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1 Introduction

Let Rn be a finite dimensional Euclidean space, whose inner product and norm are

denoted by ⟨·, ·⟩ and ∥ · ∥, Let C be a nonempty closed convex subset of Rn and F be a

continuous monotone mapping from Rn into itself. We consider the problem of finding

a vector x∗ ∈ C such that

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ C, (1.1)

which is called the classical variational inequality, denoted by VI(F,C). It is worth to

mention that the solution set C∗ of VI(F,C) is not empty.

In recent years, variational inequality theory has witnessed an explosive growth in theo-

retical advances, algorithmic developments and applications across all disciplines of pure

and applied sciences. This theory provides us a unified, novel and innovative treatmen-

t of unilateral, free, moving, obstacle, and equilibrium problems arising in economics,

finance, transportation, elasticity, optimization, operations research and structural anal-

ysis, see, for example, [1-17] and the references therein.

The proximal point algorithm (PPA) is recognized as a powerful numerical approach

and effective algorithm for solving (1.1). It was first introduced by Martinet [10] and fur-

ther refined and extended by Rockafellar [14] to a more general setting, including convex

programs, convex-concave saddle point problems, and variational inequality problems.

The classical iterate scheme of PPA for solving problem (1.1) is as follows. Let λmin > 0

and λk ⊂ [λmin,+∞). For given xk ∈ C and λk, let xk+1
∗ be the solution of following

strongly monotone variational inequality:

(PPA) Find x ∈ C such that (x
′ − x)TFk(x) ≥ 0, ∀x′ ∈ C (1.2)

where

Fk(x) = (x− xk) + λkF (x). (1.3)
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The new iterate xk+1 of the exact version of PPA is taken by xk+1 = xk+1
∗ .

Let PC(.) denote the projection onto C in the Euclidean norm, it is well known that the

problem (1.2) is equivalent to solving the following equation:

xk+1 = PC [x
k − λkF (xk+1)]. (1.4)

Notting that the new iteration xk+1 can not be calculated directly by (1.4) because it is

an implicit scheme. This difficulty makes the application of PPA impractical in many

cases. Therefore, instead of solving it exactly, it becomes important to develop the

PPA in order to find an approximate solutions of (1.4). In 1976, Rockafellar [13, 14] set

up the fundamental convergence analysis for the approximate proximal point algorithm

(APPA) to a general maximal monotone operator. The new iterate xk+1 of Rockafellar’s

APPA is requested to satisfy the following condition:

∥xk+1 − xk+1
∗ ∥ ≤ νk,

∞∑
k=0

< +∞, (1.5)

or

∥xk+1 − xk+1
∗ ∥ ≤ νk∥xk − xk+1∥,

∞∑
k=0

< +∞. (1.6)

Since xk+1
∗ is unknown, which makes the application of this APPA very difficult. Re-

cently, many searching directions are developed to find a new correction step. And to

ensure the convergence different suitable extended less restrictive relaxed inexactness

restriction are used in each method.

The main target of this paper is to develop an algorithm for solving variational

inequalities. More precisely, a new iterate is obtained by searching the optimal step size

along a new descent direction which generalize different existing descent directions. We

adopt the same inexactness restriction used in [17]. Global convergence of the proposed

method is proved under some mild conditions.
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2 Iterative method and some properties

In this section, we suggest and analyze a new modified approximate proximal-extragradient

type method for solving variational inequality (1.1). The following lemma provides some

basic properties of the projection onto C.

Lemma 2.1 Let PC(.) denote the projection of Rn onto C. Then, we have the following

inequalities.

(x− PC(x))
T (y − PC(x)) ≤ 0, ∀y ∈ C, ∀x ∈ Rn; (2.1)

∥PC(x)− PC(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn; (2.2)

∥PC(x)− y∥2 ≤ ∥x− y∥2 − ∥x− PC(x)∥2, ∀x ∈ Rn, y ∈ C. (2.3)

Lemma 2.2 ([5], p. 267) Let λ > 0, then x∗ solves VI(C, F) if and only if

x∗ = PC [x
∗ − λF (x∗)].

Denote

e(x, λ) = x− PC [x− λF (x)]. (2.4)

From Lemma 2.2, it is clear that x is solution of VI(F,C) if and only if x is a zero point

of the function e(x, λ).

We propose the following iterative scheme for solving (1.1).

Algorithm 2.1.

For given x0 ∈ C and λmin > 0, the sequence {xk} is generated by the iterative schemes:

Step 1. Find an approximate solution of (1.2), i.e., find yk in the sense that

yk ≈ PC [x
k − λkF (yk)], (2.5)

under the following inexactness restriction:

∆(yk) ≤ ν(∥xk − yk∥2 + ∥xk − ỹk∥2), ν < 1, (2.6)
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where

ỹk = PC [x
k − λkF (yk)], (2.7)

and

∆(yk) = 2(ζk)TFk(y
k)− ∥ζk∥2, with ζk = yk − ỹk. (2.8)

Step 2. Compute the new iterate

xk+1(α) = PC [x
k − α(θ1(x

k − ỹk) + θ2λkF (yk))], θ1, θ2 ≥ 0. (2.9)

How to choose a suitable step length α to force convergence will be discussed later.

