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BOUNDARY CONTROL OF STOCHASTIC ELLIPTIC SYSTEMS
INVOLVING LAPLACE OPERATOR

A. S. OKB EL BAB , ABD-ALLAH HYDER AND A. M. ABDALLAH

Abstract. The purpose of the present paper is to study the boundary control

for Neumann or Dirichlet stochastic elliptic systems are introduced. The exis-

tence of the unique state process for these systems is derived, then the set of
equations and inequalities that characterizes the boundary control is obtained.

1. Introduction

A stochastic partial differential equation (SPDE) is a partial differential equation
in which one or more of the terms is a stochastic process, and resulting in a solution
which is itself a stochastic process. SPDE consists of a partial differential equation
containing a deterministic part and an additional random white noise term. Op-
timal control represents a study has many biological and physical and mechanical
applications and can easily be linked with many sciences because of its extreme im-
portance. It determine control and state trajectories for a dynamic system. Control
either be added to the region (Distributed control) or on the boundary (Boundary
control).

The model of the system represented by partial differential operators in differ-
ent of works started by Lions [10]. So many problems concerning the distributed
(or boundary) control of systems governed by partial differential operators with
Dirichlet or Neumann conditions appeared for one or two equations in [14].

The necessary and sufficient conditions of optimality for systems governed by
elliptic operators have been studied by Lions in [10].

In the present work, we focus on the boundary control for Neumann and Dirichlet
stochastic elliptic systems in scalar case.

This paper is organized as follows: In section 1; some definitions and notations
are mentioned. In section 2, the existence and uniqueness of the state process
for Neumann stochastic elliptic systems is stated; then the set of equations and
inequalities that characterizes the boundary control for these systems is found. In
section 3, Dirichlet elliptic problems conditions are considered.
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1. Notations

In this section, we first wish to collect some basic definitions, lemmas that will
be important to us in the sequel. These and other related results and their proofs
can be considered.

we shall consider some definitions introduced in [3-9], [12]concerning the Sto-
chastic Sobolev space , the embedding , which are necessary to introduce our work.
LetGbe an open set in Rn, (Ω,F , P )be a probability space, where Ω is a sample
space, F is an σ-algebra and P is a probability measure.

We introduce

V = L2(Ω,F , P ;G) =
{

v : G× Ω → R| v is measurable and
∫

Ω

‖v‖2dp < ∞
}

,

with inner product (., .)V : V × V → R, defined as

(u, v)V =
(∫

Ω

(∫
G

∇u(x) ∇v(x) dx

)
dp

)
For instance,H1(G)is a Hilbert space with a norm‖...‖H1(G);H1

0 (G) is the sub-
space of H1(G)whose function value is zero on the boundary ofG, and its norm is
‖u|2

H1
0 (G)

=
∫

G
(∇u)2dx.

With these standard Sobolev spaces, we define stochastic Sobolev spaces as fol-
lows:

V = L2(Ω; H1(G)) = {v : G× Ω −→ R| ‖v‖2L2(Ω;H1(G)) < ∞},
where

‖v‖2L2(Ω;H1(G)) =
∫

G

(‖v‖2H1(G))dp = E(‖v‖2H1(G)).

Note that, we can write Stochastic Sobolev spaces by L2(Ω,F , P ;G)orL2(Ω;H1(G))
For the weak formulation of our stochastic elliptic partial differential equation,

we introduce the following notations:

a(u, v) = E(
∫

G

∇u ∇vdx)

and

(u, v) = E(
∫

G

u vdx),

whereEis the expected value.
we introduce the Riesz isomorphism

A : H1(Ω,F , P ;G) → H1(Ω,F , P ;G)

associated with the standard scalar product ofH1(Ω,F , P ;G),that is,

< Au, v >H1(Ω,F,P ;G)= E
(∫

G

((∇u ∇v + u v)dx

)
,∀u, v ∈ H1(Ω,F , P ;G)

2. Existence and Uniqueness for Stochastic Elliptic Systems and
Dirichlet Conditions

In this section, we discuss the boundary optimal control of the stochastic elliptic
systems involving Laplace operator and prove the existence of an optimal solution
based on the Lions theory.
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Let us consider the following stochastic elliptic equations:
−∆u(x) = W (x) in G

u(x) = 0 on ∂G

(2.1)

whereGis a bounded, continous and strictly domain inRnwith boundary∂G
Whileu(x) ∈ H1

0 (Ω,F , P ;G)is a state process andW (x)is a white noise. We prove
the existence and uniqueness of the state process for system (2.1) in the following
subsection.

2.2 Formulation of the Optimal Control Problem. In this subsection we wish
to formulate mixed initial boundary value Dirichlet problem for stochastic elliptic
systems and we investigate necessary conditions for an optimal control policy.

The space [L2(Ω,F , P ; ∂G)] being the space of controls.
For a control y ∈ [L2(∂,F , P ; ∂G)], the state process of the system u is given by

the solution of the following system:
−∆u(y) = W in G

u(y) = y on ∂G.

