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A Tool for NCPs
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Abstract

The non-existence of a solution to a nonlinear complementarity problem
implies the existence of solutions for a related set of nonlinear complemen-
tarity problems.

AMS Classification. 65K05, 90C33

In economics, the Gale-Nikaido-Debreu lemma ([3],[4],[5]) provides the key
to solve the general equilibrium problem, which is a nonlinear complementarity
problem.

GND Lemma. Let s be a continuous function defined on a convex compact
set K ⊂ Rn, with values in Rn, and which satisfies the Walras identity xT s(x) =
0. There exists x∗ in K such that xT s(x∗) ≥ 0 for any x ∈ K.
Proof. Let H be a compact convex subset of Rn containing the image s(K),
and ϕ be the upper-semi continuous correspondence from H to K defined by

ϕ(y) =

{
x;x ∈ K,xTy = min

z∈K
zTy

}
. The product correspondence s×ϕ from the

convex compact set K ×H into itself is upper-semicontinuous. By the Kakutani
theorem, it admits a fixed point (x∗,y∗), for which min

x∈K
xT s(x∗) = min

x∈K
xTy∗ =

ϕ(y∗)Ty∗ = x∗Ty∗ = x∗T s(x∗) = 0.
Let ‖x‖ =

∑
i

|xi|. When function s is defined on the unit simplex S =

{x ∈ Rn;x ≥ 0, ‖x‖ = 1} and satisfies the Walras identity, the lemma shows the
existence of a solution to the nonlinear complementarity problem NCP(s): x ≥
0, s(x) ≥ 0,xT s(x) = 0. When the Walras identity is not met, we may force it
by introducing one more dimension ([1]) and considering the extension s(x, t) =
(s(t−1x),−t−1xT s(t−1x)), which is defined on the set Sε = {(x, t) ∈ Rn+1;x ≥
0, t ≥ ε, ‖x‖+ t = 1}.
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Theorem 1 Let f : Rn
+ → Rn be a continuous function such that NCP(f) has no

solution. For any positive vector u, there exist infinitely many semipositive vectors
zk with ‖zk‖ → ∞ and positive scalars λk such that

f(zk) + λku ≥ 0 [zk] (1)

Proof. If the result holds for some positive vector u, it holds for any positive vec-
tor v by applying it to function g defined by gi(z) = v−1i uifi(z). We may therefore
assume uT = uT

n = (1, ..., 1). By the GND lemma applied to the extension of f ,
there exists (xε, tε) in Sε such that

∀(x, t) ∈ Sε xTf(t−1ε xε)− tt−1ε xT
ε f(t−1ε xε) ≥ 0 (2)

We have (xε, tε) 6= (0, 1), otherwise z = 0 would be a solution of NCP(f). For

a given ε > 0 and the choice t = 1, x = 0, inequality (2) shows that the scalar
λε = −(1− tε)−1xT

ε f(t−1ε xε) is nonnegative. For the choice x = (1− tε)ei, t = tε,
it shows that fi(t

−1
ε xε) + λε ≥ 0, or

min
i
fi(t

−1
ε xε) ≥ −λε (3)

By definition of −λε, the right-hand side term is a positive barycentre of the
coordinates fi(t

−1
ε xε) associated with the positive components xεi of xε. Inequality

(3) implies that all these coordinates are equal to −λε, while the coordinates
corresponding the zero components of xε are greater. Vector zε = t−1ε xε is therefore
a solution to (1) for λk = λε. If, when ε tends to zero, tε admits a positive cluster
point t0, there also exists a cluster point (x0, t0) of (xε, tε). For any given (x, t) ∈
Sε, inequality (2) holds by continuity when (xε, tε) is replaced by its limit (x0, t0).
As this holds for any ε > 0, we have f(t−10 x0) ≥ 0 and −t−10 xT

0 f(t−10 x0) ≥ 0, and
z0 = t−10 x0 is a solution to NCP(f). This being excluded, tε tends to zero and
‖zε‖ = t−1ε (1 − tε) tends to infinity. Eventually, λε is not zero since NCP(f) has
no solution, therefore λε is positive.

The following two corollaries (corollary 2 is due to Bidard ([2])) illustrate how
the Theorem can be used to prove existence results: in the first case, λk tends to
zero, not in the second case.

