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Abstract. In real world problems, decision maker encounter uncertain environment where fuzziness
and randomness coexist in the mathematical model. In this work, we consider multiobjective program-
ming problem involving fuzzy random variables coefficients. We assume that the coefficients in the
constraints and in the objective functions are represented by fuzzy random variables but the decision
variables are crisp. First, based on fuzzy random theory we formulate the crisp equivalent model of the
chance-constrained multiobjective programming problem under some assumptions. Then, we study
the convexity of the set of feasible solutions. In order to obtain the decision maker’s satisfactory so-
lution, we consider an interactive procedure based on an interactive fuzzy satisfying method. Finally,
an example is provided for illustrating purpose.
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1. Introduction

In real life optimization problem, the coefficients used in mathematical models are obviously unclear
and vague. Various approaches have been used to model uncertainty that arises from imprecise or
lack of information on mathematical programming problems, such as, stochastic programming model
[3] and fuzzy programming model ([3], [27]).
But in many cases, we may encounter situations where fuzziness and randomness coexist. When the
coefficients are random variables and their realizations are fuzzy variables, we have the concept of
fuzzy random variable, introduced by Kwakernaak [8]. Thereafter, this concept have received great
attention and many studies have been conducted in this area of research. To mention but a few, see
for example Kruse and Meyer [7], Puri and Ralescu [17], Wang et al. [23], Qiao et al. [18], Lopez-Diaz
and Ralescu [15], Couso and Dubois [1], Couso and Sanchez [2], Hao and Liu [5].
Recently, multi-criteria linear programming problem with fuzzy random variables have received an
increasing attention. Without being exhaustive, we mention some references [6, 9, 16, 21, 22, 25, 24].
An overview on fuzzy stochastic multiobjective programming field is given in the book of Sakawa et
al. [20].
This problem remains an important direction of research and new results in this field continue to be
discovered. In this paper, we consider fuzzy stochastic multiobjective linear programming problem
with coefficients in the constraints and in the objective functions are represented by fuzzy random
variables but the decision variables are crisp. We assume that the realizations of the random variables
are LR-fuzzy variables in a credibility space. First, under some assumptions we formulate the deter-
ministic equivalent of the chance-constrained programming problem, then we study the convexity of
the set of feasible solutions. Finally, we propose an interactive procedure based on the interactive
fuzzy satisfying method of Sakawa [19] and we conclude with an illustrative example.
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The rest of this paper is organized as follows. In section 2, we recall some definitions and results
on fuzzy theory, we also recall the definition of fuzzy random variables. In section 3, we consider
fuzzy stochastic multiobjective linear programming problem with coefficients in the constraints and
in the objective functions are represented by fuzzy random variables but the decision variables are
crisp. A chance constrained multiobjective programming model for this problem is formulated using
a probability-credibility approach.Then, we give it’s crisp equivalent model, we study the convexity
of the feasible sets and we develop an interactive procedure which gives the satisfying solution for
the decision maker. An illustrative example is presented in section 4 which clarifies the developed
interactive procedure.

2. Preliminaries

In this section, the basic definitions [26] involving fuzzy sets, fuzzy numbers and arithmetic on fuzzy
numbers [4] are reviewed.

2.1. Basic definitions

Definition 1. Let X denote a universal set. A fuzzy subset Ã of X is defined by its membership
function µ

Ã
: X 7→ [0, 1], which assigns a real number µ

Ã
(x) in the interval [0, 1], for each element

x ∈ X, where the value of µ
Ã
(x) at x shows the degree of membership of x in Ã. Therefore, a fuzzy

set Ã is completely characterized by the set of ordered pairs Ã = {(x, µ
Ã
(x))/x ∈ X}.

Definition 2. A fuzzy set Ã in X is convex if
µ
Ã
(λx+ (1− λ)y) ≥ min{µ

Ã
(x), µ

Ã
(y)}, ∀x, y ∈ X and ∀λ ∈ [0, 1].

Definition 3. A fuzzy set Ã in X is said to be normal if there exist at least x0 ∈ X such that

µ
Ã
(x0) = 1.

Definition 4. A fuzzy number is a convex normalized fuzzy set of the real line R whose membership
function is piecewise continuous.

Definition 5. A fuzzy number Ã, denoted as (m,n, α, β)LR, is said to be an LR flat fuzzy number if
its membership function µ

Ã
is given by

µ
Ã
(t) =


L(m−t

α ) if m− α ≤ t ≤ m, α > 0
1 if m ≤ t ≤ n

R( t−n
β

) if n ≤ t ≤ n+ β, β > 0

0 otherwise

where L, R : [0, 1] −→ [0, 1] are two continuous non increasing shape functions such that R(0) =

L(0) = 1 and L(1) = R(1) = 0. [m,n] is the core of Ã; µ
Ã
(t) = 1 ∀t ∈ [m,n]; m,n are the lower and

upper modal values of Ã and α > 0, β > 0 are the left hand and the right hand spreads.

