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Abstract

This work studies an optimal control problem for a discrete-time Susceptible/Infective/Re-
moved (SIR) deterministic epidemic model with a finite time horizon and multiple controls.
The model used in our paper is inspired from [Iacoviello and Liuzzi, 2008], but our approach is
new and different from classical population models based on differential equations. We seek first
to show that the problem can be modeled and solved discretely using dynamic programming,
eschewing all discussions of convergence and existence of solutions. Moreover, the discrete ap-
proach is more closely aligned to the real situation as patients and controls are discrete entities.
To further justify the results, we also explore a case study with real data on the measles out-
break in Africa from 1980 to 2005 and show that a multi-level, multi-control approach would
have been less costly and more effective in reducing the effect of measles.

1 Introduction

There are numerous epidemiological models with various epidemiological classes, often abbrevi-
ated by M, S, E, I, and R, used in epidemic intervention and modeling techniques. M represents
the class of infants who have passive immunity, S represents the susceptible class (those capable
of becoming infected), E represents the exposed class (a latent period, in which the individual is
infected, but not yet infectious), I represents the infected class (those who have the infection), and
R represents the recovered/removed class (consisting of those with permanent infectious-acquired
immunity, temporary immunity, or those who have been removed from a population due to recovery,
isolation, or death) [Hethcote, 2000]. Figure 1 shows the general transfer diagram for a MSEIR
model [Hethcote, 2000, Iacoviello and Liuzzi, 2008].

This paper seeks to explore a Susceptible/Infective/Removed (SIR) model with multiple controls
over a fixed time horizon, such as those explored in [Iacoviello and Liuzzi, 2008, Joshi, 2002, Jung
et al., 2002]. The optimal control problem for an SIR-epidemic model presented in [Iacoviello and
Liuzzi, 2008] is considered, in which control efforts are applied to both the susceptible population
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Figure 1: A General Transfer Diagram for the MSEIR Model

(vaccination) as well as the infectives (isolation). Many models rely on the use of continuous math-
ematics, i.e., ordinary or partial differential equations to entirely, or in part, model the spread of a
disease and/or discuss various optimization questions. Our paper, however, seeks to find the optimal
solution to a minimization problem using discrete mathematics (dynamic programming) [Hansen
and Day, 2011,Hethcote, 2000,Ögren and Martin, 2002,Sanders, 1971,Siegal and Kunze, 1994]. A
comparison is presented demonstrating the effect of applying only one control (i.e., vaccination only
or isolation only) versus applying both controls simultaneously. Finally, a case study of the African
measles outbreak from 1980-2005 is presented and analyzed.

2 The Epidemic Optimal Control Problem Statement

To briefly review the model described in [Iacoviello and Liuzzi, 2008], let s(t) represent the
susceptibles in a population, i(t) represent the infectives, and r(t) represent those removed. The
dynamics of the epidemic, with the interaction function f between the susceptibles and the infec-
tives, can be written as,

ṡ(t) = −f(s, i)
i̇(t) = f(s, i)− γi
ṙ(t) = γi,

where

f(s, i) =
βsi

s+ i
, β > 0,

and

s(0) = s0

i(0) = i0.
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In this model, γ > 0 denotes the rate of removal of the infectives. Introducing vaccination and
isolation results in the following:

ṡ(t) = −f(s, i)− suv
i̇(t) = f(s, i)− γi− iuq
ṙ(t) = γi,

where 0 ≤ a1 ≤ uv ≤ b1 ≤ 1 and 0 ≤ a2 ≤ uq ≤ b2 ≤ 1. Therefore, the controls represent box
constraints. The model seeks to minimize the resulting cost function considered is:

J(uv, uq) =

∫ T

0

[
i(t) + cvu

2
v + cqu

2
q

]
dt,

where T < 0, cv is the cost of applying the vaccination control and cq is the cost associated with
controlling via isolation/quarantine [Iacoviello and Liuzzi, 2008,Nowzari et al., 2016].

We seek to branch out from the work done in [Iacoviello and Liuzzi, 2008], and instead of
solving the model continuously using differential equations, we solve the problem discretely. Let Nt

represent the total population at time t, St be the number of susceptibles at time t, It be the number
of infectives at time t, and Rt represent those removed at time t [Blount et al., 1997, Iacoviello and
Liuzzi, 2008, Sethi, 1974]. The model assumes that the total population is held constant while
the boundary between the sub-populations is left to vary with time. Therefore, the model studied
is an epidemic model, since it does not allow for natural births nor deaths (or immigration nor
emigration), which would alter the size of the total population [Hethcote, 2000]. All changes to N
are therefore due to deaths from the disease or from vaccination or isolation controls. Therefore,

