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A Spreadsheet Approach to Solving NLP and ILP

Formulations of a Modified Partition Problem

Lonnie Turpin, Jr.∗† Vipin Menon‡ Gerard Ornas, Jr.§

Abstract

Given a countable set of positive integers under a proposed set of conditions, we de-

velop and analyze both nonlinear programming (NLP) and integer linear programming

(ILP) formulations for a strict partition intoN = 2 subsets with equal summation. This

note adds to the list of operations research (OR) applications in spreadsheet modeling

by constructing each of these formulations in a manner that makes use of the readers

intuition without the use of formal proofs, and uses available Excel spreadsheet func-

tions without other advanced software. As such, we hope this is a useful classroom

tool as well as a general interest article on optimization for a broader audience.

Keywords: Partition Problem, Spreadsheet Model, Nonlinear Programming, Integer

Linear Programming

1 Introduction

Optimization is becoming increasingly important in curricula ranging from mathemat-

ics and computer science to business and economics. Tools such as Microsoft Excel offer

an attractive alternative to specialized software primarily because of their ubiquitous

nature. Excel is key not only for the ever growing need for spreadsheet modeling skills
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required for any business discipline, but because it offers a simplified interface without

the complexity associated with these specialized programs. Noteworthy research by

[15] provides useful guidelines for using spreadsheets to teach students about specific

operations research (OR) models, while [5] discusses the efficacy of the spreadsheet

approach to operations research education in general.

Within OR, Excel has been used to solve widespread problems such as the multi-

criteria decision problem [18] as well as more complicated problems as in the resource-

constrained project scheduling problem [20], among others. In this research, we add

to the list of OR applications by constructing formulations for a modified partition

problem in a manner that

1. makes use of the readers intuition without the use of formal proofs (to make it

palatable for cross-disciplines); and

2. uses available Excel spreadsheet functions without visual basic (VBA) or ad-

vanced software.

The partition problem, known in the form of the number partitioning problem

(NPP) and the set partitioning problem (SPP), is a classic NP-complete problem (in

NPP) or NP-hard (in SPP) in computer science with the task of deciding whether a

given multiset (NPP) or set (SPP) of positive integers can be partitioned into N finite

subsets such that the difference in sums of the numbers in each subset are minimized.

For N = 2, a perfect partition is realized when the difference is 0 (if the sum of

all the integers is even) or 1 (if the sum of all the integers is odd). Many methods

exist to solve both types of problems including the Kamarkar-Karp [10] differencing

heuristic (see [4] for a complete analysis and [12] for a modified version), the use

of constrainedness to locate phase transition behavior [7], optimization via simulated

annealing [9], constraint programming [14], and tree search [17], among others. For

practical applications of each, see [1] and [19]. Of specific interest to this research is

the work [11] which proposes a generalized NPP for N = 2 as well as an integer linear

programming formulation of the problem. In the following sections, we use similar

logic and show both nonlinear programming (NLP) and integer linear programming

(ILP) formulations for a special case of an SPP.

To begin, let Ω represent a grand set. This research presents NLP and ILP formu-

lations to partition Ω into N = 2 sets X1 and X2 where
∑
X1 =

∑
X2. For exposition,

we give the cardinality |Ω| � N to prevent loss of generality, and consider the following

assumptions (filters on the data set).

Assumption 1. To create the input numbers, we let every element ω in Ω be a random

integer in {ω ∈ Z>0 | 1 ≤ ω ≤ U} for all ω ∈ Ω, where U is a definable finite upper
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bound.

Assumption 2. The sum of Ω is a multiple of N , expressed as
∑

ω∈Ω ω ∈ NZ>0. For

brevity, we write
∑

Ω ∈ NZ>0.

Assumption 3. Each element is unique, that is no two elements in Ω are identical.

Formally, the multiplicity m of any element is one, expressed as mω = 1 for all ω ∈ Ω.

Should Assumption 3 be suspended, Ω could be analyzed as a multiset (see [3]). It

should be clear that U > |Ω| to satisfy Assumption 3. The logic is easily shown by

contradiction. Suppose U = 25 and |Ω| = 26. It is impossible to create a data set

with each element satisfying the integer interval [1, 25] without repeating at least one

number.

