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 ABSTRACT 

                      Orthogonal block designs for Scheffé’s quadratic model in three and four 
components were given by John (1984), Czitrom (1988, 1989, 1992), Draper et al. (1993), 
Chan and Sandhu (1999) and Ghosh and Liu (1999). Singh (2003) considered optimal 
orthogonal designs in two blocks for Darroch and Waller’s (1985) quadratic mixture model in 
three and four components. Prescott (1998) suggested nearly optimal orthogonally blocked 
designs for a quadratic mixture model in q components. Husain and Parveen (2016) obtained 
F- square based four component D-, A-, and E- optimal orthogonal block designs for an 
additive quadratic mixture model. In this paper, we have obtained Latin square based D-, A- 
and E-optimal and nearly optimal orthogonal designs in three components for the model 
presented by Husain and Parveen (2016).  
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1. INTRODUCTION 

In mixture experiments, the measured response is assumed to depend on the proportions of the 
ingredients and not on the total amount of the mixture. Scheffé (1958) introduced models and 
designs for experiments with mixtures. In many practical situations, extraneous factors known 
as process variables are present. Scheffé (1963) discussed the problem of mixture experiments  
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involving process variables. These variables do not form any physical portion of the mixture 
but their levels may affect the response(s) of interest. It becomes necessary to use blocking to 
deal with mixture experiments involving process variables. Orthogonal blocking facilitates 
estimation of the parameters of the mixture components independently of the estimation of the 
parameters of the process variables. In such type of experiments, the proportion of a mixture of 
q (≥2) components may be expressed as a q-vector x = (x1, x2, . . ., xq) in the (q-1) dimensional 
simplex Sq-1. 

                   Sq-1= {(x1, x2,..., xq) : 1 ix , xi ≥ 0 (i=1, 2,..., q)}                                   (1.1)   

Nigam (1970, 1976) obtained conditions for the orthogonal blocking of blends for Scheffé’s 
quadratic model and constructed designs satisfying those conditions. John (1984) gave simple 
conditions for orthogonal blocking of blends for the Scheffé’s quadratic model and presented 
designs based on Latin squares. Czitrom (1988, 1989, 1992) and Draper et al. (1993) studied 
mixture designs for three and four components in orthogonal blocks for Scheffé’s quadratic 
model. Prescott et al. (1993) studied mixture designs for five mixture components. Chan and 
Sandhu (1999) obtained A- and E-optimal orthogonal block designs for three component 
mixture experiments using the class of designs proposed by John (1984). Aggarwal et al. 
(2002) obtained D-, A- and E-optimal orthogonal block designs for Becker’s (1968) model in 
three and four components. Singh (2003) obtained optimal orthogonal designs in two blocks 
for Darroch and Waller’s (1985) quadratic mixture model in three and four components. 

Optimal designs are obtained by selecting suitable pairs of Latin squares known as mates. 
Barring the centroid points, these designs consist of binary blends of mixture components and 
hence are not pure mixtures in the real sense. Practical implication may require at least 
minimum proportion of each ingredient to be physically present in the mixture. Prescott (1998) 
presented an interesting idea of nearly optimal block designs to meet this requirement. Prescott 
(1998) obtained three and four component nearly D-optimal orthogonal blocked designs 
without affecting the orthogonality of the designs. Nearly optimal designs are obtained by 
reparametrisation of each component. This method of shrinking the optimal design towards the 
centroid yields an alternative nearly optimal design comprising of pure mixtures. 

In this paper, we have considered the class of design proposed by John (1984) to obtain D-, A- 
and E-optimal and nearly optimal orthogonal block designs for the mixture model presented by 
Husain and Parveen (2016).  