(2.2)

The observation equation is given by χ(y) ≡ u(y), the cost functional is given
by:

C(y) = E
(∫

∂G

(((u(y)−u(0)+(u(0)−χd))2)dx

)
+

∫
Ω

(∫
∂G

M(z2) dx

)
dp, (2.3)

whereχd in [L2(Ω,F , P ; ∂G)].

Then, the control problem is defined by:
y ∈ Yad such that

C(z) = inf C(y) ∀z ∈ Yad,

whereYadis a closed convex subset from[L2(Ω,F , P ; ∂G)].
Since the cost functional (2.3) can be written as:

C(y) = E
(∫

∂G

(((u(y)− u(0) + (u(0)− χd))2)dx

)
+

∫
Ω

(∫
∂G

M(z2) dx

)
dp,

where

Π(y, z) = E
(∫

∂G

{(u(y)− u(0))2 + (u(z)− u(0))2}dx

)
+

∫
Ω

∫
∂G

(
M(z2)

)
dx dp,

(2.4)
M > 0 is a positive constant, then

L(z) = E
(∫

∂G

(−u(0) + χd)(u(i)− u(0) dx

)
, (2.5)
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andΠ(y, y)is a stochatic coercive on[L2(Ω,F , P ; ∂G)].SinceL(z)is continuous on[L2(Ω,F , P ; ∂G)],
then there exists a unique optimal control from the general theory in [10].

Moreover, we have the following theorem which gives the characterization of the
optimal control.

Theorem 2.2.
If the state u(y) is given by (2.1) and if the cost functional is given by (2.3),

then there exists a unique optimal control y ∈ Yad such that C(y) ≤ C(z) ∀z ∈ Yad;
Moreover, it is characterized by:


−∆h(y) = u(y)− χd in G

h(y) = 0 on ∂G,

whereh(y)is the adjoint state process.

Proof.

Since C(y) is differentiable and Yad is bounded, then the optimal controlzis char-
acterized (see e.g [8,9]). Using equations (2.4), (2.5), we get

Π(y, z − y) ≥ L(z − y), (2.6)

and

Π(y, z − y) − L(z − y)

= E
(∫

∂G

((u(y)− u(0))((u(z − y)− u(0))))dx

)
− E

(∫
∂G

(((u(0)− χd)((u(z − y)− u(0)))))dx

)
+

∫
Ω

(∫
∂G

My(z − y) dx

)
dp

=
∫

Ω

(∫
∂G

My(z − y)) dx

)
dp

+ E
(∫

∂G

((u(y)− χd)(u(z)− u(y))dx

)
≥ 0,

with(B∗h(y), u(y)) = (h(y), Bu(y)),and B is defined by:

B Φ = B {u(y)} = (−∆u(y)).

Applying the derivative in the sense of distribution, we get

B∗h(y) = u(y)− χd,

whereB = −∆ and . So,

Π(y, z − y) − L(z − y)

=
∫

Ω

(∫
∂G

(My, z − y)dx

)
dp + E

(∫
∂G

(h(−∆u(z)))dx

)
≥ 0
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Hence, from (2.6) we obtainE
(∫

∂G
((h + My)(z − y)dx

)
≥ 0 �

Remark 2.1

If constraints are absent, i.e. whenYad = Y,thenh(z) + My = 0, zj 6= yjory =

−h(z)
M

the differential problem of finding the vector-function satisfies the the fol-
lowing relations.

For the state process equations


Bu +

h(z)
M

= W in G

u = 0 on ∂G.

For the adjoint state process equations


Bh(y)− u(y) = −χd in G

h(y) = 0 on ∂G.

3 Neumann Stochastic Elliptic Systems

In this section, we study the optimal control problem for stochastic elliptic system
with Neumann conditions.

−∆u(x) = W (x) in G1

∂u(x)
∂VA

= g on ∂G,

(3.1)

whereg ∈ H
1
2 (Ω,F , P ; ∂G).

3.1 Existence and Uniqueness of Solution. In this subsection, we study the
existence and uniqueness of solutions for stochastic systems governed by Neumann
problems. Since

[H1
0 (Ω,F , P ; ∂G)]2 ⊆ [H1(Ω,F , P ; ∂G)]2,

then
‖u‖2[H1

0 (Ω,F,P ;∂G)]2 ⊆ ‖u‖2[H1(Ω,F,P ;∂G)]2 ,

which proves the coerciveness of bilinear forma(u, u)on[H1(Ω,F , P ; ∂G)]2

b(u, u) ≥ c‖u‖2[H1(Ω,F,P ;∂G)]2 (Stochastic coerciveness) (3.2)

Theorem 3.1.
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Assume that (3.2) holds, and then there exists a unique solutionuof system (3.1).

Proof.

