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Abstract.In this paper, we apply the Peaceman-Rachford splitting method (PRSM) to

solve the problem of constrained image deblurring corrupted by Gaussian noise. To speed

up PRSM, we linearize its two subproblems and obtain the closed-form solutions. Compared

with PRSM, the resulting new method is matrix-inversion free. The global convergence of the

new algorithm is proved via the analytic framework of contractive type methods. Numerical

comparisons with alternating direction methods (ADMs) illustrate that our proposed algo-

rithm is efficient and promising.
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1 Introduction

In this paper, we consider the problem of deblurring digital images under Gaussian noise. Given original

image concatenated into an n-vector x̄ ∈ Rn, and let A ∈ Rn×n be a blurring operator (integral operator)

acting on the image. Let ω ∈ Rn be the Gaussian noise added onto the image. The observed image

c ∈ Rn can be modeled by c = Ax̄+ω. The constrained image deblurring problem (CIDPλ) is to recover

x̄ from c, which can be depicted as

min
l≤x≤u

1

2
∥Ax− c∥2 + λ2

2
∥Bx∥2, (1)
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where l, u ∈ Rn
+; B ∈ Rn×n is a regularization operator (differential operator); λ2 ∈ R is the regulariza-

tion parameter; x ∈ Rn is the restored image; ∥ · ∥ denotes the 2-norm. The box constraints 0 ≤ x ≤ u

represent the dynamic range of the image (e.g., li = 0 and ui = 255 for an 8-bit gray-scale image).

Throughout this paper, we assume that the solution set of (1) is nonempty.

By introducing an auxiliary variable y ∈ Rn, we can change CIDPλ to the equivalent form

min
1

2
∥Ax− c∥2 + λ2

2
∥By∥2

s.t. − x+ y = 0,

x ∈ Rn, y ∈ Ω,

(2)

where Ω = {y|l ≤ y ≤ u}.
Obviously, (2) is a separable convex minimization model whose variables are subject to some linear

constraints and two addition simple constraints. Thus, all the numerical methods which can solve the

separable convex programming is applicable to (2), such as the alternating direction methods (ADMs)[1,2],

the Peaceman-Rachford splitting methods (PRSMs)[3,4], and the split Bregman methods [5,6], etc. In

this paper, we focus our attention on the Peaceman-Rachford splitting method. Let the augmented

Lagrangian function of (2) be

LA(x, y; ξ) =
1

2
∥Ax− c∥2 + λ2

2
∥By∥2 − ⟨ξ, y − x⟩+ β

2
∥y − x∥2,

where ξ ∈ Rn is the Lagrangian multiplier and β > 0 is a penalty parameter. Then the iterative scheme

of PRSM [3,4] for (2) reads as 
xk+1 = argminx∈RnLA(x, y

k; ξk),

ξk+
1
2 = ξk − αβ(yk − xk+1),

yk+1 = argminy∈ΩLA(x
k+1, y; ξk+

1
2 ),

ξk+1 = ξk+
1
2 − αβ(yk+1 − xk+1),

(3)

where the parameter α ∈ (0, 1) is an underdetermined relaxation factor introduced by He et al.[4] to

ensure the global convergence of PRSM. Applying the Peaceman-Rachford splitting method (PRSM) to

(2), we can get the following iterative scheme

xk+1 = (A⊤A+ βI)−1(A⊤c+ βyk − ξk),

ξk+
1
2 = ξk − αβ(yk − xk+1),

yk+1 = argminy∈Ω

{
λ2

2
∥By∥2 + β

2
∥y − xk+1 − ξk+

1
2

β
∥2
}
,

ξk+1 = ξk+
1
2 − αβ(yk+1 − xk+1).

(4)

Obviously, the second subproblem in (4) does not have closed-form solution when B ̸= I. Furthermore,

although the first subproblem of (4) admits the closed-form solution, it needs to compute the matrix
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inversion (A⊤A + βI)−1. As discussed in [7], the above matrix inversion can be solved exactly by two

FFTs (including one inverse FFT) when A is a spatially-invariant blur under circulant or reflective

boundary condition assumption. However, for some applications such as magnetic resonance imaging,

the matrix may be extremely difficult to invert.

To solve the above issues, we linearize the two subproblems of the classical PRSM (3), and propose

two linearized PRSMs for (2). All the subproblems of the proposed method have closed-form solutions

and are free from any matrix inversion.

The rest of this paper is organized as follows. In Section 2, we present a linearized Peaceman-Rachford

splitting method for solving (2). In Section 3, we prove the global convergence of the derived method. In

Section 4, numerical comparisons with ADMs are carried out to confirm the effectiveness of our method.

Finally, some concluding remarks are given in Section 5.