  

2. BLOCKING CONDITIONS 

 Scheffé (1958) proposed the following quadratic model y(x, z).   

y(x, z) = uj
qji

iiji

q

i
i xxx   

1

       i, j = 1, 2, ……, q    i ≠ j                                            (2.1)                        
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Husain and Parveen (2016) considered the following additive quadratic mixture model given in 
(2.2) 

η (x, z) = ujii

q

i

q

j
iji

q

i
i exxxx 

 

)(
1 11


 
            i, j = 1, 2,..., q    i  < j                                  (2.2) 

The above model is additive in the mixture blends and is specifically useful in situations when 
the product of the components with the inter differences between various components affects 
the response of interest.  These models are beneficial in the formulation of new drugs where the 
interactions between various drugs is to be studied. In particular, for three components model η 
(x, z) reduces to  
η (x, z)  = )()()( 322233111321112332211 xxxxxxxxxxxx                    (2.3)                                       

Nigam’s (1970, 1976) orthogonal blocking conditions were limited by some unnecessary 
restrictions which were removed by John (1983, 1984)  who used Box and Hunter’s (1957) 
orthogonality conditions and presented blocking conditions for Scheffé’s quadratic model. Two 
or more blocks of blends are orthogonal if the least squares estimate of the blending 
coefficients of the fitted model are uncorrelated to the least squares estimate of the coefficients 
of terms involving the process variables. Husain and Parveen (2016) obtained the following 
orthogonality conditions for the model η (x, z). 

 i
k

ik ux                                  For each block;   i = 1, 2, . . . , q 

                                                                                                                                                       

ijjkik
k

ik uxxx  )(                  For each block;   i, j = 1, 2, . . ., q,   i < j                         (2.4) 

where xik is the value of xi for the kth blend in a block and the u’s are constants. The 
summations are extending over all the blends in a given block. 

The following are the orthogonality conditions for three component mixtures. 

3. REPARAMETRISATION OF THE COORDINATE SYSTEM 

Prescott (1998) suggested raparametrisation of the coordinates in order to modify the optimal 
designs so that some or all of the runs used in the experiment include a minimum proportion of 
each mixture ingredient. For q = 3, the reparametrisation presented by Prescott (1998) for a 
point P (a, b, c) with  a ≥ b ≥ c takes the form of one shrinkage. The coordinates of O are (1/3, 
1/3, 1/3) and the coordinates of Q are (f, 1-f, 0) which are obtained by extending the line OP to 
the edge of the simplex. 

If    
s

s

QP

PO 


1
 i.e., P is situated at a proportion s along the line QO, then by simple geometry 
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3
)1(

s
fsa   

3
)1)(1(

s
fsb   

 
3

s
c                                                                                                                                                  (3.1) 

Now the coordinates of point P can be shown in terms of f and s, where f identifies the point Q 
on the edge of the simplex and s is a shrinkage parameter which moves Q towards the centroid 
O. 

 

                                

              Fig. 3.1 Reparametrisation of P from (a, b, c) with a ≥ b ≥ c to (f, s) 

4. THREE COMPONENT MIXTURES 

For three component mixtures seven distinct runs are required to estimate all the parameters in 
(2.3). A design with two blocks is required for a single process variable at two levels. If the 
process variable is represented by Z, then we may set Z = -1 in one block and Z = +1 in the 
other block. John (1984) proposed the class of design given in (4.1) for the Scheffé’s quadratic 
model.  
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The design consists of seven distinct runs arranged in two blocks B1 and B2. Here a, b and c are 
numbers between 0 and 1 and their sum is unity. These restrictions imply that (a, b, c) must lie 
on or inside a triangular simplex S2. These two blocks are based on orthogonal Latin squares  
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with an added observation at the centroid to remove singularity. Using the same class of 
design, Czitrom (1988) obtained D- optimal orthogonal block design and Chan and Sandhu 
(1999) obtained A- and E- optimal orthogonal block design for Scheffe’s quadratic model in 
three components. Singh (2003) used this class of design to obtain D-, A- and E- optimal 
orthogonal block designs for Darroch and Waller’s quadratic model. In this paper, we use this 
class of design to obtain D-, A- and E- optimal orthogonal block designs for the model (2.3). 

For the model (2.3), the following blocking conditions are satisfied for the two blocks B1 and 
B2 given in (4.1).  