The support of Ã is [m− α, n+ β].

Remark 1. Among the various type of LR flat fuzzy numbers, we have trapezoidal fuzzy numbers,
obtained from Definition 5, by taking L(t) = R(t) = max(0, 1− |t|). The membership function of the

trapezoidal fuzzy number Ã = (m,n, α, β)LR is given as follows :

µ
Ã
(t) =


1− (m−t

α ) if m− α ≤ t ≤ m, α > 0
1 if m ≤ t ≤ n

1− ( t−n
β

) if n ≤ t ≤ n+ β, β > 0

0 otherwise

2.2. Arithmetic on fuzzy numbers

Definition 6. Let Ã = (m1, n1, α1, β1) ∈ F (R) and B̃ = (m2, n2, α2, β2) ∈ F (R) where F (R) denotes
the set of all real LR flat fuzzy numbers.Then, arithmetic on fuzzy numbers are defined as:

The addition: Ã+ B̃ = (m1 +m2, n1 + n2, α1 + α2, β1 + β2).

The image of Ã : −Ã = (−n1, −m1, β1, α1).
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The subtraction : Ã− B̃ = (m1 − n2, n1 −m2, α1 + β2, β1 + α2).
The scalar multiplication :{

k.Ã = (km1, kn1, kα1, kβ1) if k ≥ 0, k ∈ R
k.Ã = (kn1, km1,−kβ1,−kα1) if k < 0, k ∈ R

2.3. Credibility measure

The credibility theory developed by Liu [12, 13], is an appropriate tool for treating fuzziness. This
theory has been successfully used in many areas of research such as fuzzy optimization, management
science, engineering technology, etc [10].

Definition 7. Given a Universe X, we denote P (X) the power set of X. A set function Cr on P (X)
is called a credibility measure if
Cr(X) = 1 ;
Cr(A) ≤ Cr(B) whenever A ⊂ B ;
Cr(A) + Cr(AC) = 1 for each A ∈ P (X), where AC is the complement set of A;
Cr(∪iAi) = sup

i
Cr(Ai) for any collection (Ai) in P (X) with sup

i
Cr(Ai) < 0.5.

Cr(A ∪B) ≤ Cr(A) + Cr(B) for any A, B ∈ P (X).

Definition 8. [14] A fuzzy variable is a function from a credibility space (X,P (X), Cr) to the set of
real numbers.

Definition 9. Let ξ be a fuzzy variable defined on the credibility space (X,P (X), Cr). Then, its
membership function is derived from the credibility measure by

µ(x) = (2Cr{ξ = x}) ∧ 1.

Definition 10. A set function Pos on P (X) is called a possibility measure if
Pos(X) = 1 ;
Pos(∅) = 0 ; and
Pos(∪iAi) = sup

i
Pos(Ai) for any collection (Ai) in P (X).

- The necessity measure for A ∈ P (X) is defined as Nec(A) = 1− Pos(Ac).

Remark 2. For each A ∈ P (X),
1) Pos(A) is the measure of best case of event A, and it is the maximal chance of the event A holds.
It means that the decision maker is optimistic.
2) Nec(A) gives the measure of worst case of event A, and it is the minimal chance of A holds. It
means that the decision maker is pessimistic.
3) The credibility measure of a fuzzy event A, Cr(A), satisfy

Cr(A) =
1

2
(Pos(A) +Nec(A))

which means that the decision maker takes compromise attitude.

Theorem 1. (Credibility Inversion Theorem) [14]
Let ξ be a fuzzy variable with a membership function µξ. Then for any set B of real numbers, we have

Cr{B} =
1

2
[sup
t∈B

µξ(t) + 1− sup
t∈BC

µξ(t)]. (1)

2.4. Fuzzy random variables

Focusing on the credibility measure, Liu [11] defined a fuzzy random variable as follows.

Definition 11. [11]
A fuzzy random variable is a function ξ from a probability space (Ω, F, P ) to the set of fuzzy variables
such that Cr{ξ(ω) ∈ B} is a measurable function of ω for any Borel set B of R.
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3. Chance constrained multiobjective programming model with fuzzy stochastic
coefficients

3.1. Problem description

In the classical multi-objective linear programming problems, the coefficients of objective functions
or constraints are assumed to be completely known. However, in many real life problems, decision mak-
ers are faced with the situations where both fuzziness and randomness exist. Fuzzy random variable,
introduced by Kwakernaak [8], is an efficient tool to describe the phenomena in which randomness and
fuzziness appear simultaneously. Therefore, in this section we focus on fuzzy stochastic multi-criteria

linear programming model(P̃M ), where coefficients are fuzzy random variables.

(P̃M )


maximize (C̃1x, C̃2x, ..., C̃kx)
subject to∑n

j=1 ãijxj ≤ b̃i, i = 1, 2, ...,m

xj ≥ 0, j = 1, 2, ..., n

where x = (x1, x2, ...., xn)
T is a decision vector; C̃r = (C̃r1, C̃r2, ..., C̃rn), r = 1, 2..., k are coefficient

vectors of objective function C̃r.

