbf{0}, 1)$, otherwise $\mathbf{z} = \mathbf{0}$ would be a solution of NCP(f). For

a given $\varepsilon > 0$ and the choice t = 1, $\mathbf{x} = \mathbf{0}$, inequality (2) shows that the scalar $\lambda_{\varepsilon} = -(1 - t_{\varepsilon})^{-1} \mathbf{x}_{\varepsilon}^T f(t_{\varepsilon}^{-1} \mathbf{x}_{\varepsilon})$ is nonnegative. For the choice $\mathbf{x} = (1 - t_{\varepsilon})\mathbf{e}_i, t = t_{\varepsilon}$, it shows that $f_i(t_{\varepsilon}^{-1} \mathbf{x}_{\varepsilon}) + \lambda_{\varepsilon} \ge 0$, or

$$\min_{i} f_i(t_{\varepsilon}^{-1} \mathbf{x}_{\varepsilon}) \ge -\lambda_{\varepsilon} \tag{3}$$

By definition of $-\lambda_{\varepsilon}$, the right-hand side term is a positive barycentre of the coordinates $f_i(t_{\varepsilon}^{-1}\mathbf{x}_{\varepsilon})$ associated with the positive components $x_{\varepsilon i}$ of \mathbf{x}_{ε} . Inequality (3) implies that all these coordinates are equal to $-\lambda_{\varepsilon}$, while the coordinates corresponding the zero components of \mathbf{x}_{ε} are greater. Vector $\mathbf{z}_{\varepsilon} = t_{\varepsilon}^{-1}\mathbf{x}_{\varepsilon}$ is therefore a solution to (1) for $\lambda_k = \lambda_{\varepsilon}$. If, when ε tends to zero, t_{ε} admits a positive cluster point t_0 , there also exists a cluster point (\mathbf{x}_0, t_0) of $(\mathbf{x}_{\varepsilon}, t_{\varepsilon})$. For any given $(\mathbf{x}, t) \in S_{\varepsilon}$, inequality (2) holds by continuity when $(\mathbf{x}_{\varepsilon}, t_{\varepsilon})$ is replaced by its limit (\mathbf{x}_0, t_0) . As this holds for any $\varepsilon > 0$, we have $f(t_0^{-1}\mathbf{x}_0) \ge 0$ and $-t_0^{-1}\mathbf{x}_0^T f(t_0^{-1}\mathbf{x}_0) \ge 0$, and $\mathbf{z}_0 = t_0^{-1}\mathbf{x}_0$ is a solution to NCP(f). This being excluded, t_{ε} tends to zero and $\|\mathbf{z}_{\varepsilon}\| = t_{\varepsilon}^{-1}(1 - t_{\varepsilon})$ tends to infinity. Eventually, λ_{ε} is not zero since NCP(f) has no solution, therefore λ_{ε} is positive.

The following two corollaries (corollary 2 is due to Bidard ([2])) illustrate how the Theorem can be used to prove existence results: in the first case, λ_k tends to zero, not in the second case.

Corollary 1 Let $f(\mathbf{z}) = h(\mathbf{z}) + \mathbf{q}$, where $h : \mathbb{R}^n_+ \to \mathbb{R}^n$ is continuous, homogeneous of degree one and copositive $(\forall \mathbf{z} \ge 0 \ \mathbf{z}^T h(\mathbf{z}) \ge 0)$. Under assumption (H_1) :

$$\left\{ \mathbf{z} \ge \mathbf{0}, \mathbf{z} \neq \mathbf{0}, h(\mathbf{z}) \ge \mathbf{0}, \mathbf{z}^T h(\mathbf{z}) = 0 \right\} \text{ implies } \mathbf{z}^T \mathbf{q} > 0, \tag{4}$$

NCP(f) has a solution.

