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Abstract  
Interspecies or Intraspecies competition is a natural phenomena in the real world situation. Generally two or more 
species compete for resources, space, territory etc. living in the same environment. For two species only the 
strongest prevails, driving the other competitor to extinction. It leads one species to wins as its members are more 
suitable for finding or exploiting resources and an opposite relation happens to the other species. All these situations 
can be modeled and described in terms of nonlinear differential equations in the form of game theoretic competition 
model. The purpose of this paper is to analyze Lotka-Volterra inter-specific competition model based on the Logistic 
equation. Graphical representation of steady states of the model is used to describe the completion between two 
species. In this study, we investigate that this model is stable at three different steady states. It is shown that the 
stable phenomena can be useful in studying real-world behavior.  
 
Keywords: Mathematical model, Logistic equation, steady states, intra-specific competition, inter-specific 
competition. 
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1 INTRODUCTION 
In recent years, predator-prey models are arguably the most fundamental building blocks of the any bio-and 
ecosystems as all biomasses are grown out of their resource masses. Species compete, evolve and disperse often 
simply for the purpose of seeking resources to sustain their struggle for their very existence. Their extinctions are 
often the results of their failure in obtaining the minimum level of resources needed for their subsistence. Depending 
on their specific settings of applications, predator-prey models can take the forms of resource-consumer, plant-
herbivore, parasite-host, tumor cells (virus)-immune system, etc. Mathematical models in terms of ordinary 
differential equation (ODE) have been widely used to model physical phenomena, engineering systems, economic 
behavior, biological and biomedical processes. In particular, ODE models have recently played a prominent role in 
describing the dynamic behavior of predator-prey systems. Interspecies or Intraspecies competition models have 
been the subjects central discussions in ecological and biological systems. Among the competition models, Lotka-
Volterra inter-specific competition model occupies the top role to discuss the competitive behavior of the biological 
species which determines the present state in terms of past state and changes with the period of time. The 
competition models are used in forecasting of species growth rate, maximum and minimum consumption of 
resource, food preserving, environment capacities, and many others applications. The study of population 
phenomena or growth phenomena or competition between two species is really dominated problem in the biological 
system. Volterra (1926) first developed a competition model between a predator and a prey. In this paper, we have  
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studied a game theoretic  Lotka-Volterra prey-predator competition model and its solution with phase portraits and 
stability analysis in the equilibrium points. Then we consider two species competing with each other in a state of 
prey and predator. These two species compete for same resource or food or habitation etc. We have tried to find out 
the conditions of situations where one species dominates over the other and where they coexist. We use the steady 
states of the model to describe stability or instability. Finally we have discussed the two species competition model 
by the investigation of the steady states of the model and the stability of the model at those steady states. Further this 
paper gives an insight on how one species wins and another species dies. 
 

2 METHODOLOGY 
Methodology is the systematic, theoretical analysis of the methods applied to a field of study. It comprises the 
theoretical analysis of the body of methods and principles associated with a branch of knowledge. Typically, it 
encompasses concepts such as paradigm, theoretical model, phases and quantitative or qualitative techniques. 
 
2.1  Logistic Model 
The logistic model is a modification of the Malthusian model. It is also known as Verhulst model following 
according to the author P.F. Verhulst (1809-1849). Verhulst was a Belgian mathematician who introduced the model 
for human population growth in 1838. He referred to it as logistic growth; the equation given by him is called the 
logistic equation. We have exponential growth function as  

dy ry
dt

=                                                             (1) 

where, the proportional constant r  is called the rate of growth depending on whether it is positive or negative. Now 
using the initial condition 0(0)y y= , we obtain the following solution 

0 .= rty y e                                                            (2) 