C̃ri, ãij , i = 1, 2, ...,m, j = 1, 2, ..., n and b̃i, i = 1, 2, ..., n are fuzzy random variables on probability
space (Ω, F, P ).

A chance constrained multiobjective programming model for problem (P̃M ) is formulated as follows
[10]

(PM )



maximize (f1, f2, ..., fk)
subject to

P
{
ω : Cr(

∑n
j=1 C̃rjxj ≥ fr) ≥ δr

}
≥ p0r, r = 1, 2..., k

P
{
ω : Cr(

∑n
j=1 ãijxj ≤ b̃i) ≥ γi

}
≥ pi, i = 1, 2, ...,m

xj ≥ 0, j = 1, 2, ..., n

where P and Cr denote, respectively probability and credibility measures. pi, p
0
r, δr, γi, i = 1, 2, ....,m;

r = 1, 2, ..., k are predetermined confidence levels defined by a decision maker.

The set of Pro-Cr feasible solutions of problem (PM ), is denoted by XCr
p .

XCr
p =

i=m∩
i=1

XCr
p (pi; γi), where for i = 1, 2, ...,m,

XCr
p (pi; γi) =

x ≥ 0, : P

ω : Cr

 n∑
j=1

ãijxj ≤ b̃i

 ≥ γi

 ≥ pi

 .

In Definition 12, we introduce the notion of (p0r-Pro δr-Cr)-efficient solution of problem (P̃M ).

Definition 12. For a confidence levels p0r, δr ∈ [0, 1], r = 1, 2, ..., k, x∗ is said to be a

(p0r-Pro,δr-Cr)-Pareto efficient solution to problem (P̃M ) if and only if x∗ is a Pareto optimal solution
of problem (PM ).

Remark 3. A Pareto optimal solution of problem (PM ) is considered as a satisfactory solution for

problem (P̃M ).

3.2. Crisp equivalent model

One way of solving model (P̃M ) is to convert the chance constraints of the model into their respective
crisp equivalents. This process is generally a difficult work and only successful for some special cases.
Consequently, we need to make the following assumptions.
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Assumption 1. :

Assume that C̃rj , ãij , b̃i, r = 1, 2, ..., k, i = 1, 2, ...,m, j = 1, 2, ..., n are L-R fuzzy random variables

on probability space (Ω, F, P ) such that C̃rj = (mrj , nrj , αrj , βrj)LR, ãij = (mij , nij , αij , βij)LR
and b̃i = (mi, ni, αi, βi)LR which are characterized by the following membership functions

µ
C̃rj(ω)

(x) =


L(

mrj(ω)−t
αrj

) if mrj(ω)− αrj ≤ t ≤ mrj(ω), ω ∈ Ω

1 if mrj(ω) 6 t ≤ nrj(ω) j = 1, 2, ..., n

R(
t−nrj(ω)

βrj
) if nrj(ω) ≤ t ≤ nrj(ω) + βrj , r = 1, 2, ...., k

0 otherwise

µãij(ω)(x) =


L(m

ij(ω)−t
αij ) if mij(ω)− αij ≤ t ≤ mij(ω), ω ∈ Ω

1 if mij(ω) 6 t ≤ nij(ω), j = 1, 2, ..., n

R( t−nij(ω)
βij ) if nij(ω) ≤ t ≤ nij(ω) + βij , i = 1, 2, ....,m

0 otherwise

µ
b̃i(ω)

(x) =


L(m

i(ω)−t
αi ) if mi(ω)− αi ≤ t ≤ mi(ω), ω ∈ Ω

1 if mi(ω) ≤ t ≤ ni(ω)

R( t−ni(ω)
βi ) if ni(ω) ≤ t ≤ ni(ω) + βi i = 1, 2, ....,m

0 otherwise

Let mrj , nrj , m
ij ,nij , mi and ni denoted by mrj ∼ N(µmrj , σ

2
mrj

), nrj ∼ N(µnrj , σ
2
nrj

),

mij ∼ N(µmij , σ2
mij ), nij ∼ N(µnij , σ2

nij ) be normally distributed and independent random variables
on (Ω, F, P ) such that

αrj > 0, βrj > 0, αij > 0, βij > 0, αi > 0, βi > 0.

In the following, we convert the constraints of problem (PM ) into their respective crisp equivalents.
This conversion is based on the following theorem.

Theorem 2. Let Ã = (m,n, α, β)LR be an L-R flat fuzzy number with continuous membership func-
tion. For a given confidence level γ ∈ [0, 1],

1- When γ ≤ 0.5, Cr{Ã ≥ θ} ≥ γ if and only if θ ≤ n+ βR−1(2γ), and

2- When γ > 0.5, Cr{Ã ≥ θ} ≥ γ if and only if θ ≤ m− αL−1(2(1− γ)).

