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Abstract. L(3, 1)-labeling is a particular model for frequency assignment problem of L(h, k)-labeling. An L(3, 1)-labeling
of a graph G is a function f from the set of vertex V (G) to the set of positive integers for any two vertices u, v where label
difference |f(u) − f(v)| ≥ 3 for distance d(u, v) = 1 and label difference |f(u) − f(v)| ≥ 1 for distance d(u, v) = 2.
In L(3, 1) labeling λ is the smallest positive integer which denotes the maximum label used. In this article, we consider some
simple graphs like cycle, path, complete graph, complete bipartite graph, star graph, bi-star graph and tree etc. To find the bounds
of λ for L(3, 1)-labeling. In this arti1cle, we obtained the boundary conditions for λ on the basis of maximum degree of G.
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1. Introduction

One of the most important area in graph theory is
graph labeling, which has various applications in dif-
ferent areas like coding theory, x-ray crystallography,
radar, astronomy, circuit design, communication net-
work, addressing, data base management, radio fre-
quency assignment etc. In recent era assignment of ra-
dio frequency become a very critical problem because
request of frequency increases day by day due to in-
stallation of more stations. Interference is a basic prob-
lem to assign the frequency in different stations, two
neighbour stations having same frequency perform a
direct collision whereas station nearby the neighbour
station performs hidden collision.

There exist two special type of collisions in the graph
labeling problems namely direct collisions and hidden
collisions. In direct collisions a station and its neigh-
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bour must have different frequencies whereas when
a station received same frequency from its neighbour
known as hidden collision. Bertossi et al. [1,2] studied
the case of avoiding hidden collision in the multi hop
radio networks. To avoid collisions from its neighbour
and next to neighbour station we require distinct label-
ing.

A communication network is composed of station or
node, each of which has computing power and can
transmit and receive messages over communication
links, wireless or cabled. The basic network topologies
include fully connected, mesh, star, ring, tree, bus. A
single network may consist of several interconnected
substation of different topologies. It might be useful to
assign each user terminal a node label subject to the
constraint that all connecting edges (communication
links) receive distinct labels.

A graph theory model of frequency assignment prob-
lem introduced by Hale[4] in 1980 as vertex coloring
problem. Vertices of the graph denoted as station and
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edges denoted as proximity of the station

Robert in 1991 introduced a direction in frequency
assignment problem in which station are consider
very close or close. Very close station are those hav-
ing adjacency between them whereas close indicates
those which are at distance two apart. Griggs and Yeh
[3] defined L(2, 1) labeling of a graph G = (V,E)
where f is a function which assigns label to every
u, v ∈ V from the set of positive integer such that
|f(u)−f(v)| ≥ 2 if d(u, v) = 1 and |f(u)−f(v)| ≥ 1
if d(u, v) = 2 . Now a days L(2, 1) labeling is ap-
plied on intersection graphs and cartesian product of
cycles,paths etc[6-9,12,13].

Another labeling technique also present to solve var-
ious type of problem is L(0, 1)-labeling. In L(0, 1)-
labeling of a graph G = (V,E) where f is a func-
tion which assigns label to every u, v ∈ V from the
set of positive integers such that |f(u) − f(v)| ≥ 0 if
d(u, v) = 1 and |f(u) − f(v)| ≥ 1 if d(u, v) = 2.
Still so many applications are there in L(0, 1)-labeling
[5,10,11] applied on interval graphs, cactus graphs,
permutation graphs, etc.

In a particular case when interference become high
between two adjacent stations then we need to as-
sign frequency difference more than two and for next
to neighbour cases difference should be more than
or equal to one. In L(3, 1)-labeling of a graph G =
(V,E) where f is a function which assigns label to ev-
ery u, v ∈ V from the set of positive integer such that
|f(u)−f(v)| ≥ 3 if d(u, v) = 1 and |f(u)−f(v)| ≥ 1
if d(u, v) = 2. The L(3, 1) labeling number, λ(G) of
G is the smallest number λ such that G has an L(3, 1)
labeling with λ as the maximum label.