From (2), we get three important decisions. 
i. When 0,r <  then ( ) 0.=y t  

i.e., in the long run, the population will be extinct. 
ii. When 0,r =  then 0( ) .=y t y  

i.e. constant population at the zero growth rate. 
iii. When 0,r >  then ( ) .= ∞y t  

i.e., in the long run, the population will be a great quantity. 
The last case makes the Malthusian model unrealistic for any long term prediction. Also from a biological point of 
view Malthusian model takes a parameter which represents the carrying capacity of the system. Carrying capacity k  
is the population level at which the birth and death rates of a species precisely match, resulting in a stable population 
over time. The general logistic equation is 

( )dy a by y
dt

= −                                                                    (3) 

Where a is called the rate of growth or decline, b is a positive constant, y is the population at time t . It can be 
written as 

 1dy ya yadt
b

 
 

= − 
 
 

  

1dy ya y
dt k

 ⇒ = − 
 

                                                                                    (4) 

 

https://en.wikipedia.org/wiki/Paradigm�
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where, the constant
ak
b

=  is called the carrying capacity of that biological environment. 

 
From (4), we get 

1dy yay
dt k

 = − 
 

 

.
1

dydt
yay
k

⇒ =
 − 
   

Taking Partial Fraction in the R.H.S, we get

 
1

1

dy
dy kdt

yay a
k

 
 
 ⇒ = +
 − 
 

 

[Integrating both sides]     

1 ln
1

yt c ya
k

 
 

⇒ + =  
 −
 

 

ln .
1

 
 

∴ = + 
 −
 

y at acy
k

                                                                                                         (5) 

Putting the initial condition 0 0( ) ,=y t y  we get 

0
0

0
ln ( )

1

y a t cy
k

 
 

= + 
 −
 

 

0
0

0
ln .

1

 
 

⇒ = − 
 −
 

yac aty
k

 

Putting the value of ac  in the equation (5), we get 

0

0

0

1
ln ( )

1

yy
k a t t
yy
k

  −    ⇒ = − 
  −    
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0

0 0

0

0
0

0

( )

( ) ( )1 .

a t ty key
k ya t t a t ty e e

y

−
⇒ =

 −− − −+ 
 

 

0 0

0

( ) .
( )1

∴ =
 −− −+  
 

ky t
k ya t te

y

                                                                                                   (6) 

This is the required solution of the logistic model. 
We can conclude the followings. 

(a) When the initial population is less than the carrying capacity i.e. 0 ,y k< the population increases until it 
becomes the number of carrying capacity. 

(b) When the initial population and carrying capacity are the same, then there is no increase or decrease in 
population. 

(c) When the initial population is more than the carrying capacity, then the population decreases with time and 
finally it will be the same population to the carrying capacity. 

 
Fig 1: The solution curve of (3.11) for different initial populations 0y with 01, 0 and 500.a t k= = =  

2.2 Lotka-Volterra Model 
The system of predator-prey is one of the well-known models which have been studied a lot. The Lotka-Volterra 
predator-prey system has been modeled by Lotka and Volterra to describe the chemical interactions and predator-
prey interactions respectively independently around 1926. See ([3], [6], [7], [14], [15], [18], [19], [21] and [23]) for 
further studies. We take the model as  

( ),= −
dx x a by
dt

                                                                (7) 

( ),= − +
dy y c dx
dt

                                                                (8) 

where , ,a b c  and d  are positive constants and x and y represent the abundances of prey and predator respectively. 
 
The assumptions of the model are: 
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i. The prey in the absence of any predation grows unboundedly in a Malthusian way; this is the ax  term in 
(7). 

ii. The effect of the predation is to reduce the prey’s per capita growth rate by a term proportional to the prey 
and predator populations, this is the bxy−  term. 

iii. In the absence of any prey for sustenance, the predator’s death rate results in an exponential decay, that is 
the cy− term in (8). 

 
The prey’s contribution to the predators growth rate is .dxy  It is proportional to the available prey as well as to the 
size of the predator population. The xy terms can be thought of as representing the conversion of energy from one 
source to another; bxy  is taken from the prey and cxy accrues to the predators. 
 
Let us first discuss the analytical solution of the model. 
 