Proof. Let $\mathbf{u}^T = (1, ..., 1)$. If NCP(f) has no solution, there exist solutions $\mathbf{z} = \mu \mathbf{x}$ with $\mathbf{x} \ge 0$, $\mathbf{u}^T \mathbf{x} = 1$, μ arbitrarily great, to an infinite set of NCPs parameterized by positive scalars λ

$$h(\mu \mathbf{x}) + \mathbf{q} + \lambda \mathbf{u} \ge 0 \quad [\mathbf{x}] \tag{5}$$

From copositivity and the complementarity relationship, one gets $\mathbf{x}^T \mathbf{q} + \lambda \leq 0$, therefore the values of λ are upper bounded. There exists a subset of NCPs such that λ tends to a nonnegative scalar λ_0 , \mathbf{x} tends to \mathbf{x}_0 with $\mathbf{x}_0 \geq 0$, $\mathbf{u}^T \mathbf{x}_0 = 1$, and μ is arbitrarily great. Inequality (5) implies that $h(\mathbf{x}) + \mu^{-1}(\mathbf{q} + \lambda \mathbf{u}) \geq 0$, therefore $h(\mathbf{x}_0) \geq \mathbf{0}$. Similarly, the complementarity relationship in (5) implies $\mathbf{x}_0^T h(\mathbf{x}_0) = 0$. By (4), we have $\mathbf{x}_0^T \mathbf{q} > 0$ and a contradiction is obtained with inequality $\mathbf{x}_0^T \mathbf{q} + \lambda_0 \leq 0$.

When (H_1) is replaced by the weaker assumption (H_2) :

$$\{\mathbf{z} \ge 0, h(\mathbf{z}) \ge 0, \mathbf{z}^T h(\mathbf{z}) = 0\}$$
 implies $\mathbf{z}^T \mathbf{q} \ge 0,$ (6)

the above reasoning shows that $\mathbf{x}_0^T \mathbf{q} = \lambda_0 = 0$, therefore NCPs arbitrarily close to NCP(f) are solvable. For LCPs, the set of vectors \mathbf{q} for which LCP(\mathbf{q}, \mathbf{M}) is solvable is closed, therefore LCP(\mathbf{q}, \mathbf{M}) itself is solvable. This may not be the case for homogeneous NCPs: consider the function $f : \mathbb{R}^2_+ \to \mathbb{R}^2$ defined by

$$h_1(z_1, z_2) = z_1 \frac{z_1 + 2z_2}{z_1 + z_2}, q_1 = -1$$

$$h_2(z_1, z_2) = \frac{-z_1^2}{z_1 + z_2}, q_2 = 0$$

We have $\mathbf{z}^T h(\mathbf{z}) = z_1^2$. The set $\{\mathbf{z} \ge \mathbf{0}, h(\mathbf{z}) \ge \mathbf{0}, \mathbf{z}^T h(\mathbf{z}) = 0\}$ is the set of nonnegative vectors with a first zero component, therefore assumption (H_2) is met. However, since inequality $h_2(\mathbf{z}) + q_2 \ge 0$ implies $z_1 = 0$, we then have $h_1(\mathbf{z}) + q_1 = -1$ and NCP(f) has no solution.

Corollary 2 Let $f: R_{+}^{n} \to R^{m}, g: R_{+}^{m} \to R^{n}$ be continuous functions, and $\mathbf{c} \in R^{m}, \mathbf{d} \in R^{n}$ be vectors. Under assumptions: (i) $\forall (\mathbf{x}, \mathbf{y}) \geq \mathbf{0} \quad x^{T}g(\mathbf{y}) + \mathbf{y}^{T}f(\mathbf{x}) \geq 0$ (ii) f is homogenous of degree one (iii) $\{\mathbf{x} \geq \mathbf{0}, \mathbf{x} \neq \mathbf{0}, f(\mathbf{x}) \geq \mathbf{0}\} \Rightarrow \mathbf{d}^{T}\mathbf{x} < 0$ (iv) $\mathbf{c} << \mathbf{0}$ there exists a solution to the NCP

- $f(\mathbf{x}) \geq \mathbf{c} \quad [\mathbf{y}] \tag{7}$
- $g(\mathbf{y}) \geq \mathbf{d} \ [\mathbf{x}]$ (8)