2 Linearized PRSM

In this section, we present a linearized PRSM for solving (2). Firstly, it is easy to see that, for fixed

yk, ξk, the minimization of LA(x, y; ξ) with respect to x can be formulated by

argminx∈RnLA(x, y
k; ξk)

= argminx∈Rn

{
1

2
∥Ax− c∥2 + β

2
∥x− yk +

ξk

β
∥2
}
.

Now we linearize the first quadratic term 1
2∥Ax− c∥2 at the current point xk and add a proximal term,

i.e.,
1

2
∥Ax− c∥2 ≈ 1

2
∥Axk − c∥2 + (Axk − c)⊤A(x− xk) +

τ

2
∥x− xk∥2,

where τ is the parameter of the proximal term and τ > ρ(A⊤A). Here ρ(A⊤A) denotes the largest

eigenvalues of A⊤A. Then, the first subproblem of PRSM is transformed into

argminx∈Rn

{
(Axk − c)⊤Ax+

τ

2
∥x− xk∥2 + β

2
∥x− yk +

ξk

β
∥2
}
. (5)

Thus taking derivative on the above problem with respect to x, forcing the result to zero and letting the

stationary point be xk+1, we have

xk+1 =
1

β + τ
[τxk + βyk − ξk −A⊤(Axk − c)]. (6)

Secondly, for fixed xk+1, ξk+
1
2 , the minimization of LA(x, y; ξ) with respect to y can be formulated by

argminy∈ΩLA(x
k+1, y; ξk+

1
2 )

= argminy∈Ω

{
λ2

2
∥By∥2 + β

2
∥y − xk+1 − ξk+

1
2

β
∥2
}
.
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Similarly, we linearize the first quadratic term of the above problem at the current point yk, and get

yk+1 = argminy∈Ω

{
λ2[(Byk)⊤B(y − yk) +

υ

2
∥y − yk∥2] + β

2
∥y − xk+1 − ξk+

1
2

β
∥2
}
,

where υ is also a proximal parameter. The optimality condition of the above problem leads to the

following variational inequality

(y′ − yk+1)⊤{λ2[B⊤Byk + υ(y − yk)] + β(y − xk+1 − ξk+
1
2

β
)} ≥ 0, ∀y′ ∈ Ω.

Then, yk+1 can be given explicitly by

yk+1 = PΩ

{
1

λ2υ + β
[−λ2B⊤Byk + λ2υyk + ξk+

1
2 + βxk+1]

}
, (7)

where PΩ(·) denotes the projection operator onto Ω under the Euclidean norm. Based on (6) and (7), we

get a linearized PRSM for (2) with p=2, whose full steps can be described as follows.

Algorithm 1 A linearized PRSM for (2)

Input A,B, c, λ, α, β and τ > ρ(A⊤A), υ > ρ(B⊤B). Initialize (x, y; ξ) = (x0, y0; ξ0), k = 0.

while “not converged”, do

(1) Compute xk+1 according to (6).

(2) Compute ξk+
1
2 = ξk − αβ(yk − xk+1).

(3) Compute yk+1 according to (7).

(4) Compute ξk+1 = ξk+
1
2 − αβ(yk+1 − xk+1).

(5) k = k + 1.

end while

Output xk+1.

Remark 2.1 Setting R = τIn −A⊤A, we have

argminx∈Rn{LA(x, y
k; ξk) +

1

2
∥x− xk∥2R}

= argminx∈Rn

{
1

2
∥Ax− c∥22 +

β

2
∥x− yk +

ξk

β
∥22 +

1

2
∥x− xk∥2R

}
= argminx∈Rn

{
(Axk − c)⊤Ax+

τ

2
∥x− xk∥22 +

β

2
∥x− yk +

ξk

β
∥22

}
,

and the last expression is just (5). Therefore, linearizing the x’s quadratic terms in LA(x, y
k; ξk) is

equivalent to adding a proximal term 1
2∥x−xk∥2R on it. Similarly, we have that linearizing the y’s quadratic

terms in LA(x
k+1, yk; ξk+

1
2 ) is equivalent to adding a proximal term 1

2∥y− yk∥2S with S = υI −B⊤B on

it.
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3 Global convergence

In this section, we establish the global convergence of our proposed linearized PRSM. Firstly, we give a

general model which includes (2) as a special case.

min{θ1(x1) + θ2(x2)|A1x1 +A2x2 = d, x1 ∈ X1, x2 ∈ X2}, (8)

where Ai ∈ Rl×ni(i = 1, 2), d ∈ Rl and Xi ⊂ Rni(i = 1, 2) are nonempty closed convex sets, θi : Rni →
R(i = 1, 2) are convex but not necessarily smooth functions.

In fact, (2) is a special case of (8) by setting x1 = x, x2 = y, θ1(x1) =
1
2∥Ax− c∥22, θ2(x2) =

λ2

2 ∥By∥22,
A1 = −In, A2 = In, d = 0, and X1 = Rn,X2 = Ω.