In this paper, we apply L(3, 1)-labeling technique to
label the graphs, cycles, paths, complete graph, com-
plete bipartite graph, star graph, bi-star graph, tree etc.

2. Preliminaries

Definition 1. Let G be a graph with set of vertices V
and set of edges E. Let f be a function f : V → N ,
where f is an L(3, 1)-labeling ofG if, for all u, v ∈ V ,
|f(u)−f(v)| ≥ 3 if d(u, v) = 1 and |f(u)−f(v)| ≥ 1
if d(u, v) = 2.

Definition 2. The difference between maximum and
minimum values of f for all possible f is called span
of the labeling, and it is denoted by λ3,1(G) or sim-
ply λ(G) or λ. positive integer λ to be used to label a
graph G by L(3, 1) labeling.

Definition 3. A complete graph is simple undirected
graph in which every pair of distinct vertices is con-
nected by a unique edge. A complete graph with n ver-
tices is denoted by Kn. Here all vertices u, v ∈ V ,
(u, v) ∈ E .

Definition 4. A graph G is called a complete bipartite
graph if it vertices can be partitioned into two subsets
V1 and V2 such that no edges has both end points in the
same subset, and every possible edge that could con-
nect vertices in different subsets is part of the graph. A
complete bipartite graph with |V1| = m and |V2| = n
is denoted by Km,n. A star Sn is a complete bipartite
graph K1,n.

Definition 5. A path is a trail in which all vertices (ex-
cept possibly the first and last) are distinct. A trail is a
walk in which all edges are distinct. A walk of length
k in a graph is an alternating sequence of vertices
and edges, v0, e0, v1, e1, v2, ..., vk−1, ek−1, vk which
begins and ends with vertices. If the graph is directed,
then ei is an arc from vi to vi+1.

Definition 6. A simple graph with n vertices (n ≥ 3)
and n edges is called a cycle graph if all its edges form
a cycle of length n. If the degree of each vertex in the
graph is two, then it is called a cycle graph, denoted
by Cn

Definition 7. LetG be a connected acyclic graph then
G is known as tree. G is called an n − ary tree if G
is a rooted tree such that the root has degree n and all
the other vertices have degree n+ 1.

3. Labeling of Some Special Classes of Graphs

3.1. Paths

First, we consider P2. We start label one vertex by
0, so the other vertex must be at least 3. So λ(P2) = 3
(see figure 1).

Proposition 1. λ(P3) = 4.

Proof. : For P3, we can label the leftmost vertex 0, the
middle vertex 4, and the right most vertex 1, accord-
ing to figure 1. So, λ(P3) ≤ 4. To label P3, we need
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Fig. 1. Path with 2 vertices

0, 1, 2, 3, 4 numbers to be use to label the path with 3
vertices. Labeling can’t be possible by the use of just
0, 1, 2, 3. Label 1 or 2 couldn’t be use anywhere oth-
erwise it violets the adjacency rules for L(3, 1) label-
ing. So we have only 0 and 3 to label three vertices.
By pigeon hole principle, two of these vertices must
receive the same label, which necessarily violets the
condition.

Fig. 2. Path with 3 vertices

Lemma 1. If H is a subgraph of G, then λ(H) ≤
λ(G).

Proof. : Let λ(G) = m with corresponding label-
ing f : V (G) → 0, 1, ...,m. Then g : V (H) →
0, 1, ...,m, defined by g(v) = f(v) for all v ∈ V (H),
is a labeling of H that uses no label greater than m.
Thus λ(H) ≤ m = λ(G). The idea is we can use the
same labels we use on G to label the corresponding
vertices of H .

Proposition 2. λ(P4) = 4.

Proof. : Since P3 is a subgraph of P4, from our pre-
vious result we know λ(P4) ≥ λ(P3) = 3. Figure 2
shows we can label P4 with no label greater than 5.
Thus λ(P4) = 4 and the result follows.