Dividing (7) by (8), we get 

( )
( )

dx x a by
dy y c dx

−
=

− +
 

.
  ⇒ − + = −  

   

c ad dx b dy
x y

                                                                                                               (9) 

Integrating both sides of (9), we get 
ln . ln lnc x d x a y by λ− + = − + , where lnλ is an integrating constant. This is equivalent to 

ln . ln lnc x d x a y by λ− = − + +  
. .− −⇒ =c d x a byx e y e λ                                                                                                                                  (10) 

Now using the initial condition 0 0(0) , (0)x x y y= =  in (10), we get  

      

0

0

.
0

0

λ
−

−=
d xc

bya

x e
y e

 

0 0

0 0
( . )

. .λ +⇒ =
c a

d x by
x y

e
                                                                                                      (11) 

∴Putting the value of λ  in (10), we obtain 

0 0

. 0 0
( . ) .− −

+

 
=  

 

c a
c d x a by

d x by
x yx e y e

e
                                                                                      (12) 

This is the analytical solution of the system (7)-(8). The nonlinear behavior of prey and predator dynamics of (7) and 
(8) is shown in Fig. 2. 
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Fig. 2 Prey and predator dynamics of (7) and (8) for 1.3, .5, .7a b c= = =  and 1.6.=d  
 
A complete phase-plane diagram of the predator prey system is shown Fig. 3.  

Here, two isoclines 0dx
dt

= and 0dy
dt

= are drawn (the isoclines coinciding with the x- axis and y-axis have been 

omitted). The isoclines intersect in the neutrally stable state. Each curve completely determined by the initial state (

0x , 0y ) i.e. (1,3) . The integral curve is closed and we see that the populations are cyclic. 
 

 
Fig. 3: The solution curves in the phase plane of the system (7) and (8) for 0 1,x = 0 3,y = 1.3, .5, .7a b c= = =  and 1.6.=d  

 
Now in order to gain better understanding of the neutral stability of the original prey-predator system in which prey 
population have the property of self-regulation [9], we generalize the model (7) and (8) given by 

1

1 , = − −  + 
dx x xax by
dt k a x

                                                                                           (7a) 

1

,= − +
+

dy xcy dy
dt a x

                                                                                                    (8a) 
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where 
1

x
a x+

 reflects the number of prey consumed per predator and 1a  is a new parameter. 

 

Now for two pair of initial populations 0 0( .7, 3)x y= =  and 0 0( .2, 6),= =x y  the isoclines and phase portraits 
of two trajectories are shown in Fig. 4. 

 
Fig. 4: Solution curves in the phase plane of (7a) and (8a) for two pair of initial populations with 

11.3, .5, .7, 1.6, 1a b c d a= = = = =  and 3.=k  

From Fig. 4, we observe that when 0,=
dx
dt

the function of predator (y) is quadratic and for  0,=
dy
dt

 the function 

of prey population (x) represents a vertical line. The interior equilibrium is given by the intersection of these 
functions.  It is clear that for the initial populations 0 0( .7, 3)x y= =  the orbit spirals outward toward the interior 
equilibrium point. The orbit spirals inward toward the interior equilibrium point for the initial populations

0 0( .2, 6).x y= =  
 

2.3 Lotka-Volterra Inter-specific Competition Model 
We recall that interspecies is the competition for food, space and shelter between different species. Intraspecies is 
the competition for food, space and shelter between  different animals in the same species. The logistic equation in 
(13) defines a rate of population increase that is limited by intra-specific competition (i.e. members of the same 
species competing with one another). 

,− =  
 

dN k NrN
dt k

                                                                                             (13) 

where N is the population of the  given species, k is the carrying capacity  and r is the intrinsic rate of increase 

of the population. The term ( )rN  on the right side of (13) describes growth in the absence of competition. The 

second term 
k N

k
− 

 
 

incorporates intra-specific competition or density-dependence into the model and takes a 

value between 0 and 1. As population size ( )N  approaches carrying capacity ( )k , the numerator ( )k N−  
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becomes smaller but the denominator ( )k stays the same. So the second term 
k N

k
− 

 
 

 decreases. The logistic 

equation (13) can be modified to include the effects of intra-specific competition as well as inter-specific 
competition. See [12], [17], [20] and [23] for details. The Lotka-Volterra model of inter-specific competition can be 
written by the following equations for population 1 and population 2 respectively. 