Assumption 4. No element may be assigned to more than one set expressed as

{
∨

N ω ∈ XN , ω ∈ Ω}. By Assumption 3, this results in the implication
⋂

N XN = ∅.

This paper is organized as follows. Section 2 presents the integer linear and nonlin-

ear programming models for N = 2 subsets. Section 3 provides the Excel formulations

of the two models in a four-step procedure where the final step gives a brief overview

of the solutions. Finally, Section 4 concludes the paper with a general discussion.

2 Formulations for N = 2

Let ωi represent the i-th number assigned. We begin by assigning the largest value to

the first set X1, that is forcing ω1 = maxω∈Ω ω and assigning to X1. Define Ω′ as the

remainder of Ω after ω1 as Ω′ = Ω−maxω∈Ω ω.

Remark 1. It should be obvious that maxω∈Ω ω ≤
∑

Ω/2 for a perfect partition to

exist. For clarity, consider the contradiction maxω∈Ω ω >
∑

Ω/2. This directly implies∑
X1 >

∑
X2, resulting in no solution. Following Assumption 3 and generalizing for

N > 2 results in the bounds |Ω| < U ≤
∑

Ω/N .

Now let λω ∈ {0, 1} represent the decision variables where λω = 1 if ω 6= maxω∈Ω ω

is assigned to X1, and λω = 0 if not. The binary nature of the variables satis-

fies Assumption 4. By the preceding logic, we replace ω1 with maxω∈Ω ω to define

maxω∈Ω ω +
∑

ω∈Ω′ λωω ≡
∑
X1 and correspondingly set

∑
X2 ≡

∑
Ω/2 to satisfy

the partition. Considering the known inputs
∑

Ω/2 and all ω ∈ Ω, we present the

argument

min

∣∣∣∣∣
(

max
ω∈Ω

ω +
∑
ω∈Ω′

λωω

)
−
∑

Ω

2

∣∣∣∣∣ s.t. λω ∈ {0, 1}, for all ω ∈ Ω′ (NLP)

allowing us to determine the optimal partitioning of Ω into X1 and X2.
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Remark 2. Removing the absolute value bounds on the formulation in (NLP) would

force the decision variable solution λω = 0 for all ω ∈ Ω′. The proof is straightforward

and therefore omitted.

The absolute value argument in (NLP) means that this objective is not linear, but it

may undergo a transformation into a linear objective with additional linear constraints

and additional variables. Because of modulus, it is clear that one set of variables is not

enough to make the objective function linear. We introduce the new decision variables

ψω ∈ {0, 1} representing whether or not ω is assigned to X2 for all ω ∈ Ω′. It is

immediately clear that ψω ≡ 1 − λω for all ω ∈ Ω′. We set
∑

ω∈Ω′ ψωω ≡
∑
X2 and

maintain maxω∈Ω ω +
∑

ω∈Ω′ λωω ≡
∑
X1.

We can now transform of the nonlinear system in (NLP) to a linear system via the

following program in (ILP).

min

(
max
ω∈Ω

ω +
∑
ω∈Ω′

λωω

)
−
∑
ω∈Ω′

ψωω

s.t.

(
max
ω∈Ω

ω +
∑
ω∈Ω′

λωω

)
−
∑
ω∈Ω′

ψωω ≥ 0

max
ω∈Ω

ω +
∑
ω∈Ω′

λωω ≤
∑

Ω

2∑
ω∈Ω′

ψωω =

∑
Ω

2

ψω = 1− λω, for all ω ∈ Ω′

λω ∈ {0, 1}, for all ω ∈ Ω′

(ILP)

The mechanics are relatively straightforward, so we do not need to give a formal

proof. Instead, we opt for a basic explanation. Let the bounds on the decision variables

be λω, ψω ∈ {0, 1} for all ω ∈ Ω′. To begin, we break down (NLP) into maxω∈Ω ω +∑
ω∈Ω′ λωω ≤

∑
Ω/2 and

∑
ω∈Ω′ ψωω whereby we satisfy the minimization argument

by the indirect maximization of
∑

ω∈Ω′ λω, rendering the reordering of terms in the

objective unnecessary.