Corollary 1 Let f(z) = h(z)+q, where h : Rn
+ → Rn is continuous, homogeneous

of degree one and copositive (∀z ≥ 0 zTh(z) ≥ 0). Under assumption (H1):{
z ≥ 0, z 6= 0, h(z) ≥ 0, zTh(z) = 0

}
implies zTq > 0, (4)

NCP(f) has a solution.
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Proof. Let uT = (1, ..., 1). If NCP(f) has no solution, there exist solutions z = µx
with x ≥ 0,uTx = 1, µ arbitrarily great, to an infinite set of NCPs parameterized
by positive scalars λ

h(µx) + q + λu ≥ 0 [x] (5)

From copositivity and the complementarity relationship, one gets xTq + λ ≤ 0,
therefore the values of λ are upper bounded. There exists a subset of NCPs such
that λ tends to a nonnegative scalar λ0, x tends to x0 with x0 ≥ 0,uTx0 = 1,
and µ is arbitrarily great. Inequality (5) implies that h(x) + µ−1(q + λu) ≥ 0,
therefore h(x0) ≥ 0. Similarly, the complementarity relationship in (5) implies
xT
0 h(x0) = 0. By (4), we have xT

0 q > 0 and a contradiction is obtained with
inequality xT

0 q + λ0 ≤ 0.
When (H1) is replaced by the weaker assumption (H2):{

z ≥ 0, h(z) ≥ 0, zTh(z) = 0
}

implies zTq ≥ 0, (6)

the above reasoning shows that xT
0 q = λ0 = 0, therefore NCPs arbitrarily close

to NCP(f) are solvable. For LCPs, the set of vectors q for which LCP(q,M) is
solvable is closed, therefore LCP(q,M) itself is solvable. This may not be the case
for homogeneous NCPs: consider the function f : R2

+ → R2 defined by

h1(z1, z2) = z1
z1 + 2z2
z1 + z2

, q1 = −1

h2(z1, z2) =
−z21
z1 + z2

, q2 = 0

We have zTh(z) = z21 . The set
{
z ≥ 0, h(z) ≥ 0, zTh(z) = 0

}
is the set of nonneg-

ative vectors with a first zero component, therefore assumption (H2) is met. How-
ever, since inequality h2(z) + q2 ≥ 0 implies z1 = 0, we then have h1(z) + q1 = −1
and NCP(f) has no solution.

Corollary 2 Let f : Rn
+ → Rm, g : Rm

+ → Rn be continuous functions, and
c ∈ Rm, d ∈ Rn be vectors. Under assumptions:

(i) ∀(x,y) ≥ 0 xTg(y) + yTf(x) ≥ 0
(ii) f is homogenous of degree one
(iii) {x ≥ 0,x 6= 0,f(x) ≥ 0} ⇒ dTx < 0
(iv) c << 0
there exists a solution to the NCP

f(x) ≥ c [y] (7)

g(y) ≥ d [x] (8)
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Proof. If the NCP has no solution, there exist solutions (xk,yk) tending to
infinity to infinitely many NCPs

f(xk) + λkum − c ≥ 0 [yk] (9)

g(yk) + λkun − d ≥ 0 [xk] (10)

By the complementarity relationship and condition (i), we have

λk(uT
nxk + uT

myk)− dTxk − cTyk ≤ 0 (11)

If the sequence ‖xk‖ remained bounded, ‖yk‖ would tend to infinity and a contra-
diction between assumption (iv) and (11) would be obtained. We therefore assume
that ‖xk‖ tends to infinity. If the sequence λ−1k ‖xk‖ were bounded from above, a
contradiction would be obtained with inequality uT

nxk − λ−1k dTxk ≤ 0, which fol-
lows from (11) and (iv). We therefore assume that λk ‖xk‖−1 tends to zero. Then,
condition (ii) and inequality (9) imply that a cluster point x0 of ‖xk‖−1 xk is such
that ‖x0‖ = 1 and f(x0) ≥ 0, therefore dTx0 < 0 by condition (iii) and dTxk < 0
for k great enough. Again, a contradiction with inequality (11) is obtained.

The proof of Theorem 1 is ‘almost constructive’ in the following sense. Given
f , consider a sequence of positive scalars ε tending to zero and, for each ε, solve
the programme (Pε): find (xε, tε) ∈ Sε such that property (2) holds. This is a
programme of the type met by the general equilibrium theory: vector (x, t) is
transformed into the orthogonal vector (f(t−1x),−t−1xTf(t−1x)), and the prob-
lem is to make the transformed vector nonnegative. (By contrast, in many NCP
algorithms, a similar problem is solved in a dual way: starting from nonnegative
vectors, the aim is to make them orthogonal.) A solution always exists, and vector
zε = t−1ε xε is a solution of (1) for some λε. If ‖zε‖ remains bounded, a cluster
point of zε is a solution of NCP(f). If λε = −min

i
fi(zε) tends to zero, problems

close to NCP(f) admit a solution. That procedure, however, gives no hint on the
solvability of NCP(f) when ‖zε‖ tends to infinity and λε admits a lower positive
bound.
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