1 1 1 12 2
1 1

1

,
 − −

=  
 

dN k N a Nr N
dt k

                                                                                             (14) 

2 2 2 21 1
2 2

2

,
 − −

=  
 

dN k N a Nr N
dt k

                                                                                               (15) 

where 
• 1N = Population of Species 1  

• =2N  Population of Species 2 

• 1k = Carrying Capacity of Species 1 

• 2k = Carrying Capacity of Species 2 

• 12a = Effect of Species 2 on Species 1 

• 21a = Effect of Species 1 on Species 2 

• 1r = The intrinsic rate of increase of species 1 

• 2r = The intrinsic rate of increase of species 2. 
The population of prey species increases in absence of predator species as the following logistic growth model  

( )1 1 1 11

1

.
−

=
r N k NdN

dt k
                                                                                  (16)   

Similarly, the population of predator species increases in absence of prey species as the following logistic growth 
model 

( )2 2 2 22

2

.
−

=
r N k NdN

dt k
                                                                                                (17)  

 
2.3.1 Steady States and Isoclines 
The system (14) and (15) has four equilibrium points or the steady states. They are as follows 

( ) ( )1 2 12 2 1 21
1 2 2

12 21 12 21

k k k k(N , N ) 0,0 , , , 0, k
1 1

a a
a a a a

 − −
=  − − 

and ( )1k ,0 .                                         (18) 

The isoclines of the system (14) and (15) are just the points that satisfy the following equations 

1 0dN
dt

= and 2 0.=
dN
dt

 

From (14), we arrive at the 1N isoclines as 

1 0,N =                                                                (19) 

1 1 12 2 0.− − =k N a N                                                                (20) 
From (15), we arrive at the 2N isoclines as 

2 0,N =                                                              (21) 
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2 2 21 1 0.− − =k N a N                                                                  (22) 
 To simplify the notation slightly we take (19), (20), (21) and (22) as the lines 1aL , 1bL , 2aL and 2bL respectively. 

Here 1 0N =  and 2 0N =  are just the 2N  and 1N  axes respectively whereas 1aL  and 2aL  intersect the axes as 
follows:

 
 

1bL meets the axes ( 1N 2N ) at ( )1k ,0  and 1

12

0, k
a

 
 
 

 respectively.   

2bL  meets the axes ( 1N 2N ) at 2

21

,0k
a

 
 
 

 and ( )20, k respectively.   

Now for the proper representation of isoclines, we consider the following situations.  

Case i: 2
1

21

kk
a

>  and 1
2

12

,>
k k
a

 

Case ii: 2
1

21

k k
a

>  and 1
2

12

,>
kk
a

 

Case iii: 2
1

21

kk
a

>  and 1
2

12

,>
kk
a

 

Case iv: 2
1

21

k k
a

<  and 1
2

12

.>
k k
a

 

 
3 RESULTS AND DISCUSSIONS 
 
We will proceed to the stability analysis of the model at steady states using the cases described in Section 4. We 
start with different combinations of species abundances. The abundance of species 1 is plotted on the 1N -axis and 

the abundance of species 2 is plotted on the 2N -axis in the 1 2N N plane. Each state space represents a combination 
of abundances of the two species. For each species, there is a straight line on the graph called a zero isoclines. Now 
depending on the four cases, the following four graphs i.e. Figs. 2, 3, 4 and 5, include isoclines of both species and 
interpret the possible outcomes of inter-specific competition. In each graph, the solid yellow line represents the 
isoclines of species 1 and the dashed blue line represents the isoclines of species 2 . The black arrows represent the 
joint trajectories of the two populations. 
 