It remains to linearize the absolute value on the bounds |λω| for all ω ∈ Ω′. Suppose

we let |λω| such that |λω| ≤ ψω for all ω ∈ Ω′ by the identity of
∑

ω∈Ω′ ψωω. Then,

with a bit of algebra we admit λω −ψω ≤ 0 and −λω −ψω ≤ 0, representing the linear

equivalency of |λω| ≤ ψω for all ω ∈ Ω′. We reduce the above equations to λω +ψω ≤ 1

for all ω ∈ Ω′.

Replacing λω + ψω ≤ 1 with ψω = 1 − λω allows for the change λω, ψω ∈ {0, 1}
to λω ∈ {0, 1} for all ω ∈ Ω′. This eliminates the possibility of any element ω from

being unassigned to any subset (that is, λω = 0 and ψω = 0 for some ω). The binary

152



NLP and ILP Formulations of a Modifed Partition Problem

nature of the λω variable coupled with ψω = 1−λω forces ψω ∈ {0, 1} yielding a single

changing variable and the desired result.

Remark 3. Following (ILP), if λω, ψω = 1 for all ω ∈ Ω′ then maxω∈Ω ω+
∑

ω∈Ω′ (λω + ψω) =

|Ω| and the objective function
(
maxω∈Ω ω +

∑
ω∈Ω′ λωω

)
−
∑

ω∈Ω′ ψωω = 0, resulting

in a perfect partition of Ω into N = 2 subsets with equal summation.

3 Spreadsheet Modeling

Step 1. Creating a table and input data for the desired N and cardinality |Ω|.

Procedure. First, we need to create the table. For simplicity, we use N = 2 and

|Ω| = 50. Initially, we label the three columns necessary to perform the analysis as

follows. Type “Value” in A1, “ω” in B1, and “λω” in C1. Next, type “=1” in A2

and “=2” in A3. Highlight A2 and A3 simultaneously and click the fill button at the

bottom right hand corner. Drag the formula down to cell A51. In A51, the result

should be the number “50”, giving us the desired cardinality |Ω| = 50.

Second, we create the input data. We begin by simulating a data set in a distant

column (any distant column will work, but we will use column H). To satisfy Assump-

tion 1, type “=RANDBETWEEN(0,100)” in cell H2. It might seem logical to highlight

H2 and, using the fill button at the bottom right hand corner, drag the formula down

to cell H51. However, to satisfy Assumption 3, we need to guarantee that the function

will not produce a duplicate value. To do this, we perform the following. In cell H3, type

“=LARGE(ROW($1:$100)*NOT(COUNTIF($H$2:H2,ROW($1:$100))),RANDBETWEEN(1,(100+1)-

ROW(H2)))”. Before pressing enter, click on the end of the formula and press “[Ctrl]+[Shift]+[Enter]”.

This will enter the formula as an array function. Now fill H3 down to H51.

Next, in cell A53, type “
∑

Ω” and in B53, type “=SUM(B2:B51)”. Before we realize

B53, type “=SUM(H2:H51)” in H53. If H53 is an even number, then Assumption 2

is satisfied. If not, simply press “F9” and recalculate until an even number is realized

yielding
∑

Ω ∈ 2Z>0.

Finally, copy and paste the (evenly summed) values from H2:H51 and paste them

(as values) in B2:B51. This prevents the simulated values from changing every time a

key is entered in the spreadsheet.

Step 2. Finding maxω∈Ω ω and formulating (NLP).

Procedure. First, we need to find the maximum value in Ω. Select B2:B51 and click

on the Data tab. In the Sort & Filter group, select “Sort Z to A” which sorts the data

in decreasing order. This places maxω∈Ω ω in cell B2.
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Next, type “Objective” in A55 and in B55, type “=ABS(B2+SUMPRODUCT(B3:B51,C3:C51)-

(B53/2))” to represent min
∣∣(maxω∈Ω ω +

∑
ω∈Ω′ λωω

)
−
∑

Ω/2
∣∣. In the Solver Param-

eters dialog box, enter the following.

• Set Objective: “$B$55”

• To: Min (to minimize the objective function value)

• By Changing Variable Cells: “$C$3:$C$51” (note that we leave B2 out since it is

directly assigned to X1)

• Subject to the Constraints: “$C$3:$C$51=binary” (to guarantee λω ∈ {0, 1} for

all ω ∈ Ω′)

• Select a Solving Method: “GRG Nonlinear”

Since all decision variables are binary, it is not necessary to check the box next to

“Make Unconstrained Variables Non-Negative” to allow for a solution.