Proof. Assume that Ã = (m,n, α, β)LR be an LR flat fuzzy number with continuous membership

functions. Using equation (1), we prove that the credibility of the fuzzy event Cr{Ã ≥ θ}, θ ∈ R is
given as follows :
Cr{ξ ≥ θ} = 1

2 [sup
t≥θ

µξ(t) + 1− sup
t<θ

µξ(t)]

=


1 if θ ≤ m− α, α > 0

1− 1
2L(

m−θ
α ) if m− α ≤ θ ≤ m

1
2 if m ≤ θ ≤ n
1
2R( θ−n

β
) if n ≤ θ ≤ n+ β, β > 0

0 if n+ β < θ

- If γ ≤ 0.5, we have

Cr{Ã ≥ θ} ≥ γ ⇐⇒ 1
2R( θ−n

β
) ≥ γ ⇐⇒ θ ≤ n+ βR−1(2γ).

- If 0.5 < γ ≤ 1, we have

Cr{Ã ≥ θ} ≥ γ ⇐⇒ 1− 1
2L(

m−θ
α ) ≥ γ ⇐⇒ θ ≤ m− αL−1(2(1− γ)). �

Based on Theorem 2 and probability properties of normal random variables, we give the crisp

equivalents of the constraints P
{
ω : Cr(

∑n
j=1 C̃rjxj ≥ fr) ≥ δr

}
≥ p0r, r = 1, 2..., k and

P
{
ω : Cr(

∑n
j=1 ãijxj ≤ b̃i) ≥ γi

}
≥ pi, i = 1, 2, ...,m in Theorem 3 and Theorem 4 respectively.
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Theorem 3. Under Assumption 1, for i = 1, 2, ..,m, we have the following equivalences
• if γi ≤ 1

2 , for x ≥ 0,

P

ω : Cr

 n∑
j=1

ãij(ω)xj ≤ b̃i(ω)

 ≥ γi

 ≥ pi ⇐⇒

−βiR−1(2γi)− µni −
j=n∑
j=1

(
αijR−1(2γi)− µmij

)
xj +Φ−1(pi)

√
(σni)2 + xTM ix ≤ 0.

• if 0.5 < γi ≤ 1, for x ≥ 0,

P

ω : Cr

 n∑
j=1

ãij(ω)xj ≤ b̃i(ω)

 ≥ γi

 ≥ pi ⇐⇒

αiL−1(2(1 − γi)) − µmi +

j=n∑
j=1

(
βijL−1(2(1− γi) + µnij

)
xj + ϕ−1(pi)

√
(σmi)2 + xTN ix ≤ 0, where

N((µnij )n×1, N i) and (mij(w))n×1 ∼ N((µmij )n×1, M i)

Proof. Let Ãi = b̃i −
j=n∑
j=1

ãijxj . Using arithmetic on LR fuzzy numbers, we obtain

Ãi = (mi, ni, αi, βi)−

j=n∑
j=1

mijxj ,

j=n∑
j=1

nijxj ,

j=n∑
j=1

αijxj ,

j=n∑
j=1

βijxj



=

mi −
j=n∑
j=1

nijxj , ni −
j=n∑
j=1

mijxj , αi +

j=n∑
j=1

βijxj , βi +

j=n∑
j=1

αijxj

 .

Using Theorem 2 with θ = 0, we have

- If γi ≤ 0.5,

Cr{Ãi ≥ 0} ≥ γi ⇐⇒ −

ni −
j=n∑
j=1

mijxj

 ≤

βi +

j=n∑
j=1

αijxj

R−1(2γi)

⇐⇒
j=n∑
j=1

(mij − αijR−1(2γi))xj ≤ ni + βiR−1(2γi).

Consequently, P

ω : Cr

 n∑
j=1

ãij(ω)xj ≤ b̃i(ω)

 ≥ γi

 ≥ pi is equivalent to

P

ω :

j=n∑
j=1

(mij(ω)− αijR−1(2γi))xj ≤ ni(ω) + βiR−1(2γi)

 ≥ pi. (2)

This is equivalent to

P

ω : (−ni(ω) +

j=n∑
j=1

mij(ω)xj ≤ βiR−1(2γi) +

j=n∑
j=1

αijR−1(2γi)xj

 ≥ pi.

Set T i = −ni(ω) +

j=n∑
j=1

mij(ω)xj ∼ N(−µni +

j=n∑
j=1

µmijxj , V (T i)),

where
V (T i) = +(σni)2 + xTM ix and
(mij(w))n×1 ∼ N((µmij )n×1, M i), then
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(2) ⇐⇒ P


ω : (T i−E(T i))√

V (T i)
≤

βiR−1(2γi)+

j=n∑
j=1

(αijR−1(2γi))xj −E(T i)

√
(σni )2+xTM ix


≥ pi.

(T i−E(T i))√
V (T i)

∼ N(0, 1), consequently if we note by Φ the standardized normal distribution, we obtain

(2) ⇐⇒ Φ


βiR−1(2γi)+µni+

j=n∑
j=1

(αijR−1(2γi)− µmij )xj

√
(σni )2+xTM ix

 ≥ pi.