Nt = It + St +Rt. (2.1)

The transmission of the disease is predicated on contact between an infective and a susceptible
according to homogeneous mixing with no chance of spontaneous infection. Homogeneous mixing
assumes that each individual randomly comes in contact with exactly one other individual during
each time period (t, t + 1) [Blount et al., 1997, Hethcote, 2000, Daley et al., 2000]. For the total
population, N , and sub-populations St and It, the probability of infection is represented by β, the
rate of death is represented by γ, and uv and uq represent the two possible controls, vaccination
and isolation/quarantine, respectively. The sub-populations at time t+ 1 are given by:

St+1 = St −
β(1− uv)(1− uq)ItSt

It + St
− Stuv (2.2)

It+1 = It +
β(1− uv)(1− uq)ItSt

It + St
− γIt − Ituq. (2.3)

The term

β(1− uv)(1− uq)ItSt

It + St
(2.4)

represents the interaction between a susceptible and an infective (the interaction term), where uv
and uq represent the rate of control (control effort) according to 0 ≤ a1 ≤ uv ≤ b1 ≤ 1 and
0 ≤ a2 ≤ uq ≤ b2 ≤ 1. Therefore, the two controls represent box constraints [Iacoviello and
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Liuzzi, 2008]. The vaccination control, uv, is applied only to the population of susceptibles, since
vaccinating infectives would do nothing. Similarly, the isolation/quarantine control, uq, is only
applied to the infectives, with the goal being to isolate some of the individuals currently infected
with the disease together and away from those currently susceptible. Recall (2.1). At time t = 0,
R0 = 0. At t > 0, Rt does not influence St+1 or It+1, since individuals removed from the population
via vaccination or isolation do not effect the interaction term (2.4). The cost function considered
in our redefinition of the model is

J(uv, uq) =

T∑
0

[It + cvu
2
v + cqu

2
q],

where cv is the cost of applying the vaccination control and cq is the cost associated with controlling
via isolation/quarantine. We replace the integral with a sum from time t = 0 to t = T , where T < 0.
Minimizing the cost function amounts to decreasing the number of infected individuals at minimal
effort (represented in quadratic form) [Iacoviello and Liuzzi, 2008].

Figure 2 is a visual representation of the dynamics of the various sub-populations under con-
sideration. The arrows indicate how individuals move between the various conditions. Susceptibles
can transition to the infective state by becoming infected with the disease, infectives can transition
to the removed state either by death or isolation, and susceptibles can transition to the removed
state by becoming vaccinated. Therefore, the model assumes that the vaccination and isolation are
100% effective.

St It

Rt

β(1− uv)(1− uq)ItSt

−Stuv −γIt − Ituq

Figure 2: Population Dynamics

We will seek to solve the optimization problem discretely using dynamic programming. To develop
the model, define J(0) to be the cumulative cost at time t = 0. At t = 0, the cumulative cost
is equal to the number of initially infected individuals, so J(0) = I0. Additionally, at t = 0,
S0 = N − I0, since no one has been removed from the population due to vaccination or isolation
yet. The cumulative cost at t = 1, is given by J(1). J(1) = I1 + cvu

2
v + cqu

2
q. So, now the goal will

be to minimize
{
I1 + cvu

2
v + cqu

2
q | I1 = β(1− uv)(1− uq)I0S0 − γI0 − I0uq

}
, where 0 ≤ uv ≤ 1
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and 0 ≤ uq ≤ 1. The dynamic program can be modeled as follows:

J0 = I0

S0 = N − I0
Jt = Jt−1 + optt,

where optt is

min{(β(1− uv)(1− uq)St − uq)It−1 + cvu
2
v + cqu

2
q | 0 ≤ a1 ≤ uv ≤ b1 ≤ 1; 0 ≤ a2 ≤ uq ≤ b2 ≤ 1}.

Therefore, Jt keeps track of the cumulative cost at each optimal step.

3 Numerical Results

This section focuses on the numerical results obtained from solving the dynamic problem pre-
sented in Section 2 with parameters: β = 0.044, a1 = 0, b1 = 0.2, a2 = 0, b2 = 0.1, cv = 1, and
cq = 10, initial conditions I0 = 50 and S0 = 200, and a final fixed time of T = 80. Therefore, the
total population given by N is the sum of I0 and S0, or 250. These parameters are based on those
used in [Iacoviello and Liuzzi, 2008] and referenced in the HIV immunology model in [Joshi, 2002]
and the Tuberculosis model in [Jung et al., 2002].