Proposition 3. λ(Pn) = 5 for n ≥ 5.

Proof. : We have already shown λ(P4) = 4. Since P4

is a subgraph of P5, from our previous result we know
λ(P5) ≥ λ(P4) = 4. Figure 3 shows we can label P5

with no label greater than 5. Thus λ(P5) = 5.

Next we show λ(Pn) = 5 for n > 5. Let Pn be
a path with more than 5 vertices. Since P5 is a sub-
graph of Pn, we know λ(Pn) ≥ λ(P5) = 5. It is
clear from the figure 4 we can repeat the labels in
Pn(3, 0, 4, 1, 5, 0, 4, 1, 5, 0, 4, 1...). Thus λ(Pn) ≤ 4,
hence the proof.

λ(Pn) =


3 for n = 2

4 for n = 3 and n = 4

5 for n ≥ 5.

(1)

Fig. 3. Path with 4 vertices

Fig. 4. Path with 5 vertices

3.2. Cycle:

If we join the start vertex with the end vertex of a
path we get a cycle see figure 5.

Proposition 4. Let Cn be a cycle of length n. Then
λ(Cn) = 6 for all n ≥ 3 and n ∈ N .

Proof. : If n < 4, then it is easy to verify the result.
Thus suppose that n > 5. For all n > 5, Cn must
contain a P5 as a subgraph. Hence λ(Cn) ≥ λ(P5) =
5.

Now we are going to consider the L(3, 1) labeling
of cycle Cn. Let v0, v1, v2, ..., vn−1 be the vertices of
the cycle Cn where vi is adjacent to vi+1 and v0 is
adjacent to vn−1. The rule of labeling of cycle Cn are
given below.

1. If n ≡ 0(mod 3)

f(vi) =

0, i ≡ 0(mod 3);
3, i ≡ 1(mod 3);
6, i ≡ 2(mod 3)

(2)

2. If n ≡ 1(mod 3), and cycle with multiple of
4 vertices only for vn−4, vn−3, ..., vn−1 vertices,
rest will follow the rule (1).

f(vi) =


0, if i = n− 4;
4, if i = n− 3;
1, if i = n− 2 ;
5, if i = n− 1

(3)
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3. If n ≡ 2(mod 3), only for vn−2, vn−1, as fol-
lows.

f(vi) =

{
2, if i = n− 2;
5, if i = n− 1

(4)

Fig. 5. Cycle with 8 vertices

3.3. Complete graph

Consider the complete graph on n vertices, Kn.

Proposition 5. For complete graph Kn, λ(Kn) =
3n− 3

Proof. : Given Kn with vertices v1, v2, ..., vn, the
function f : V (G) → {0, 1, 2, ...3n − 3} defined by
f(vi) = 3i − 3 is a labeling of Kn. So, λ(Kn) ≤
3n−3. We claim we can’t labelKn with just the num-
bers 0, 1, 2, ..., 3n−4. Note that we have 3n−3 labels
that need to be assigned to n vertices. We can think
of this as n − 1 disjoint pairs of consecutive labels in
which n vertices must be placed. By the pigeon hole
principle, one of these pairs of consecutive labels must
contain two vertices. However, since these two vertices
are adjacent inKn, this violates the labeling condition.
Thus, λ(Kn) = 3n− 3.

3.4. Complete bipartite graph

Considering the Complete Bipartite Graph with two
set of vertices |V1| = m and |V2| = n denoted by
Km,n.

Proposition 6. For complete bipartite graph Km,n,
λ(Km,n) = m+ n+ 1.