Step 3. Formulating (ILP).

Procedure. Begin by copying A1:C55 in a new worksheet. Type “ψ” in cell D1. We

satisfy the constraint ψω = 1− λω for all ω ∈ Ω′ by simply entering “1-C3” in D3 and

filling down to D51. This guarantees that ψω ∈ {0, 1} for all ω ∈ Ω′.

Then, type “=(B2+SUMPRODUCT(B3:B51,C3:C51))-SUMPRODUCT(B3:B51,D3:D51)”

in cell B55 to represent the objective min
(
maxω∈Ω ω +

∑
ω∈Ω′ λωω

)
−
∑

ω∈Ω′ ψωω.

Next, type “≥” in C55 and “0” in D55 to setup the initial constraint
(
maxω∈Ω ω +

∑
ω∈Ω′ λωω

)
−∑

ω∈Ω′ ψωω ≥ 0.

To realize the inequality constraint
(
maxω∈Ω ω +

∑
ω∈Ω′ λωω

)
≤
∑

Ω/2, type “In-

equality” in cell A56. Then, type “=B2+SUMPRODUCT(B3:B51,C3:C51)” in B56,

“≤” in C56, and “=B53/2” in D56.

For the equality constraint
∑

ω∈Ω′ ψωω =
∑

Ω/2, begin by typing “Equality” in

cell A57. Next, type “=SUMPRODUCT(B3:B51,D3:D51)” in B57, “=” in C57, and

“=B53/2” in D57.

In the Solver Parameters dialog box, enter the following.

• Set Objective: “$B$55”

• To: Min (to minimize the objective function value)

• By Changing Variable Cells: “$C$3:$C$51” (again, we leave B2 out since it is

directly assigned to X1)

• Subject to the Constraints: “$C$3:$C$51=binary” (to guarantee λω ∈ {0, 1} for

all ω ∈ Ω′ just as in (NLP); note that ψω ∈ {0, 1} for all ω ∈ Ω′ is guaranteed

by the formulas in D3:D51, so we do not need to add “$D$3:$D$51=binary”);

“$B$55>=$D$55”; “$B$56<=$D$56”; “$B$57=$D$57”
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• Select a Solving Method: “Simplex LP”

As with (NLP), all decision variables are binary, so it is not necessary to check the box

next to “Make Unconstrained Variables Non-Negative” to allow for a solution.

Step 4. Analyzing the solutions.

Procedure. An HP EliteOne 800 desktop computer was used to run each formulation.

The computer was equipped with an Intel Core i5-4570S (2.9 GHz) processor with 16

GB of memory and a 500 GB hard drive. Table 1 shows the resulting performance

measures.

Formulation Solver Engine Solution Time (Seconds) Iterations Subproblems

(NLP) GRG Nonlinear (see [13]) 46.863 2 110

(ILP) Simplex LP (see [16]) 0.093 0 46

Table 1: Performance measures for (NLP) and (ILP)

It is clear that each formulation is attractive in its own way. (NLP) has an advantage

on formulation time, while (ILP) has an advantage on run time. A complete analysis

is unnecessary since 1) post-optimality (sensitivity) analysis is not available in Solver

for 0-1 problems, and 2) it is beyond the scope of this research to dial in the settings

and parameters of Solver. We refer the reader to [21] for a detailed description of the

GRG algorithm, [2] for a brief overview on the classic Simplex method, and [6] for a

treatise on Solver.

4 Discussion

This paper develops and analyzes a simple SPP for a strict partition of a countable set

of positive integers under a proposed set of conditions into N = 2 subsets with equal

summation. We undertake the partitioning by formulating nonlinear and integer linear

programs using an Excel spreadsheet. Each formulation is constructed in four-step

process that makes use of the readers intuition without the use of formal proofs. This

in turn makes it a useful classroom aid as well as an easy read for a general audience

with minimal exposure to OR and only a basic working knowledge of Excel. What

results is a simple procedure that adds to the list of OR applications in spreadsheet

modeling, and uses basic Excel functions without relying on other advanced software.

Further work can be directed toward modifying the proposed formulations for extending

the base case of N = 2 to the general case for any finite N > 2 such that
∑
X1 =∑

X2 = . . . =
∑
XN , as well as investigating each in terms of a NPP multiset.
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