3

1
321  cbauuu  

cabcabcbauuu  222
231312                                                                           (4.2) 

Hence the two blocks in (4.1) are orthogonal and we need to consider the matrix X′X only in 
order to derive the optimal designs. The matrix X′X for the additive quadratic model (2.3) is 

                       X′X 
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
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
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FIHECD

IFGEDC

HGFDEC

EEDABB

CDEBAB

DCCBBA

                                                           (4.3)

 

 where, 

   A 222 222
9

2
cba   

   B bcacab 222
9

2
  

   C )()()()()()( 222222 bccacccbbcaaabbbaa   

  D )()()()()()( bcacacbccabbcbaacbabcaab   

  E )()()()()()( bcbcacacccbbccaaababbbaa   

 
222222222222 )()()()()()( bccacccbbcaaabbbaaF               
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))((2))((2))((2 222 bcacccbabbcabaaG      

)()(

)()()()()()()()())((

bcccaa

bccabbcaccbbaccbaacbbbaacaababH





)()(2)()(2))((2 bccbaaaccabbcbcaabI                                                      (4.4) 

4.1. THREE COMPONENT OPTIMAL DESIGNS 

In order to obtain D-, A- and E-optimality for model (2.3), we need to find the values of a, b 
and c that maximize |X′X|, minimize T= trace (X′X)-1 and maximize the minimum of the 
eigenvalues of X′X, respectively. The expressions for |X′X| and T= trace (X′X)-1 are given in 
(4.5) and (4.6), respectively. However, the expressions for the eigenvalues are very lengthy and 
hence not presented here. 

|X′X| = 2222444 )()()()(48 cbcacbabacbcaba                                              (4.5) 

T = T1/T2 

T1= 
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)81146219()8140139(2)811012(8)8110(
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5334244234222

4242526782422
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T2 = 2222222 ))(()()()(36( cbacbcbacbcaba                                                     (4.6) 

We observe that |X′X| = 0 when a = b or b = c or c = a. Moreover |X′X|, T and eigenvalues are 
symmetric functions of a, b and c. Hence, we obtain the same results for a = 0, b = 0 and         
c = 0. Here we consider the case c = 0. So we need to find the values of a and b that maximize 
|X′X|, minimize T and maximize the minimum of the eigenvalues λi (i= 1, 2, ..., 6). Also since 
a+b=1, on substituting b=1 - a we obtain |X′X|, T and the eigenvalues λi (i= 1, 2, ..., 6) as 
functions of a alone. We have obtained different values of |X′X|, T and λ1 for a ϵ [0, 1]. Their 
graphs are shown in Figure 4.1. The design matrix X′X for c = 0 is as given in (4.3), where 
now 
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22 22
9
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baA   

abB 2
9

2
  

)()( 2323 abbbbaaaC   

22 abbaD                                                                                                      

)()( ababbbaaE    

224224 )()( abbbbaaaF   

)(2)(2 33 abbbaaG    

)()( 22 abbabbaaH   

222 baI                                                                                                                                           (4.7) 

We have obtained the expressions for |X′X|, T and λi (i= 1, 2,..., 6). The expressions for the  
eigenvalues are very lengthy and hence not discussed here. The expressions for |X′X| and T are 
given in (4.8) and (4.9), respectively.   

|X′X|= 222444 )()(48 bababbaa                                                                                    (4.8)  
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                       Figure.4.1 Graphs of |X′X|, T and the eigenvalues λ1 and λ2 against a.  
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1. |X′X| = 0 when a = 0, 0.5 and 1. 
2. The curve of |X′X| is an m- shaped curve. Its maximum (= 0.00120092) is attained 

when a = 0.168497, 0.831503. 
3. T attains its minimum (= 74.7588) when a = 0.228141, 0.771859 
4. We observe that λ2 > λ1 for a ϵ [0, 1]. Therefore λ0 = λ1, where λ1 is an m- shaped curve 

with λ0 = 0 when a = 0, 0.5 and 1. Thus λ0 attains its absolute maximum (=0.0204984) 
when a = 0.2273 and a = 0.7727. 

