First-Fit EFL

Suresh Dara^{*1}, Vance Faber^{†2}, Suresh M. Hedge^{‡1} and Noah Streib^{§2}

¹Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore, India ²Center for Computing Sciences, Bowie, MD

November 18, 2016

Abstract

In this note, we consider the on-line version of the Erdős-Faber-Lovász (EFL) conjecture for hypergraphs.

1 Notation

Let H = (V, E) be a hypergraph: a set of subsets E called *edges* of a set V called *vertices* (see, for example, [Berge, 1989]). We often write n = |V| and m = |E|. The *rank* of an edge e, denoted r(e), is the cardinality of e. We let the minimum rank of an edge in E be ρ and the maximum rank be P. If all edges have the same rank, we say the hypergraph is *uniform*, or perhaps ρ -uniform. If H is 2-uniform, then H is a graph. If the intersection of an two distinct edges has at most one vertex, we call the hypergraph *linear*.

2 Coloring

A (proper) coloring of the edges of a hypergraph is a function γ from the edges of the hypergraph into a set Γ , called *colors*, such that $\gamma(e) = \gamma(f)$ only if e and f are disjoint. We let q(H), called the *chromatic index of* H, be the cardinality of the smallest Γ for which there is a coloring.

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311\$279

 $^{^* {\}it suresh.dara} @gmail.com$

 $^{^{\}dagger} vance. faber@gmail.com$

 $^{^{\}ddagger}{
m smhegde59@gmail.com}$

[§]nsstrei@super.org

3 EFL

We consider the following version of the EFL conjecture.

Conjecture 1 (EFL). Let H = (V, E) be a linear hypergraph with $\rho = 2$ and n = |V|. Then $q(H) \leq n$.

EFL has been discussed at length in the literature (see, for example, [Romero and Sánchez-Arroyo, 2007]). It has been shown that there is a constant C such that for each fixed rank larger than C, there can only be finitely many uniform counterexamples to EFL (see [Faber, 2016]; this paper also discusses more general bounds on the chromatic index of linear hypergraphs). In the present note, we address the evidence for an ostensibly stronger conjecture involving on-line coloring of H.

Definition 1. A first-fit coloring of a hypergraph H is a coloring created by taking the edges of H one at a time under some fixed ordering and coloring them with the first available color (according to some fixed total ordering on the elements of Γ). We let $\phi(H)$ be the largest number of colors needed by any ordering of the edges.

We remark that others have considered this problem. It is known that there exist H for which $\phi(H) > n$. However, all known examples have an edge of rank 2 [Berman, 2016].

Conjecture 2 (First-fit EFL). For a hypergraph H, if $\rho(H) \geq 3$ then $\phi(H) \leq n$.

4 Computational Evidence for First-fit EFL

We have performed a computer exploration of first-fit algorithms both on randomly generated orderings and specifically chosen orderings for uniform H of rank 3 for n up to 51. Note that we feel that rank 3 is the worst case because of the results for coloring in [Faber, 2010] where it was shown to be easier to color when the minimum rank of H grows. We tabulate the results from 100,000 randomly generated hypergraphs¹ for each order in Figure 1.

As a check on the density of outliers, we also ran 1,000,000 hypergraphs for each $n \in \{23, 25, 27, 29, 31\}$ and the results did not change. However, if

¹For the random generation, we start with a set $E = \emptyset$ and U as the set of all 3-tuples of $\{1, 2, \ldots, n\}$. We then choose a random element of U to put into E, and then remove all elements of U that intersect some element of E at least twice. We repeat this process until U is empty, at which time E is the edge set of H.

First-fit EFL

Figure 1: Each point represents the maximum value of $\phi(H)$ over 100,000 randomly generated 3-uniform hypergraphs H with n vertices.

we input Steiner Triple Systems instead of random graphs, the worst case colorings used more colors. We found that for H an STS(15) (i.e. a Steiner Triple System on 15 vertices), we could have $\phi(H) = 15$, but never found anything larger. For example, consider the coloring of an STS(15) given in Table 1.

When first-fit sees the edges in the order of the color classes (i.e. the edges of color 1 first, then those of color 2, etc.), then it will use 15 colors.

5 Similar Conjectures

It is possible that the list coloring version of EFL is true. That is, suppose H = (V, E) is a hypergraph, and we assign to each edge $e \in E$ a set $\Gamma(e)$ of possible colors to give to e. Then a *list coloring of* H is an function γ such that γ is a coloring in which $\gamma(e) \in \Gamma(e)$ for each $e \in E$. We say that H has list chromatic index $q_L(H)$ if H can be list colored from any Γ with $|\Gamma(e)| \leq q_L$ for each $e \in E$.

Suresh Dara, Vance Faber, Suresh M. Hedge and Noah Streib

color	edges of $STS(15)$
1	(2,7,12), (6,9,10), (0,1,8)
2	(0, 2, 6), (4, 9, 14), (3, 10, 11)
3	(6, 8, 12), (1, 2, 9), (0, 4, 7)
4	(2,4,8), (0,3,9), (1,6,11)
5	(5, 9, 12), (7, 8, 10), (3, 4, 6), (0, 11, 14)
6	(8, 9, 11), (1, 4, 5), (3, 12, 14)
7	(2, 3, 5), (1, 10, 12), (6, 7, 14)
8	(0, 5, 10), (1, 3, 7), (4, 11, 12)
9	(5, 8, 14), (0, 12, 13)
10	(3, 8, 13), (5, 7, 11), (2, 10, 14)
11	(5, 6, 13)
12	(1, 13, 14)
13	(2, 11, 13)
14	(7, 9, 13)
15	(4, 10, 13)

Table 1: Ordering of edges for an STS(15) in which first-fit uses 15 colors.

Conjecture 3 (List EFL). Let H = (V, E) be a linear hypergraph with |V| = n. Then $q_L(H) \leq n$.

It should be noted that in [Faber, 2016], we showed that for many H with rank two edges, the truth of the first-fit EFL conjecture for hypergraphs with rank greater than two would imply the truth of EFL for H. In other cases, this implication would follow from a variant of the Vizing List Coloring Conjecture (see [Faber, 2016]) for graphs, namely that $q_L(G)$ is at most the maximum degree plus one. If H is 2-uniform, then List EFL is true for H(see [Haggkvist and Janssen, 1997]).

References

[Berge, 1989] Berge, C. (1989). Hypergraphs: Combinatorics of Finite Sets, volume 45. North-Holland Mathematical Library.

[Berman, 2016] Berman, Y. (2016). Private communication.

[Faber, 2010] Faber, V. (2010). The Erdos-Faber-Lovász conjecture—the uniform regular case. J. Combinatorics, 1:113–120.

- [Faber, 2016] Faber, V. (2016). Linear hypergraph edge coloring generalizations of the EFL conjecture. Bulletin of Math. Sci. and Applications, 17:1–9.
- [Haggkvist and Janssen, 1997] Haggkvist, R. and Janssen, J. (1997). New bounds on the list-chromatic index of the complete graph and other simple graphs. *Combinatorics, Probability and Computing*, 6:295–313.
- [Romero and Sánchez-Arroyo, 2007] Romero, D. and Sánchez-Arroyo, A. (2007). Advances on the Erdős-Faber-Lovász conjecture, in Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Geoffrey Grimmet, Colin McDiarmid editors, pages 285–298. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press.