(2) ⇐⇒

βiR−1(2γi)+µni+

j=n∑
j=1

(αijR−1(2γi)− µmij )xj

√
(σni )2+xTM ix

≥ Φ−1(pi)

(2) ⇐⇒ −βiR−1(2γi)− µni −
j=n∑
j=1

(
αijR−1(2γi)− µmij

)
xj

+Φ−1(pi)
√

(σni)2 + xTM ix ≤ 0.

- If 0.5 < γi ≤ 1,

Cr{Ãi ≥ 0} ≥ γi ⇐⇒

mi −
j=n∑
j=1

nijxj

 ≥

αi +

j=n∑
j=1

βijxj

L−1(2(1− γi))

⇐⇒
j=n∑
j=1

(nij + βijL−1(2(1− γi)))xj ≤ mi − αiL−1 (2(1− γi)) .

We prove in the same way as in part 1) that

P

ω : Cr(
n∑

j=1

ãijxj ≤ b̃i) ≥ γi

 ≥ pi

⇐⇒ αiL−1(2(1− γi))− µmi +

j=n∑
j=1

(βijL−1(2(1− γi) + µnij )xj

+ϕ−1(pi)
√

(σmi)2 + xTN ix ≤ 0.

Where Ki = −mi +
∑j=n

j=1 n
ijxj ∼ N(−µmi +

∑j=n
j=1 µnijxj , V (Ki));

V (Ki) = +(σmi)2 + xTN ix and (nij(ω))n×1 ∼ N((µnij )n×1, N i).
We conclude the proof as in part 1). �

Theorem 4. Under Assumption 1, for r = 1, 2, ..., k, we have

- if δr ≤ 0.5, then P

ω : Cr

 n∑
j=1

C̃rjxj ≥ fr

 ≥ δr

 ≥ p0r

⇐⇒ fr ≤ +
n∑

j=1

µnrj +R−1(2δr)
n∑

j=1

βrj − Φ−1(p0r)
√

xTVrx.

- if 0.5 < δr ≤ 1, then P

ω : Cr(
n∑

j=1

C̃rjxj ≥ fr) ≥ δr

 ≥ p0r

⇐⇒ fr ≤ +
n∑

j=1

µmrj +R−1(2δr)
n∑

j=1

αrj − Φ−1(p0r)
√

xTWrx,
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where Vr is the covariance matrix of the random vector (nrj(ω))n×1 ; Wr is the covariance matrix of
the vector (mrj(ω))n×1 and Φ is the standardized normal distribution.

Proof. We have

n∑
j=1

C̃rjxj =

 n∑
j=1

mrj(ω)xj ,

n∑
j=1

nrj(ω)xj ,

n∑
j=1

αrjxj ,

n∑
j=1

βrjxj


LR

- If δr ≤ 0.5, using Theorem 2, we have

Cr

 n∑
j=1

C̃rjxj ≥ fr

 ≥ δr ⇐⇒ fr ≤
n∑

j=1

nrj(ω)xj +R−1(2δr)

n∑
j=1

βrjxj

⇐⇒ −
n∑

j=1

nrj(ω)xj ≤ −fr +
n∑

j=1

R−1(2δr)βrjxj .

Then,

P
{
ω : Cr

(∑n
j=1 C̃rjxj ≥ fr

)
≥ δr

}
≥ p0r

⇐⇒ P

ω : −
n∑

j=1

nrj(ω)xj ≤ −fr +

n∑
j=1

R−1(2δr)βrjxj

 ≥ p0r.

Set Yr = −
n∑

j=1

nrj(ω)xj , then E(Yr) = −
n∑

j=1

µnrjxj

and V ar(Yr) = V ar

 n∑
j=1

nrj(ω)xj

 = xTVrx, where Vr is the covariance matrix of the random vector

(nrj)j=1,n.

Consequently

P

ω : Cr

 n∑
j=1

C̃rjxj ≥ fr

 ≥ δr

 ≥ p0r ⇐⇒

P

ω :

−

n∑
j=1

nrj(ω)xj −E(Yr)

√
xTVrx

≤

−fr+

n∑
j=1

R−1(2δr)βrjxj − E(Yr)

√
xTVrx

 ≥ p0r .

⇐⇒ Φ


−fr +

n∑
j=1

R−1(2δr)βrjxj − E(Yr)√
xTVrx

 ≥ p0r

⇐⇒

−fr +

n∑
j=1

R−1(2δr)βrjxj − E(Yr)√
xTVrx

≥ Φ−1(p0r)

⇐⇒ fr ≤ +
n∑

j=1

µnrjxj +R−1(2δr)
n∑

j=1

βrjxj − Φ−1(p0r)
√

xTVrx.
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- If 0.5 < δr ≤ 1, using Theorem 2, we have

Cr

 n∑
j=1

C̃rjxj ≥ fr

 ≥ δr ⇐⇒fr ≤
n∑

j=1

mrjxj − L−1(2(1− δr))

n∑
j=1

αrjxj

⇐⇒ fr ≤
n∑

j=1

(
mrj − L−1(2(1− δr))αrj

)
xj .