 The D-, A- and E-optimalities obtained on all the boundary points a = 0, b = 0 and c = 0 are 
the same. Table 1 presents the numerical values of the design parameters for the three 
component mixtures for Scheffé’s (1958) quadratic mixture model, Darroch and Waller’s 
(1985) quadratic model and the additive quadratic mixture model (2.2). 

Table 1: The numerical values of the design parameters for three component mixtures. 
Optimality 

criteria 
Scheffe’s quadratic 

model 
Darroch and Waller’s 

quadratic model 
Additive quadratic mixture 

model 

  a               b            c a                b                c    a                 b              c 

D-optimality 0.16850  0.83150    0 0.16850    0.83150      0   0.1685        0.83150      0 

A-optimality 0.18333  0.81667    0 0.2522      0.7478        0 0.228141    0.771859    0 

E-optimality 0.15457  0.84543    0 0.2794      0.7206        0 0.2273        0.7727        0 

 

5. THREE COMPONENT NEARLY OPTIMAL ORTHOGONALLY BLOCKED      

DESIGNS 

In this section, we obtain nearly optimal designs based on Latin squares for the additive 
quadratic mixture model (2.3). The design shown in (4.1) was proposed by John (1984) and 
used by Czitrom (1988) for D- optimality and Chan and Sandhu (1999) for A- and E- 
optimality. We now shrink John’s (1984) design towards the centroid by using the 
transformation (3.1) as suggested by Prescott (1998).  

For the model (2.2), the same form of |X′X| as the one given in (4.3) is obtained. The general 
form of |X′X| is maximized at the point b = a, 1 – a for which |X′X| transforms to the 
following:                                                

|XꞌX|0 = 222444 ))1()1(()21()1(48 aaaaaaa                                                         (5.1) 

This takes its maximum value of 0.00120092 at a = 0.168497, 0.831503. With the 
reparametrisation of the coordinates (a, b, c) for the points in this design, the form of the  
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general determinant in terms of f and s is a simple reduction in scale towards the centroid by a 
factor s and is given in (5.2).   

 |XꞌX| = 16222444 )1())1()1(()21()1(48 sfffffff                                       (5.2)      

|X′X| is a strictly decreasing function of s as s→1 and for any fixed value of s, |X′X| is 
maximised for f = 0.168497, 0.831503. Thus a nearly optimal design is obtained by shrinking 
the optimal design towards the centroid. The D- criterion is D = |X′X|1/p, where p is the number 
of parameters.  Efficiency of the nearly optimal design, in terms of D- criterion is  

                 D-Efficiency =   |X′X|1/p / |X′X|01/p × 100 percent                                                  (5.3) 

This reduces to a simple form (1 - s)16/7 × 100, which is shown below for different values of s. 
Table 2 presents the efficiency of the nearly D-optimal design for the additive quadratic 
mixture model (2.3). Note that the D-efficiency of three component mixture design obtained 
for the additive model (2.3) is the same as that obtained by Prescott (1988) for Scheffé’s 
quadratic model.  

 Table 2: Efficiency of the nearly D-optimal design for the Additive quadratic mixture model 
(2.3)        

 

 

Table 3 presents the nearly D-optimal orthogonal block design with f = 0.1685 and s = 0.05 for 
the additive quadratic mixture model (2.3).  

              Table 3: Nearly D- optimal orthogonal block design with  f = 0.1685 and s = 0.05 for  the                    
Additive quadratic mixture model  (2.3). 

B1 B2 
0.1767       0.8065     0.0167 
0.8065       0.0167     0.1767 
0.0167       0.1767     0.8065 
0.3333       0.3333     0.3333 

0.1767     0.0167      0.8065 
0.8065     0.1767      0.0167 
0.0167     0.8065      0.1767 
0.3333     0.3333      0.3333 

 

Every blend used in this shrunken nearly optimal design uses a proportion of all the three 
ingredients and so are true mixtures. 