Case i: 

 
Fig. 5: First species wins and second species dies. 
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From Fig. 5, we can see that for any point in the lower left corner of the graph (i.e. any combination of species 
abundances) both populations are below their respective isoclines and both increase. For any point in the upper 
corner of the graph, both species are above their isoclines respectively and decrease. For any point in between the 
two isoclines we see that species 1 is still below its isoclines and increases while species 2 is above its isoclines and 
decreases. The joint trajectories of the two species (black arrows) are down and to the right. So species 2 is driven to 
extinction and species 1 increases until it reaches its carrying capacity 1( )k . The open circle at the point ( )1k ,0

 
represents a stable equilibrium. In this case, species 1 wins and species 2 dies at last. 
  
Case ii: 

 
Fig. 6: Second species wins and first species dies. 

 
From Fig. 6, we see that the Case ii is the opposite of the Case i. The isoclines of species 2 is above and to the right 
of the isoclines for species 1. Here, the joint trajectory of two populations is up and to the left in between the 
isoclines. The point ( )20, k represents a stable equilibrium. In this case, species 2  always wins and species 1 dies 
eventually. 
  
Case iii: 

 
Fig. 7: Either species survives depending on the initial conditions. 

 
From the Fig. 7, we see that the isoclines of the two species cross one another and below both isoclines and above 
both isoclines the populations increase and decrease respectively. There is an unstable equilibrium point (closed 
circle) where the isoclines intersect each other. From Fig. 4, it is also clear that there are two stable equilibrium 
points (open circles). In this case, the outcome depends on the initial abundances of the two species. For points 
above the isoclines of species 1 and below the isoclines of species 2, the outcome represents the stable equilibrium  
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point ( )1k ,0 .  On the other hand, for points above the isoclines of species 2 and below the isoclines of species 1, 

the outcome represents the stable equilibrium point ( )20, k .  
 Case iv: 

 
Fig. 5: two species coexist. 

 
From Fig. 5, we see that the isoclines also cross one another like Case iii. In this case, both species carrying 

capacities are lower than the other’s capacity divided by the competition coefficient (i.e. 2 1
1 2

21 12

andk kk k
a a

< < ). 

Again below both isoclines the populations increase and above both isoclines the populations decrease. When 
populations of the two species are between the isoclines their joint trajectories always head toward the intersection 
of the isoclines. The two species are able to coexist at this stable equilibrium point (open circle). 
 
From above analysis, it can be shown that outcome of competition is as follows: 

a. in Case i: only 1( ,0)k  is stable, 

b. in Case ii: only ( )20, k   is stable, 

c. in Case iii: both ( )1k ,0  and ( )20, k  are stable, 

d. in Case iv: only the steady state 1 2 12 2 1 21

12 21 12 21

k k k k,
1 1

a a
a a a a

 − −
 − − 

 is stable. 

The assumptions of the model (such as there can be no migration and the carrying capacities and competition 
coefficients for both species are constants) may not be very realistic but are necessary for simplifications. A variety 
of factors not included in the model can affect the outcome of competitive interactions by affecting the dynamics of 
one or both populations. Environmental change, disease, and chance are just a few of these factors.  
 
4 CONCLUSIONS 
Lotka-Volterra inter-specific competition model through this paper predict that in a steady state when the two 
species co-exist, the first abundance is completely determined by the parameters associated with the second species. 
Similarly, the second species in this steady state is determined by the parameters i.e. life-history characteristic of the 
first species. Among the different competition models in a biological system, Lotka-Volterra inter specific model is 
standard model where Logistic equation gives proper situation. This study investigates the steady states which are 
used in describing competition. We claim that this study will play an important role in the multi-species model in the 
field of competition. Multi-species models would seem to be the most important topics for future research. 
Although, the small amount of work of this present subject has produced results that are not always initiatively 
obvious, further work may open the way for the general framework of competition models. We believe that  



242 
 

Anadi Kumar Sardar, Mohammad Hanif, Md. Asaduzzaman & Md. Haider Ali Biswas 
 
 
extensive and continuous involvement in mathematical biology research may result into answer many questions for 
the development of this topics. 
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