In the same way as in the precedent case, we prove that

P
{
ω : Cr

(∑n
j=1 C̃rjxj ≥ fr

)
≥ δr

}
≥ p0r

⇐⇒ fr ≤ +

n∑
j=1

µmrjxj − L−1(2(1− δr))

n∑
j=1

αrjxj − Φ−1(p0r)
√

xTWrx,

with Zr = −
n∑

j=1

mrj(ω)xj , E(Zr) = −
n∑

j=1

µmrjxj and

V ar(Zr) = V ar

 n∑
j=1

mrj(ω)xj

 = xTWrx, Wr covariance matrix of the random vector (mrj(ω))n×1.

�

The crisp equivalent model of problem (PM ) is given in Theorem 5.

Theorem 5. Under Assumption 1, problem (PM ) is equivalent to the following one

(PM1)


maximize (f1, f2, ..., fk)
subject to
Fr(x) ≥ fr, r = 1, 2, ..., k
qi(x) ≥ 0, i = 1, 2, ...,m
x ≥ 0

where, for r = 1, 2, ..., k, Fr(x) =

n∑
j=1

µnrjxj +R−1(2δr)
n∑

j=1

βrjxj − Φ−1(p0r)
√

xTVrx, if 0 ≤ δr ≤ 0.5

n∑
j=1

µmrjxj − L−1(2(1− δr))

n∑
j=1

αrjxj − Φ−1(p0r)
√

xTWrx, if 0.5 < δr ≤ 1

-If 0 ≤ δr ≤ 0.5,

qi(x) = βiR−1(2γi)− µni +

j=n∑
j=1

(αijR−1(2γi) + µmij )xj − Φ−1(pi)
√

(σni)2 + xTM ix.

- If 0.5 < δr ≤ 1,

qi(x) = −αiL−1(2(1− γi)) + µmi +

j=n∑
j=1

(βijL−1(2(1− γi)− µnij )xj − ϕ−1(pi)
√

(σmi)2 + xTN ix

Proof. The objective vector functions are the same and from Theorem 3 and Theorem 4, we deduce
that the constraint regions of the two problems coincide. �

Remark 4. Under Assumption 1, from the reference [9], we have the equivalence :

(PM1) ⇐⇒ (PM2)


maximize (F1(x), F2(x), ..., Fk(x))
subject to
qi(x) ≥ 0, i = 1, 2, ...,m
x ≥ 0
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3.3. Convexity of the set of Pro-Cr feasible solutions

The convexity plays an important role in optimization problems and the convexity of the set of
Pro-Cr feasible solutions to problem (PM ) is needed for the resolution of our problem in section
3.4 below. Therefore, we give here sufficient conditions to the convexity of the sets XCr

p (pi; γi),
i = 1, 2, ...,m.

Theorem 6. Under Assumption 1, for pi ≥ 1
2 , the set XCr

p (pi; γi) is a convex set, i = 1, 2, ...,m.

Proof. 1) If γi ≤ 1
2 , then from Theorem 2 we have, for x ≥ 0,

P

ω : Cr(
n∑

j=1

ãijxj ≤ b̃i) ≥ γi

 ≥ pi

⇐⇒ qi(x) = +βiR−1(2γi) + µni +

j=n∑
j=1

(αijR−1(2γi)− µmij )xj

−Φ−1(pi)
√

(σni)2 + xTM ix ≥ 0.
If pi ≥ 1

2 , then ϕ−1(pi) ≥ 0, consequently the function qi(x) is a concave function. Then

XCr
p (pi; γi) = {x ≥ 0 / qi(x) ≥ 0} is a convex set, i = 1, 2, ...,m.

2) If γi ∈]12 , 1], from Theorem 2, we have for x ≥ 0

P

ω : Cr(

n∑
j=1

ãijxj ≤ b̃i) ≥ γi

 ≥ pi

⇐⇒ qi(x) = −αiL−1(2(1− γi)) + µmi −
j=n∑
j=1

(βijL−1(2(1− γi) + µnij )xj

−ϕ−1(pi)
√

(σmi)2 + xTN ix ≥ 0.
We conclude the proof as in part 1). �

3.4. Interactive procedure to obtain a satisfactory solution of (PM2)

The interactive fuzzy satisfying method proposed by Sakawa [19] is considered here to solve problem
(PM2). We proceed as follows. For each of the objective functions Fr(x), r = 1, 2, ..., k assume that
the decision maker have fuzzy goals such as ”Fr(x) should be substantially larger than or equal to
some specific value”. This kind of statement can be quantified by using a corresponding membership
function. Then, problem (PM2) is transformed into the following one:

(PM3)


max (µ1(F1(x)), µ2(F2(x)), ..., µk(Fk(x)))
subject to
x ∈ XCr

p (pi; γi), i = 1, 2, ...,m

Fuzzy goals for the objectives are characterized by the following membership function

µr(Fr(x)) =


0 Fr(x) ≤ F 0

r
Fr(x)−F 0

r
F 1
r −F 0

r
F 0
r ≤ Fr(x) ≤ F 1

r , r = 1, 2, ..., k

1 F 1
r < Fr(x)

F 1
r , F

0
r are given by solving the optimization problems respectively :

F 1
r = max

x∈XCr
p (pi;γi),i=1,...,m

(Fr(x)) and F 0
r = min

x∈XCr
p (pi;γi),i=1,...,m

(Fr(x)) (3)

which are convex for pi >
1
2 (see Theorem 6).

In order to solve problem (PM3), the decision maker consider for each µr(Fr(x)), a reference member-
ship function value µ which leads to the following problem

(PM4)


minr=1,...,k max (µr − µr(Fr(x)))
subject to
x ∈ XCr

p (pi; γi), i = 1, 2, ...,m
(4)
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Problem (PM4) is equivalent to

(PM5)


minλ
Fr(x) ≥ (µr − λ)(F 1

r − F 0
r ) + F 0

r , r = 1, 2, ..., k
0 ≤ λ ≤ 1
x ∈ XCr

p (pi; γi), i = 1, 2, ...,m

(5)

λ is an auxiliary variable.
(PM5) is a nonlinear programming problem which is convex problem for pi >

1
2 , i = 1, 2, ...,m.

Remark 5. The relationship between the optimal solution of problem (PM5) and the Pareto optimal
solution of problem (PM2) is illustrated as follows (see Sakawa [19]).

(1) If x∗ ∈ XCr
i (pi, γi), i = 1, 2, ...,m is a unique optimal solution for problem (PM5) for some

µr, r = 1, 2, ..., k, then x∗ is a Pareto optimal solution for problem (PM2).

(2) If x∗ is a Pareto optimal solution for problem (PM2) with 0 < µr(Fr(x
∗)) < 1 holding for all

r = 1, ..., k, then there exists µr, r = 1, 2, ..., k such that x∗ is an optimal solution for problem (PM5).

Following the above discussions, we propose an interactive satisfying method to obtain a satisfac-
tory solution.

Interactive procedure.
Step 1 : The decision maker chooses references membership values µi, i = 1, 2, ...,m.
Step 2 : Solve the problem mono-criteria optimization problem (PM5). The optimal solution of
problem (PM5) denoted by x∗ is a satisfactory solution of problem (PM3).
Step 3 : If the decision maker is satisfied by the obtained µr(Fr(x

∗)), r = 1, 2, ...., k, then stop, x∗ is
a satisfactory solution for problem (PM3). Otherwise, the decision maker goes to Step 1.

Remark 6. We note that obtaining the optimal solution in Step 2, is an easy task due to the properties
of problem (PM5). Problem (PM5) is solved optimally by conventional computational methods, the
obtained solution is a Pareto optimal solution of problem (PM3) (or (PM )) which is a (p0r-Pro δr-Cr)-

Pareto optimal solution of problem (P̃M ) (see Definition 12).
This interactive procedure begins with the information provided by the decision maker. It stops when
the decision maker is satisfied by the solution obtained and it is not possible to restrict the number of
iteration since the convergence depends on the behavior of the decision maker. However, it should be
noted to the decision maker that any improvement of one objective function value can be obtained only
at the detriment of at least one of the other objective function values.

4. Numerical example

In this section, we provide a numerical example to illustrate the feasibility of the proposed approach.
Consider the fuzzy stochastic linear program :

(P̃M )


maximize (C̃11(ω)x1 + C̃12(ω)x2, C̃21(ω)x1 + C̃22(ω)x2)
subject to

ã11(ω)x1 + ã12(ω)x2 ≤ b̃1(ω)

ã21(ω)x1 + ã22(ω)x2 ≤ b̃2(ω)
xj ≥ 0, j = 1, 2

where
C̃rj(ω), ãij(ω), b̃i(ω), i, r, j = 1, 2 are trapezoidal fuzzy random variables.