 

      s   D-Efficiency
    0.05 88.9 
    0.10 78.6 
    0.15 69.0 
    0.20 60.0 
    0.25 52.8 
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Equation (4.5) represents the general form of T = trace (X′X)-1 for the design shown in (4.1).  
Minimum occurs at a = 0.228141, b = 1 – a and c = 0 for which the form of T= trace (X′X)-1 is 
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T      (5.4)                         

With the reparametrisation (3.1) of the of the coordinates (a, b, c) for the points in this design, 
the general form of the T = trace (X′X)-1 in terms of f and s is 
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T           (5.5)                       

 
We get T as a function of f alone by putting different values of s. We obtain the min T at s = 0 
and f = 0.228141. Chan and Guan (2001) gave the following formula for obtaining efficiency 
of the A- Optimal designs. 

A-efficiency = T0/ Min (T) ×100.                                                                                          (5.6) 

where T0  is the minimum T obtained by substituting optimal f in original T. From Table 4 we 
observe that with a little loss in A-efficiency we obtain a true mixture which contains some 
proportions of all the ingredients.  

               Table 4: Efficiency of the Nearly A-optimal design against the shrinkage parameter s for the                        
Additive quadratic mixture model (2.1). 

    s                 Opt f     Min(T)       T0 A-efficiency 
   0      0.228141, 0.771859    74.7588   74.7588       100 
   0.05      0.227918, 0.772082    91.1149   74.7589       82.04 
   0.1      0.227713, 0.772287    112.372   74.7593       66.53 
   0.2      0.227361, 0.772639    178.009   74.7603       41.99 

 

Table 5: Nearly A-optimal orthogonal block design with f = 0.227918 and s = 0.05 for the                     
Additive quadratic mixture model (2.3) 

 

 

 

B1 B2 

0.233188     0.750144      0.016667 
0.750144     0.016667      0.233188 
0.016667     0.233188      0.750144 
 0.33333       0.33333        0.33333 

0.233188       0.016667      0.750144 
0.750144       0.233188      0.016667 
0.016667       0.750144      0.233188 

   0.33333         0.33333        0.33333 
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The efficiency of E-optimal design is obtained by the following formula. 

E-efficiency = Abs {Max (λ0)}/ Abs {Max (λ0 )}0× 100                                                    (5.7) 

We have λ0 = min (λ1, λ2), λ0  attains  its absolute maximum (= 0.0204984) at c = 0, b = 1-a, a, 
where a = 0.2272.. By employing transformation (3.1) we get the eigenvalues in terms of f and 
s. The expressions for the eigenvalues are very lengthy and hence not discussed here. 

Table 6: Efficiency of the nearly E-optimal design against the shrinkage parameter s for the         
Additive quadratic mixture model (2.3) 

     s        Opt f Abs Max ( λ0 ) Abs{Max (λ0 )}0 E- efficiency 
    0    0.22728, 0.772715   0.0204984   0.0204984     100 
    0.05    0.22763, 0.772368   0.0166607   0.0204983     81.27 
    0.1    0.22797, 0.77203   0.0133896   0.0204980     65.32 
    0.2    0.22866, 0.771344   0.0083165   0.0204968     40.57 
 

                Table 7: Nearly E-optimal orthogonal block design with f = 0.22763 and s = 0.05 for the     
Additive quadratic mixture model (2.3) 

                          B1                          B2 

0.23291612   0.75041722   0.01666667 
0.75041722   0.01666667   0.23291612 
0.01666667   0.23291612   0.75041722 
0.33333         0.33333         0.33333 

  0.23291612    0.01666667   0.75041712 
  0.75041722    0.23291612   0.01666667 
  0.01666667    0.75041722   0.23291612 
  0.33333          0.33333         0.33333 

 

We see from tables 6 and 7, that when f = 0.22763 and s = 0.05, then with a little loss in E-
efficiency, we get  true mixtures which contain some proportion of all the ingredients. 