Figure 3a and Figure 3b model the applications of each control given the specified parameters.
Figure 3a displays the optimal control pattern when only the vaccination control is applied to
the population and Figure 3b displays the optimal control graph resulting from applying only the
isolation control to the population. Recall, the vaccination control is only applied to those in the
susceptible sub-population and the isolation control is only applied to those in the infectives sub-
population. In the case of the vaccination only control, the range is a1 = 0 ≤ u1 ≤ b1 = 0.2 and
in the case of the isolation only control, the range is a2 = 0 ≤ u2 ≤ b2 = 0.1. Since we are solving
the problem discretely, we have to specify a set number of partitions to our control ranges to allow
for partial control efforts. This will prevent the model from simply being an “on-off” or “bang-bang
control” problem, in which either no control or full control is applied. Let nbuv be the number of
partitions of the range of control for vaccination control and nbuq be the number of partitions of
the range of control for the isolation only control. Figure 3a and figure 3b represent the cases in
which we let nbuv = nbuq = 3, resulting in four levels of possible control. In both cases, we see
that the optimal control pattern is to continue maximally, and then the control decreases over time
until no control is necessary.
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(a) Vaccination Control Only nbuv = 3 (b) Isolation Control Only nbuq = 3

Figure 3: Vaccination or Isolation Control Only

Figure 4a and Figure 4b show the numerical results for the susceptibles and the infectives over
the finite time horizon when when optimal control patterns are applied. Applying both controls
at the specified parameter values results in two very quick, monotonically decreasing graphs. The
graphs make sense, since if we apply the optimal vaccination pattern to those who are susceptible,
the number of susceptible individuals is going to decreases very quickly. Similarly, if we work
optimally to isolate/quarantine those who are infected with the disease, then we are going to
isolate/quarantine as many people as possible very quickly, so that they are removed from the
population and are no longer able to come into contact with a susceptible.

(a) Susceptibles at Optimum for nbuv = 3 (b) Infectives at Optimum nbuq = 3

Figure 4: Susceptibles and Infectives at Optimum

Figure 5a and Figure 5b represents the optimal control graphs for vaccination only and isolation
only control when nbuv = nbuq = 20, allowing for increased levels of partial control. The overall
appearance of the graph looks the same; the optimal control patterns starts out maximally and
then decreases quickly over time until no control is necessary, but the overall graph is much more
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smooth than in the case when nbuv = nbuq = 3.

(a) Vaccination Control Only for nbuv = 20 (b) Isolation Control Only for nbuq = 20

Figure 5: Vaccination or Isolation Control Only

Figure 6a and Figure 6b shows the optimal solution to the susceptibles and infectives over time
for the optimal control patterns when nbuv = nbuq = 20. As one can observe in both cases, applying
both controls at the specified parameter values results in a very quick, monotonically decreasing
graph. The graphs appear very similar in shape to the ones with only three partitions, but increase
in smoothness, especially around time t = 10.

(a) Susceptibles at Optimum nbuv = 20 (b) Infectives at Optimum nbuq = 20

Figure 6: Susceptibles and Infectives at Optimum

Finally, we studied what happens to the optimal control patterns if we let nbuv = nbuq = 100.
As one can observe, the optimal control graphs both become quite smooth and begin to resemble
what one would expect to see in a continuous case.
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H (a) Susceptibles at Optimum for nbuv = 100 (b) Infectives at Optimum for nbuq = 100

Figure 8: Susceptibles and Infectives at Optimum

(a) Vaccination Control Only nbuv = 100 (b) Isolation Control Only for nbuq = 100

Figure 7: Vaccination or Isolation Control Only

Figure 8a and Figure 8b show what happens to the susceptibles and infectives over time when the
optimal control pattern is applied for both controls. Once again, the graphs have the same overall
appearance, but appear very smooth. Therefore, our discrete formulation of the problem appears
to be very good at finding the optimal solution, especially for relatively small number of partitions.
The results also show that it is not necessary to let n grow too large, because the approximation,
even at n = 20 is very good. Figure 9a models the behavior of the susceptible population when only
the vaccination control is applied versus the behavior of the susceptible population when only the
infectives are controlled. When no vaccine is administered, the number of susceptibles stays pretty
close to S0 = 200, since the isolation control is applied only to those in the infectives category.
When only the vaccination control is applied, then number of susceptibles decreases monotonically
and very quickly, since more and more people are being vaccinated at each time step, and hence,
are incapable of getting the disease.

Analogously, Figure 9b models the behavior of the infectives when only the susceptibles are
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controlled versus the behavior of the infectives when only the infectives are controlled. When no
vaccination is administered and only isolation is used, the number of infectives decreases quickly,
since they are being isolated and removed from the population with each time step. When only
vaccination is applied, the number of infectives still decreases monotonically, but not as quickly
as in the case of isolation, since there is an indirect effect. Vaccinating individuals prevents them
from getting the disease and therefore becoming an infective, but this process is less direct than
isolating those who already have the infection, which prevents them from spreading the disease to
a susceptible in the first place.