Fig. 6. Complete graph with 5 vertices

Proof. : LetKm,n be the complete bipartite graph with
two set of vertices |V1| = m and |V2| = n. It is clear
that the vertices within a set is not connected, so each
vertex in a particular set is at distance 2 where as any
two vertices from different set are at distance 1. So if
we labeling a particular vertex set |V1| = m start with
a by following the rule of distance 2 remaining all ver-
tices take the label a+ 1, a+ 2, a+ 3, ..., a+m− 1.
Next we are going to label another vertex set |V2| = n,
which are connected at distance 1. We can start la-
bel by a + m − 1 + 3, because the vertex label with
a + m − 1 directly connected. Rest labeling proceed
with a+m−1+3+1, a+m−1+3+2, ..., a+m−1+
n+2. Now if we start labeling with 0 it will take min-
imum number of integer and it becomes m+n+1. So
λ(Km,n) = m+ n+ 1. This explanation is illustrated
in figure 7.

Fig. 7. Complete bipartite graph and its L(3, 1) labeling
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3.5. Star graph

A star graph actually a bipartite graph with K1,n,
denoted by Sn.

Proposition 7. For a star graph Sn, λ(Sn) = n+ 2.

Proof. : Star graph is a complete bipartite graph where
two set of vertices |V1| = 1 and |V2| = n.Therefore,
the result follows from proposition 6.

Fig. 8. Star graph

3.6. Bi-star graph

A bi-star graph we can obtain by joining the center
(apex) vertices of two K1,n by an edge, denoted by
Bn,n.

Proposition 8. For a bi-star graph Bn,n, λ(Bn,n) =

n+ 5.

Proof. : Bi-star graph is a two star graph whose apex
connected by an edge, we already proof that for a star
graph Sn, λ(Sn) = n + 2. So we have two K1,n

connected by an edge, we can label a single K1,n by
a + n + 2 that we have already shown in the proof
of star graph. Another end of the edge can get at least
a + n + 3 according to the rule of L(3, 1)-labeling. If
we start labeling by 0 it will take minimum labeling,
so λ(Bn,n) = n+ 3.

Fig. 9. Bi-star graph

3.7. n-ary tree

Basically a tree is a connected acyclic graph and an
n-ary tree is a tree having maximum of n children.

Proposition 9. For n-ary tree, λ(G) ≤ n+ 5.

Proof. : Let G = (V,E) be an n-ary tree.We can see
carefully that every induced subgraph of tree is a sun
graph. For a sun graph Sn, λ(G) = n + 2. From
the figure 9 we can see v0 is the root of the n-ary
tree, v1, v2, v3, ..., vn−1, vn all these are the adjacent
to the root vertex v0, so there will be at least 3 la-
bel difference. If we label the root vertex by a then
v1, v2, v3, ..., vn−1, vn will take the label a + 3, a +
4, a+ 5, ..., a+ n+ 1, a+ n+ 2. We have to find the
maximum label λ(G) so we can consider the highest
label node that is vn which is labeled by a+ n+ 2.
Let there exist another n adjacent vertices of vn are
vn+1, vn+2, vn+3, ..., v2n−1, v2n, only v0 is the vertex
which is at distance 2 obviously there should be at least
1 label difference. So we can repeat the label of all the
vertices which is adjacent to root vertex except vn. We
can label the vertices v2n by a+ n+ 5. Again we can
repeat all the above except the label of v2n for the all
the predecessor of v2n and the process will continue.
If we consider the value of a = 0 then it will attain the
minimum label and λ(G) ≤ n+ 5. Hence proof.

4. Conclusion

In this paper, we consider the L(3, 1)-labeling prob-
lem of some simple graphs and tree. The upper bound
of λ3,1 for path, cycle, complete graph, complete bi-
partite graph, star graph, bi-star graph and tree are pro-
vided. Basically L(3, 1)-labeling is a special form of
L(h, k)-labeling problem, in future we want to use this
technique to label the family of intersection graph to
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Fig. 10. n-ary tree

tune up the time complexity. Radio frequency assign-
ment problem with minimum use of frequency with the
restricted labeling like L(3, 1) is always inspire us to
achieve the better result.
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