5.1. DESIGNS USING TWO PAIRS OF SQUARE FOR q = 3   

Table 7: Orthogonal block design with two squares for q = 3 

Run       x1            x2          x3 Run         x1               x2           x3 
1            a           b          c 
2            b           c          a 
3            c           a           b 
4            a׳          c׳          b׳ 

5            b׳          a׳          c׳ 
6            c׳          b׳          a׳ 

7           1/3        1/3        1/3 

8           a              c             b 
9           b              a             c 
10          c              b             a 
11          a׳             b׳            c׳ 
12          b׳             c׳            a׳ 
13          c׳             a׳            b׳ 
14         1/3          1/3          1/3 

 

Prescott (1998) suggested that by adding extra Latin squares to each block we may obtain more 
flexible designs while maintaining the orthogonality. For the design shown in Table 7, the 
values in the second square need not be the same as those in the first square for the 
orthogonality conditions to be satisfied. Now, we consider the case when they are same. 
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5.1.1 Design formed by shrinking both the pairs of Latin squares  

Consider the case when both the pairs of Latin squares in Table 7 have same values i.e. aꞌ = a, 
bꞌ= b, cꞌ = c and as a result we obtain a symmetric design. We shrink both pairs of Latin 
squares towards the centroid of the design. By reparametrisation of the coordinate system as 
done in section (5), nearly optimal designs are constructed. The form of the general 
determinant obtained by shrinking both pairs of Latin squares is 

|X′X| = 2222444 )()()()(1536 cbcacbabacbcaba                             (5.8) 

This form of |X′X| is 36 times the corresponding determinant obtained for the one square 
design given in (4.1). D-optimal designs provides maximum of |X′X| for the additive model  
(2.3) on the boundary of the simplex at a = f = 0.831503, b = 1-f = 0.168497 and c = 0. These 
designs have the same efficiencies relative to the D- optimal design as the one square design 
shown in (4.1).On shrinking both the pairs of Latin squares towards the centroid, we obtain the 
minimum value of T (44.4981) for s = 0 at a = f = 0.212427, b = 1-f = 0.787573, c = 0. The 
efficiencies of the nearly A-optimal design by shrinking both the Latin squares are given in 
Table 9. 

            Table 9: Properties of the nearly A-optimal design with shrinkage parameter s applied to    

             design 5.2.1 

      s             Opt f    Min T         T0 A-efficiency 
     0 0.212427, 0.787573   44.4981    44.4981        100 
     0.05 0.212167, 0.787833   54.1133    44.982        82.2 
     0.1 0.211926, 0.788074   66.6112    44.4985        66.80 
     0.15 0.211705, 0.788295   83.0982    44.4989        53.5 
     0.2 0.211504, 0.788496   105.211    44.4994        42.29 

 

We have obtained nearly E-optimality (= 0.0354362) at a = f = 0.206354, b = 1-f = 0.793655,   
c = 0. Again by reparametrisation, we get the general form of the minimum eigenvalue i.e., λ1 

in terms of f and s. Table 10 provides the maximum of the minimum eigenvalues for some 
specific values of s and the respective efficiencies of the nearly E-optimal designs. 

Table 10: Properties of the nearly E-optimal design with shrinkage parameter s applied to          

                design 5.2.1  

  s            Opt f      Abs Max{ λ0} Abs{Max{ λ0}}0 E-efficiency 
  0 0.206354, 0.793655     0.0354362     0.0354362      100 
  0.05 0.206931, 0.793069     0.0288434     0.0354357      81.3 
  0.1 0.207465, 0.792529     0.0232069     0.0354341      65.49 
  0.15 0.207964, 0.792036     0.0184345     0.0354318      52.02 
  0.2 0.208434, 0.791565     0.0144364     0.0354289      40.74 
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5.1.2. Design formed by shrinking one pair of Latin squares 

Prescott (1998) constructed nearly D-optimal design for Scheffe’s quadratic model by 
shrinking only one Latin square in each block of design as shown in Table 7. We use it to 
construct nearly D-, A- and E-optimal designs for the additive quadratic mixture model (2.3). 
When only one Latin square is shrunk towards the centroid of the design, other Latin squares 
are left on the edge of the simplex. As a result, the design consists of 13 distinct blends. It 
contains some binary blends and some three ingredient blends covering the simplex region 
more uniformly. 

The determinant of X′X for the design (5.1.2) is very lengthy and hence not discussed here. 
Table 11 shows the optimum f, D = |X′X|1/7, D0 = |X′X|01/7, and the efficiency of the nearly D- 
optimum designs for selected values of the shrinkage parameter s. 