Since the bilinear formb(u, Ψ)is continuous and stochastic coercive on[H1(Ω,F , P ; ∂G)]2,
then by Lax Milgram lemma there exist a unique solution of:

b(u, Ψ) = L(Ψ),∀u ∈ [H1(Ω, F,P; ∂G)]2, (3.3)

whereL(Ψ)is continuous linear form defined on [H1(Ω,F , P ; ∂G)]2by using Green’s
formula, we obtain (3.1):

L(Ψ) = E
(∫

∂G

(W Ψ) dx +
∫

∂G

(g Ψ) d∂G

)
,

then (3.3) is equivalent to

b(u, Ψ) = E
(∫

∂G

(∇u ∇Ψ) dx

)
+ E

(∫
∂G

∂u(x)
∂VA

Ψ
)

= E
(∫

∂G

(W Ψ) dx +
∫

∂G

(g Ψ) d∂G

)
Hence (3.3) is equivalent to (3.1) and there exists a unique solution of (3.1).

3.2 Formulation of the Optimal Control Problem with Neumann Condi-
tions. Here, we formulate the problem and establish necessary and sufficient condi-
tions for the optimal control of distributed type. The space[L2(Ω,F , P ; ∂G)]2is the
space of controls. For a controly ∈ [L2(Ω,F , P ; ∂G)]2,the stateu(y)of the system is
given by the solution of 

−∆u(y) = W (y) in G1

∂u(y)
∂VA

= g + y on ∂G.

(3.4)

The observation is given byχ(y) = u(y),the cost functional is given again by (3.4).
The optimal control is characterize by the following theorem:

Theorem 3.2.
Assume that (3.2) holds, if the cost functional is given by (2.7), then there exists

an optimal controly = (y1, y2) ∈ [L2(Ω,F , P ; ∂G)]2.Moreover, it is characterized by
the following equations and inequalities:


−∆h(y) = 0 in G

∂h(y)
∂V ∗

A

= M
∂u(y)
∂VA

− χd.
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Together with (3.4), wherep(u)is the adjoint state

E
(∫

∂G

((
h(y)
∂VA

+ My)(z − y)dx

)
≥ 0 �

Remark 3.1

If constraints are absent, i.e. whenYad = Y,thenh(y) + Ny = 0ory = −h(y)
N

the
differential problem of finding the vector-function satisfies the following relations:

For the state process equations


AU = W in G

∂U(y)
∂VA

+
h(u)
N

= g on ∂G.

For the adjoint state process equations


Ah(y) = 0 in G

∂h(y)
∂V ∗

A

= −M
∂h(y)
∂V ∗

A

= −χd, on ∂G.

4 Dirichlet and Neumann Elliptic Systems

In this section, we study the distributed control problem for elliptic systems in-
volving Laplace operator. We consider the following elliptic equations:


−∆u(x) = f(x) in G

u(x) = 0 on ∂G

(4.1)

whereGis a bounded, continous and strictly domain inRnwith boundary∂G Whileu(x) ∈
H1

0 (∂G), f ∈ L2(∂G)is a state process andW (x)is a wiener process. We derive the
existence and uniqueness of state of the system (4.1) in the following subsection.

The space [L2(∂G)] being the space of controls. For a control y ∈ [L2(∂G)], the
state process of the system u is given by the solution of the following system:

−∆u(y) = W in G

u(y) = y on ∂G,

(4.2)

. The observation equation is given byχ(y) ≡ u(y),the cost functional is given by:

C(y) =
(∫

∂G

(((u(y)− u(0) + (u(0)− χd))2)dx

)
+

(∫
∂G

M(z2) dx

)
, (4.3)

whereχd in [L2(∂G)].
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Then, the control problem is defined by:
y ∈ Yad such that

C(z) = inf C(y) ∀z ∈ Yad,

whereYadis a closed convex subset from[L2(G)].
Since the cost functional (4.3) can be written as:

C(y) =
(∫

∂G

(((u(y)− u(0) + (u(0)− χd))2)dx

)
+

(∫
∂G

M(z2) dx

)
,

where

Π(y, z) =
(∫

∂G

{(u(y)− u(0))2 + (u(z)− u(0))2}dx

)
+

∫
∂G

(
M(z2)

)
dx, (4.4)

M > 0 is a positive constant, then

L(z) = E
(∫

∂G

(−u(0) + χd)(u(i)− u(0) dx

)
, (4.5)

andΠ(y, y)is a coercive on[L2(∂G)].SinceL(z)is continuous on[L2(∂G)], then there
exists a unique optimal control from the general theory in [10].

SinceC(y)is differentiable andYadis bounded, then the optimal controlzis char-
acterized (see e.g [10,11]). Using equations (4.4), (4.5), we get

Π(y, z − y) ≥ L(z − y), (4.6)(∫
∂G

((h + My)(z − y)dx

)
≥ 0

If constraints are absent, i.e. whenYad = Y,thenh(z) + My = 0, zj 6= yjory =

−h(z)
M

the differential problem of finding the vector-function satisfies the the fol-
lowing relations.

For the state equation


Bu +

h(z)
M

= f in G

u = 0 on ∂G.

For the adjoint state equation


Bh(y)− u(y) = −χd in G

h(y) = 0 on ∂G.

There is no change in Neumann, where the difference are also in bilinear form,
linear form and the cost functional.
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