Remark 2.1 As special cases, we can obtain some well-known results.

(a) If θ1 = 1 and θ2 = 0, we obtain (BYY-correction) step of the method proposed in

[9].

(b) If θ1 = 0 and θ2 = 1, we obtain (second step) of the three step APPA method

proposed in [17].

(c) If θ1 = 1, θ2 = 0 and α = 1, we obtain (SS-correction step) of the method proposed

in [15] by using another inexactness restriction ∆(yk) ≤ ν(∥xk−yk∥2, ν < 1, which

is different from (2.6).

Proposition 2.1 [9] For yk, ỹk, ∆(yk) and ζk defined in (2.8), we have

∥xk − ỹk∥2 − λk(ζ
k)TF (yk) =

1

2
{(∥xk − yk∥2 + ∥xk − ỹk∥2)−∆(yk)}. (2.10)

The following theorem concerns how to choose the step size α.

Theorem 2.1 For given xk, ỹk and ζk are defined by (2.7) and (2.8) respectively, and

λk > 0, let yk ∈ C be an approximate solution of (1.2) in the sense of (2.5) and xk+1(α)

the new iterate be given by (2.9). Then for any α > 0, we have

Θ(α) := ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 ≥ Ψ(α) (2.11)

where

Ψ(α) = 2(θ1 + θ2)α{∥xk − ỹk∥2 − λk(ζ
k)TF (yk)} − (θ1 + θ2)

2α2∥xk − ỹk∥2. (2.12)
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Proof. Since xk+1(α) = PC [x
k − α(θ1(x

k − ỹk) + θ2λkF (yk))] and x∗ ∈ C, it follows

from (2.3) that

∥xk+1(α)− x∗∥2 ≤ ∥xk − α(θ1(x
k − ỹk) + θ2λkF (yk))− x∗∥2

−∥xk − α(θ1(x
k − ỹk) + θ2λkF (yk))− xk+1(α)∥2 (2.13)

Consequently, using the definition of Θ(α), we get

Θ(α) ≥ ∥xk − x∗∥2 + ∥xk − xk+1(α)− α(θ1(x
k − ỹk) + θ2λkF (yk))∥2

−∥xk − x∗ − α(θ1(x
k − ỹk) + θ2λkF (yk))∥2

= ∥xk − xk+1(α)∥2 + 2α(xk+1(α)− x∗)T (θ1(x
k − ỹk) + θ2λkF (yk))

= ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− x∗)T (xk − ỹk) + 2θ2αλk(x

k+1(α)− x∗)TF (yk).

= ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− ỹk + ỹk − x∗)T (xk − ỹk)

+2θ2αλk(x
k+1(α)− x∗)TF (yk)

= ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− ỹk)T (xk − ỹk) + 2θ1α(ỹ

k − x∗)T (xk − ỹk)

+2θ2αλk(x
k+1(α)− x∗)TF (yk)

= ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− xk + xk − ỹk)T (xk − ỹk)

+2θ1α(ỹ
k − x∗)T (xk − ỹk) + 2θ2αλk(x

k+1(α)− x∗)TF (yk)

= ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− xk)T (xk − ỹk) + 2θ1α∥xk − ỹk∥2

+2θ1α(ỹ
k − x∗)T (xk − ỹk) + 2θ2αλk(x

k+1(α)− x∗)TF (yk). (2.14)

Since x∗ ∈ C∗, using the monotonicity of F, we have

(yk − x∗)TF (yk) ≥ (yk − x∗)TF (x∗) ≥ 0 (2.15)

and consequently

(xk+1(α)− x∗)TF (yk) ≥ (xk+1(α)− yk)TF (yk). (2.16)

Since ỹk = PC [x
k − λkF (yk)] and x∗ ∈ C, it follows from (2.1) that

{xk − λkF (yk)− ỹk}T (ỹk − x∗) ≥ 0,
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and thus

(ỹk − x∗)T (xk − ỹk) ≥ (ỹk − x∗)TλkF (yk). (2.17)

Using (2.15), we have

(ỹk − x∗)TλkF (yk) ≥ (ỹk − yk)TλkF (yk). (2.18)

From (2.17) and (2.18), we get

2θ1α(ỹ
k − x∗)T (xk − ỹk) ≥ 2θ1αλk(ỹ

k − yk)TF (yk). (2.19)

On the other hand, since ỹk = PC [x
k − λkF (yk)] and xk+1(α) ∈ C, it follows from (2.1)

that for any α > 0, we have

2θ2α{xk+1(α)− ỹk}T{xk − λkF (yk)− ỹk} ≤ 0. (2.20)

Applying (2.19), (2.16) to the right-hand-side of (2.14), we get

Θ(α) ≥ ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− xk)T (xk − ỹk) + 2θ1α∥xk − ỹk∥2