Table 11: Properties of the nearly D-optimal design with shrinkage parameter s applied to  
design 5.1.2. 

 s       Opt f     |X′X|  D = |X′X|1/7 D0 = |X′X|01/7     D-efficiency 
0 0.168497, 0.831503 0.0384296  0.627783    0.627783         100 
0.05 0.168173, 0.831825 0.0264574  0.595182    0.627782         94.80 
0.1 0.167142, 0.832855 0.0192842  0.568891    0.627767         90.62 
0.15 0.165323, 0.834677 0.0149066  0.548345    0.627698         87.35 
0.2 0.162654, 0.837344 0.0121845  0.053277    0.627494         84.90 
 

We have obtained nearly A-optimal design by shrinking only one Latin square towards the 
centroid. On employing the transformation (3.1), we get a very lengthy expression for the 
general form of T in terms of f and s. T is minimised for f = 0.212427, 0.787573 at s = 0. Table 
12 provides the properties of nearly A-optimal design against the shrinkage parameter s. 

Table 12: Properties of the nearly A-optimal design with shrinkage parameter s applied to 
design 5.1.2. 

    s             Opt f Min T          T0      A-efficiency 
   0     0.212427, 0.787573        44.4981       44.4981           100 
   0.05     0.212647, 0.787352        48.5342       44.4982           91.68 
   0.10     0.213579, 0.786421        52.0448       44.5002           85.50 
   0.15     0.215118, 0.784882        54.8983       44.5093           81.07 
   0.20     0.217048, 0.782952        57.0927       44.5311           77.97 
 

For the design 5.1.2, we have obtained nearly E-optimal design against the shrinkage parameter 
s for the additive quadratic mixture model (2.3). Table 13 provides the properties of the nearly 
E-optimal designs with shrinkage parameter s. 
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Table 13: Properties of the nearly E-optimal design with shrinkage parameter s applied to    
design 5.1.2. 

 s            Opt f   Abs Max{λ0} Abs{Max{λ0}}0       D-efficiency 
0  0.206354, 0.793646    0.0354362    0.0354362           100 
0.05  0.207177, 0.792828    0.0323175    0.0354351           91.20 
0.10  0.209033, 0.790973    0.0299707    0.0354241           84.60 
0.15  0.211743, 0.788256    0.0282405    0.0353876           79.80 
0.20  0.214945, 0.785057    0.0269693    0.035314           76.36 
 

6. CONCLUSIONS   

In this paper, we have obtained the D-, A- and E-optimal and nearly optimal orthogonally 
blocked designs for Husain and Parveen’s (2016) additive quadratic mixture model in three 
components for Latin square based designs. Three component D-, A- and E-optimal designs 
are obtained at a = 0.168497, 0.228141 and 0.22728, respectively. We observe from Table 1 
that the D-optimality obtained for the model (2.3) is at the same points as obtained by Czitrom 
(1988) for Scheffé’s quadratic model and Singh (2003) for Darroch and Waller’s quadratic 
mixture model. 

Practically, we need designs in which at least the minimum proportion of each ingredient is 
available and the optimal designs consist of only binary blends with the exception of the 
centroid. Following Prescott (1998), we have shrunk the optimal designs towards the centroid 
in order to obtain pure mixtures. Nearly D-, A- and E-optimal designs are obtained at a = f = 
0.168497, 0.228141 and 0.22728. Further by shrinking only one Latin square in each block 
towards the centroid, as in Design 5.1.2, higher efficiency as compared to Design 5.1.1 is 
achieved. D-, A- and E-efficiencies for s = 0.05 are 88.9%, 82.2% and 81.3%, respectively for 
the Design 5.1.1 while for the Design 5.1.2 the corresponding values are 94.80%, 91.68% and 
91.20%, respectively. Note that the D-efficiency for the single Latin square based designs 
presented in section 5 is the same as that obtained for the design 5.1.1. The design 5.1.2 is also 
more efficient as compared to the design presented in Section 5 for John’s (1984) single Latin 
square based design given in (4.1). 
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