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Abstract

In this note, we consider the on-line version of the Erd&s-Faber-
Lovéasz (EFL) conjecture for hypergraphs.

1 Notation

Let H = (V, E) be a hypergraph: a set of subsets F called edges of a set V'
called vertices (see, for example, [Berge, 1989]). We often write n = |V| and
m = |E|. The rank of an edge e, denoted r(e), is the cardinality of e. We
let the minimum rank of an edge in E be p and the maximum rank be P. If
all edges have the same rank, we say the hypergraph is uniform, or perhaps
p-uniform. If H is 2-uniform, then H is a graph. If the intersection of an
two distinct edges has at most one vertex, we call the hypergraph linear.

2 Coloring

A (proper) coloring of the edges of a hypergraph is a function « from the
edges of the hypergraph into a set T', called colors, such that v(e) = ~(f)
only if e and f are disjoint. We let q(H), called the chromatic index of H,
be the cardinality of the smallest I for which there is a coloring.
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3 EFL

We consider the following version of the EFL conjecture.

Conjecture 1 (EFL). Let H = (V, E) be a linear hypergraph with p = 2
and n = |V|. Then q(H) < n.

EFL has been discussed at length in the literature (see, for example,
|[Romero and Sanchez-Arroyo, 2007]). It has been shown that there is a con-
stant C' such that for each fixed rank larger than C', there can only be
finitely many uniform counterexamples to EFL (see [Faber, 2016]; this pa-
per also discusses more general bounds on the chromatic index of linear
hypergraphs). In the present note, we address the evidence for an ostensibly
stronger conjecture involving on-line coloring of H.

Definition 1. A first-fit coloring of a hypergraph H is a coloring created by
taking the edges of H one at a time under some fixed ordering and coloring
them with the first available color (according to some fixed total ordering on
the elements of I'). We let ¢(H) be the largest number of colors needed by
any ordering of the edges.

We remark that others have considered this problem. It is known that
there exist H for which ¢(H) > n. However, all known examples have an
edge of rank 2 [Berman, 2016|.

Conjecture 2 (First-fit EFL). For a hypergraph H, if p(H) > 3 then
O(H) < n.

4 Computational Evidence for First-fit EFL

We have performed a computer exploration of first-fit algorithms both on
randomly generated orderings and specifically chosen orderings for uniform
H of rank 3 for n up to 51. Note that we feel that rank 3 is the worst case
because of the results for coloring in [Faber, 2010| where it was shown to be
easier to color when the minimum rank of H grows. We tabulate the results
from 100,000 randomly generated hypergraphs' for each order in Figure 1.
As a check on the density of outliers, we also ran 1,000,000 hypergraphs
for each n € {23,25,27,29,31} and the results did not change. However, if

!For the random generation, we start with a set E = () and U as the set of all 3-tuples
of {1,2,...,n}. We then choose a random element of U to put into E, and then remove
all elements of U that intersect some element of E at least twice. We repeat this process
until U is empty, at which time F is the edge set of H.
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Figure 1: Each point represents the maximum value of ¢(H) over 100,000
randomly generated 3-uniform hypergraphs H with n vertices.

we input Steiner Triple Systems instead of random graphs, the worst case
colorings used more colors. We found that for H an STS(15) (i.e. a Steiner
Triple System on 15 vertices), we could have ¢(H) = 15, but never found
anything larger. For example, consider the coloring of an STS(15) given in
Table 1.

When first-fit sees the edges in the order of the color classes (i.e. the
edges of color 1 first, then those of color 2, etc.), then it will use 15 colors.

5 Similar Conjectures

It is possible that the list coloring version of EFL is true. That is, suppose
H = (V,E) is a hypergraph, and we assign to each edge e € E a set I'(e)
of possible colors to give to e. Then a [list coloring of H is an function ~
such that 7 is a coloring in which vy(e) € I'(e) for each e € E. We say that
H has list chromatic index ¢ (H) if H can be list colored from any I' with
IT'(e)| < qr, for each e € E.
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color | edges of STS(15)
T | (2,7,12),(6,9,10),(0,1,8)
2 | (0,2,6),(4,9,14), (3,10, 11)
3| (6,8,12),(1,2,9),(0,4,7)
4 |(2,4,8),(0,3,9),(1,6,11)
5 | (5,9,12),(7,8,10), (3,4,6), (0,11, 14)
6 | (8,9,11),(1,4,5), (3,12, 14)
7 1 (2,3,5),(1,10,12), (6,7, 14)
8 | (0,5,10),(1,3,7), (4,11,12)
9 | (58,14),(0,12,13)
10 | (3,8,13),(5,7,11), (2,10, 14)
11 | (5,6,13)
12 | (1,13,14)
13 | (2,11,13)
14 | (7,9,13)
15 | (4,10,13)

Table 1: Ordering of edges for an STS(15) in which first-fit uses 15 colors.

Conjecture 3 (List EFL). Let H = (V,E) be a linear hypergraph with
|[V|=n. Then qr.(H) < n.

It should be noted that in [Faber, 2016], we showed that for many H with
rank two edges, the truth of the first-fit EFL conjecture for hypergraphs with
rank greater than two would imply the truth of EFL for H. In other cases,
this implication would follow from a variant of the Vizing List Coloring
Conjecture (see [Faber, 2016]) for graphs, namely that ¢7,(G) is at most the
maximum degree plus one. If H is 2-uniform, then List EFL is true for H
(see [Haggkvist and Janssen, 1997]).
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