C̃11 = (N(42, 2), N(40, 3), 1, 2); C̃21 = (N(36, 1), N(25, 2), 1, 2);

C̃12 = (N(32, 3), N(50, 1), 2, 1); C̃22 = (N(72, 2), N(71, 3), 2, 2);
ã11 = (N(15, 1), N(−18.2, 2), 1, 2); ã21 = (N(110, 2), N(−33, 3), 1, 2);
ã12 = (N(12, 3), N(−71.4, 3), 3, 4); ã22 = (N(112, 1), N(−43, 3), 1, 2);

b̃1 = (N(−129, 2), N(120, 3), 2, 4); b̃2 = (N(−100, 1), N(50, 3), 1, 3);
According to the model (PM ), the Pro-Cr constrained multi-objective programming problem is given
as follows:
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Table 1. The interactive processes

Iteration 1 2 3 4
µ1 0.9 1 1 1
µ2 0.9 0.9 0.8 5 0.8

x∗ = (x∗1, x
∗
2) (1.9419, 0.8301) (2.2925, 0.5513) (2.4674, 0.4112) (2.642, 0.2708)

λ 0.0363 0.0884 0.0653 0.0426
F1 101.2674 106.8820 109.5940 112.2539
F2 123.8828 116.4083 112.5544 108.6369

µ1(F1) 0.8637 0.9116 0.9347 0.9574
µ1(F2) 0.8637 0.8116 0.7847 0.7574



maximize (f1, f2)
subject to

P
{
ω : Cr

(∑2
j=1 C̃1jxj ≥ f1

)
≥ δ1

}
≥ p01,

P
{
ω : Cr

(∑2
j=1 C̃2jxj ≥ f2

)
≥ δ2

}
≥ p02,

P
{
ω : Cr

(∑2
j=1 ã1jxj ≤ b̃1

)
≥ γ1

}
≥ p1,

P
{
ω : Cr

(∑2
j=1 ã2jxj ≤ b̃2

)
≥ γ2

}
≥ p2,

xj ≥ 0, j = 1, 2.

(6)

Assume that the decision makers set confidence levels δ1 = δ2 = γ1 = γ2 = 0.9 and p01 = p02 = p1 =
p2 = 0.9, then L−1(2(1−γ1)) = L−1(2(1−γ2)) = L−1(2(1−δ1) = L−1(2(1−δ2)) = L−1(0.2) = 0.8 and
Φ−1(0.9) = 1.2816. Problem (6) is formulated as the following problem according to model (PM3):

maximize (F1(x) = 42x1 + 32x2 − 0.8x1 − 1, 6x2 − 1.2816
√

2x21 + 3x22)

maximize ( F2(x) = 36x1 + 72x2 − 0.8x1 − 1.6x2 − 1.2816
√

1x21 + 2x22)
subject to

−130.6 + 16.6x1 + 68, 2x2 − 1.2816
√

2 + 2x21 + 3x22 ≥ 0,

−100.2 + 31.4x1 + 41.4x2 − 1.2816
√

1 + 3x21 + 3x22 ≥ 0,
x1 ≥ 0, x2 ≥ 0.

(7)

which is equivalent to (according to model (PM5))

minλ
subject to

F1(x) = 41.2x1 + 30.4x2 − 1.2816
√

2x21 + 3x22 ≥ (µ1 − λ)(F 1
1 − F 0

1 ) + F 0
1 ,

F2(x) = 35.2x1 + 70.4x2 − 1.2816
√

1x21 + 2x22 ≥ (µ2 − λ)(F 1
2 − F 0

2 ) + F 0
2 ,

0 ≤ λ ≤ 1

−130.6 + 16.6x1 + 68, 2x2 − 1.2816
√

2 + 2x21 + 3x22 ≥ 0

−100.2 + 31.4x1 + 41.4x2 − 1.2816
√

1 + 3x21 + 3x22 ≥ 0
x1 ≥ 0, x2 ≥ 0,

where 
F 1
r = maxFr(x)

−130.6 + 16.6x1 + 68, 2x2 − 1.2816
√

2 + 2x21 + 3x22 ≥ 0

−100.2 + 31.4x1 + 41.4x2 − 1.2816
√

1 + 3x21 + 3x22 ≥ 0
x1 ≥ 0, x2 ≥ 0,
F 0
r = minFr(x)

−130.6 + 16.6x1 + 68, 2x2 − 1.2816
√

2 + 2x21 + 3x22 ≥ 0

−100.2 + 31.4x1 + 41.4x2 − 1.2816
√

1 + 3x21 + 3x22 ≥ 0
x1 ≥ 0, x2 ≥ 0.

The interactive processes, corresponding to the confidence levels δ1 = δ2 = γ1 = γ2 = 0.9 and
p01 = p02 = p1 = p2 = 0.9, are summarized in Table 1.
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At iteration 1, the obtained optimal solution is x∗ = (1.9419, 0.8301) and λ = 0.0363. The result is
shown in the second column of Table 1. Since decision makers prefer to enlarge the value of F1 instead
of reducing the value of F2, the decision maker updates the reference values of (µ1, µ2) = (1, 0.85). In
the third column, we have iteration 2, the optimal solution is x∗ = (2.4674, 0.4112) and the optimal
value of λ = 0.0653 for the updated reference value. We assume that the decision maker is not satisfied
with the optimal value and prefer to increase the value of F1 at the expense of F2. Iteration 3, the
decision maker updates the reference values again (µ1, µ2) = (1, 0.8) and obtain an optimal solution
x∗ = (2.642, 0.2708) and the optimal value λ = 0.0426. Since the decision maker is satisfied with the
optimal value, the algorithm terminates.
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