Proof. If the NCP has no solution, there exist solutions $(\mathbf{x}_k, \mathbf{y}_k)$ tending to infinitely many NCPs

$$f(\mathbf{x}_k) + \lambda_k \mathbf{u}_m - \mathbf{c} \geq \mathbf{0} \quad [\mathbf{y}_k] \tag{9}$$

$$g(\mathbf{y}_k) + \lambda_k \mathbf{u}_n - \mathbf{d} \geq \mathbf{0} \quad [\mathbf{x}_k]$$
(10)

By the complementarity relationship and condition (i), we have

$$\lambda_k (\mathbf{u}_n^T \mathbf{x}_k + \mathbf{u}_m^T \mathbf{y}_k) - \mathbf{d}^T \mathbf{x}_k - \mathbf{c}^T \mathbf{y}_k \le 0$$
(11)

If the sequence $\|\mathbf{x}_k\|$ remained bounded, $\|\mathbf{y}_k\|$ would tend to infinity and a contradiction between assumption (iv) and (11) would be obtained. We therefore assume that $\|\mathbf{x}_k\|$ tends to infinity. If the sequence $\lambda_k^{-1} \|\mathbf{x}_k\|$ were bounded from above, a contradiction would be obtained with inequality $\mathbf{u}_n^T \mathbf{x}_k - \lambda_k^{-1} \mathbf{d}^T \mathbf{x}_k \leq 0$, which follows from (11) and (iv). We therefore assume that $\lambda_k \|\mathbf{x}_k\|^{-1}$ tends to zero. Then, condition (ii) and inequality (9) imply that a cluster point \mathbf{x}_0 of $\|\mathbf{x}_k\|^{-1} \mathbf{x}_k$ is such that $\|\mathbf{x}_0\| = 1$ and $f(\mathbf{x}_0) \geq \mathbf{0}$, therefore $\mathbf{d}^T \mathbf{x}_0 < 0$ by condition (iii) and $\mathbf{d}^T \mathbf{x}_k < 0$ for k great enough. Again, a contradiction with inequality (11) is obtained.

The proof of Theorem 1 is 'almost constructive' in the following sense. Given f, consider a sequence of positive scalars ε tending to zero and, for each ε , solve the programme (P_{ε}) : find $(\mathbf{x}_{\varepsilon}, t_{\varepsilon}) \in S_{\varepsilon}$ such that property (2) holds. This is a programme of the type met by the general equilibrium theory: vector (\mathbf{x}, t) is transformed into the orthogonal vector $(f(t^{-1}\mathbf{x}), -t^{-1}\mathbf{x}^T f(t^{-1}\mathbf{x}))$, and the problem is to make the transformed vector nonnegative. (By contrast, in many NCP algorithms, a similar problem is solved in a dual way: starting from nonnegative vectors, the aim is to make them orthogonal.) A solution always exists, and vector $\mathbf{z}_{\varepsilon} = t_{\varepsilon}^{-1}\mathbf{x}_{\varepsilon}$ is a solution of (1) for some λ_{ε} . If $\|\mathbf{z}_{\varepsilon}\|$ remains bounded, a cluster point of \mathbf{z}_{ε} is a solution of NCP(f). If $\lambda_{\varepsilon} = -\min_{i} f_{i}(\mathbf{z}_{\varepsilon})$ tends to zero, problems close to NCP(f) admit a solution. That procedure, however, gives no hint on the solvability of NCP(f) when $\|\mathbf{z}_{\varepsilon}\|$ tends to infinity and λ_{ε} admits a lower positive bound.

References

- [1] Bidard, C. (2004), *Prices, Reproduction, Scarcity* (Cambridge, Cambridge University Press)
- [2] Bidard, C. (2015), An oddity property for two-person games, Advanced Modeling and Optimization, 17(2), 233-244
- [3] Debreu, G. (1956), Market equilibrium, Proceedings of the National Academy of Sciences of the USA, 38, 886-93

- [4] Gale, D. (1955), The law of supply and demand, Mathematica Scandinavia, 3, 155-69
- [5] Nikaido, H. (1956), On the classical multilateral exchange problem, *Metroeconomica*, 8, 135-45