(a) Behavior of Susceptibles (b) Behavior of Infectives

Figure 9: Behavior of Susceptibles and Infectives Using Only One Control

Figure 10a shows the effect of changing the probability of infection parameter, the value of β,
while holding the death parameter, γ, constant at 0.1. Figure 10a reports the behavior of the
susceptibles for β = 0.001, 0.01, 0.044, as chosen in [Iacoviello and Liuzzi, 2008]. When the value of
β is higher, the number of susceptibles decreases quicker, since the probability of infection is greater.
Therefore, more susceptibles are becoming infected with the disease and entering the infectives class.
When β is small, the probability of a susceptible becoming infected with the disease is really small,
so the rate at which individuals from the susceptibles class are moving to the infectives class is very
small.
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(a) Behavior of Susceptibles: Varying Betas
and Gamma = 0.1

(b) Behavior of Infectives With Changing Gamma
and Beta = 0.044

Figure 10: Analysis of Model Parameters

Figure 10b shows the effect of changing the death parameter, the value of γ, on the number of
infectives when β = 0.044. Figure 10b reports the behavior of the susceptibles for γ = 0.1, 0.05, 0.01,
in [Iacoviello and Liuzzi, 2008]. As γ increases, the rate at which the number of infectives decreases
monotonically increases, resulting in more people are dying off.

3.1 Case Study Analysis
In order to test the effectiveness of the multiple control approach (i.e., using both vaccination

and isolation), we have considered an actual epidemic control problem to compare our results with.
The case study focuses on the measles outbreak in Africa between 1980 and 2005. The data is
based on the data used in [Iacoviello and Liuzzi, 2008], which was acquired from the World Health
Organization’s website1. The number of infectives by each year during the outbreak is shown in
Table 1.

Year Infectives Year Infectives Year Infectives Year Infectives
1980 1240993 1987 641057 1994 420193 2001 491989
1981 1413184 1988 604244 1995 362925 2002 288340
1982 1342685 1989 561896 1996 484914 2003 403016
1983 1346883 1990 481204 1997 299623 2004 220180
1984 1076106 1991 446517 1998 373149 2005 316219
1985 1142002 1992 581125 1999 486660
1986 676757 1993 395025 2000 520102

Table 1: Number of People Infected by Measles in Africa 1980− 2005

During the time period from 1980 to 2005, substantial effort was put into vaccinating suscep-
tibles, but there was very little (if any) effort placed on quarantining or isolating those already

1http://apps.who.int/gho/indicatorregistry/App_Main/view_indicator.aspx?iid=60
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infected. Therefore, the data presented is representative of a model in which only one form of
control was applied. This implies that uq = 0. Figure 11a shows a graph of the true data, modeling
the infectives during the vaccination efforts between 1980 and 2005. The solid line through the data
shows that our model is a good approximation for what truly occurred using nbuv = 20 for the
number of partitions. The model uses the following parameter values: cv = 1, cq = 10, a1 = a2 = 0,
b1 = 0.2, b2 = 0, β = 0.0044, and γ = 0.07 over the same 26 year time period. The initial number
of susceptibles is approximated at 14, 000, 000 and the initial number of infectives is approximated
at 1, 400, 000.

(a) Infectives in Africa Between 1980 and 2005 (b) Infectives Using Dual Control

Figure 11: Analysis of Real Data - Measles Case Study

Figure 11b shows the behavior of the susceptibles over the same time horizon and parameters
previously listed, except this time, we allow b2 = 0.1, so that we can also apply an isolation/quar-
antine control effort in addition to the vaccination control. As the graph demonstrates and our
model confirms, if both isolation and vaccination had been used, rather than just vaccination, the
disease could have been better controlled and the number of infectives would have decreased more
quickly. Interestingly, according to our model, the total cost after 26 years of using only vaccination
control in Africa is more than twice as costly as controlling using both forms of control. Therefore,
had both vaccination and quarantine/isolation controls been applied during the 1980-2005 measles
outbreak in Africa, then, not only would the epidemic been better controlled, it would have been
controlled at a much lower cost.

4 Conclusion

An analysis of an SIR model in the presence of multiple controls is studied. Vaccination only
and isolation only have been studied with varying number of partitions. The results showed that
dual controlling served to minimize the cost and the number of infectives over a specified finite time
horizon better than relying on only one control. Numerical results and a case study on the measles
outbreak in Africa was presented and analyzed.
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