+2θ1α(ỹ
k − x∗)T (xk − ỹk) + 2θ2αλk(x

k+1(α)− x∗)TF (yk)

≥ ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− xk)T (xk − ỹk) + 2θ1α∥xk − ỹk∥2

+2θ1αλk(ỹ
k − yk)TF (yk) + 2θ2αλk(x

k+1(α)− yk)TF (yk). (2.21)

Adding (2.20) to the right-hand-side of (2.21), we obtain

Θ(α) ≥ ∥xk − xk+1(α)∥2 + 2θ1α(x
k+1(α)− xk)T (xk − ỹk) + 2θ1α∥xk − ỹk∥2

+2θ1αλk(ỹ
k − yk)TF (yk) + 2θ2α(x

k+1(α)− ỹk)T (xk − ỹk)− 2θ2αλk(y
k − ỹk)TF (yk)

= ∥xk − xk+1(α)∥2 + 2θ2α(x
k+1(α)− ỹk)T (xk − ỹk) + 2θ1α(x

k+1(α)− xk)T (xk − ỹk)

+2θ1α∥xk − ỹk∥2 − 2(θ1 + θ2)αλk(y
k − ỹk)TF (yk)
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= ∥xk − xk+1(α)∥2 + 2θ2α{(xk+1(α)− xk) + (xk − ỹk)}T (xk − ỹk)

+2θ1α(x
k+1(α)− xk)T (xk − ỹk) + 2θ1α∥xk − ỹk∥2 − 2(θ1 + θ2)αλk(y

k − ỹk)TF (yk)

= ∥xk − xk+1(α)∥2 + 2(θ1 + θ2)α{xk+1(α)− xk}T (xk − ỹk) + 2(θ1 + θ2)α∥xk − ỹk∥2

−2(θ1 + θ2)αλk(y
k − ỹk)TF (yk)

= ∥(xk − xk+1(α))− (θ1 + θ2)α(x
k − ỹk)∥2 − (θ1 + θ2)

2α2∥xk − ỹk∥2

+2(θ1 + θ2)α∥xk − ỹk∥2 − 2(θ1 + θ2)αλk(y
k − ỹk)TF (yk)

≥ 2(θ1 + θ2)α{∥xk − ỹk∥2 − λk(y
k − ỹk)TF (yk)} − (θ1 + θ2)

2α2∥xk − ỹk∥2.

The proof is completed. ⊓⊔

3 Convergence analysis

Now, we mainly focus on investigating the convergence of the proposed method. The

following theorem plays a crucial role in the convergence of the proposed method.

Theorem 3.1 For given xk ∈ C and λk > 0, let yk ∈ C be an approximate solution of

(1.2) in the sense of (2.5) and the new iterate xk+1 be given by (2.9). Then, we have

∥xk+1(α)− x∗∥2 ≤ ∥xk − x∗∥2 − τ
(
∥xk − yk∥2 + ∥xk − ỹk∥2

)
(3.1)

where

τ = (θ1 + θ2)
(1− ν)2

4
.

Proof. Substituting (2.10) into (2.12), we have

Ψ(α) = (θ1 + θ2)α{(∥xk − yk∥2 + ∥xk − ỹk∥2)−∆(yk)} − (θ1 + θ2)
2α2∥xk − ỹk∥2.

Since Ψ(α) is a quadratic function of α, it reaches its maximum at

α∗
k =

(∥xk − yk∥2 + ∥xk − ỹk∥2)−∆(yk)

2(θ1 + θ2)∥xk − ỹk∥2
, (3.2)
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with

Ψ(α∗
k) =

(θ1 + θ2)

2
α∗
k{(∥xk − yk∥2 + ∥xk − ỹk∥2)−∆(yk)}. (3.3)

Under inexactness restriction (3.2), it follows from (3.2) and (3.3) that

α∗
k ≥

1− ν

2(θ1 + θ2)
and Ψ(α∗

k) ≥
(1− ν)2

4(θ1 + θ2)
{(∥xk − yk∥2 + ∥xk − ỹk∥2)}. (3.4)

It follows from (2.11) and (3.4) that

∥xk+1(α)− x∗∥2 ≤ ∥xk − x∗∥2 − (θ1 + θ2)
(1− ν)2

4

(
∥xk − yk∥2 + ∥xk − ỹk∥2

)
.

And we get the assertion of this theorem. ⊓⊔

The convergence of the proposed method can be proved by using similar arguments to

[9]. Hence the proof is omitted.

Theorem 3.2 [9] The sequence {xk} generated by the proposed method converges to

some some x∞ which is a solution of (1.1).

4 Conclusions

In this paper, we proposed a new modified approximate proximal point algorithm for

solving variational inequalities. The proposed method generates the new iterate by

searching the optimal step size along a new descent direction which can be viewed

as a refinement and improvement some well-known results in the literature. Global

convergence of the proposed method is proved under mild assumptions.
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