Now, we present a proximal PRSM to solve the general model (8). Let the augmented Lagrangian

function of (8) be

LA(x1, x2; ξ) = θ1(x1) + θ2(x2)− ⟨ξ, A1x1 +A2x2 − d⟩+ β

2
∥A1x1 +A2x2 − d∥2,

where ξ ∈ Rl is the Lagrangian multiplier and β > 0 is a penalty parameter.

Algorithm 2 A proximal PRSM for (8)

Input the parameters α, β and two positive semidefinite matrices R,S ∈ Rl×l. Initialize (x1, x2; ξ) =

(x0
1, x

0
2; ξ

0), k = 0.

while “not converged”, do

(1) Compute xk+1
1 by argminx1∈X1

{LA(x1, x
k
2 ; ξ

k) + 1
2∥A1(x1 − xk

1)∥2R}.
(2) Compute ξk+

1
2 = ξk − αβ(A1x

k+1
1 +A2x

k
2 − d).

(3) Compute xk+1
2 by argminx2∈X2

{LA(x
k+1
1 , x2; ξ

k+ 1
2 ) + 1

2∥A2(x2 − xk
2)∥2S}.

(4) Compute ξk+1 = ξk+
1
2 − αβ(A1x

k+1
1 +A2x

k+1
2 − d).

(5) k = k + 1.

end while

Output xk+1
1 , xk+1

2 .

From Remark 2.1, to prove the global convergence of Algorithm 1, we only need to prove the global

convergence of Algorithm 2. Firstly, we define some auxiliary variables: u = (x1, x2), w = (u, ξ) and

θ(u) = θ1(x1) + θ2(x2). Then, by invoking the first-order optimality condition for convex program-

ming, we can reformulate problem (8) as the following mixed variational inequality problem (denoted by

MVI(W, F, θ)): Finding a vector w∗ ∈ W such that

θ(u)− θ(u∗) + (w − w∗)⊤F (w∗) ≥ 0, ∀w ∈ W, (9)
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where W = X1 ×X2 ×Rl, and

F (w) =


−A⊤

1 ξ

−A⊤
2 ξ

A1x1 +A2x2 − d

 . (10)

Now, we give the global convergence of Algorithm 2.

Theorem 3.1. For any fixed α ∈ (0, 1) and β > 0, the sequence {(xk+1
1 , xk+1

2 ; ξk+1)} generated

by Algorithm 3 from any starting point (x0
1, x

0
2; ξ

0) converges to a solution of MVI(W, F, θ)), and the

corresponding sequence {(xk+1
1 , xk+1

2 )} converges to a solution of (13).

Proof. It proof is similar to that of Theorem 3.1 in [8]. This completes the proof.

Theorem 3.2. For any fixed α ∈ (0, 1) and β > 0, suppose {(xk, yk; ξk)} is the the sequence generated
by Algorithm 1 from any starting point (x0, y0; ξ0). Then the corresponding sequence {(xk, yk)} converges
to a solution of (2).

Proof. From τ > ρ(A⊤A) and υ > ρ(B⊤B), we have that the two matrices R = τIn − A⊤A and

S = υIn − B⊤B are both positive semidefinite. Then, by Remark 2.1 and Theorem 3.1, we get the

conclusion of this theorem. The proof is complete.

Proof. From τ > ρ(λ2B⊤B + γA⊤A), we have that the matrix T = τIn − (λ2B⊤B + γA⊤A) is

positive semidefinite. Then, by Remark 2.2 and Theorem 3.1, we get the conclusion of this theorem. The

proof is complete.

Remark 3.1. When the matrix inversion (A⊤A + βI)−1 is easy to compute, then we can replace

the iterate xk+1 in Algorithm 1 by xk+1 = (A⊤A + βI)−1(A⊤c + βyk − ξk), which is just the x iterate

equation in (4). Obviously, the resulting method is also globally convergent, because it is equivalent to

setting R = 0 in Algorithm 3.

4 Numerical experiments

In this section, we test our proposed linearized PRSM on the image deblurring problem (1), and compare

the proposed Algorithm 1 with the famous ADM in [3,4]. We implement all the algorithms with codes

written in Matlab 7.10. The testing is performed on a ThinkPad notebook with Pentium(R) Dual-Core

CPU T4400@2.2GHz, 2GB of memory. To assess the restoration performance qualitatively, we use the

peak signal to noise ratio (PSNR) defined as

PSNR = 20log10
xmax√
Var(x, x̄)

with Var(x, x̄) =

∑n2

j=1[x̄(j)− x(j)]2

n2
.
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Here x̄ is the true image, and x̄max is the maximum possible pixel value of the image. Furthermore, the

stopping criterion of all the tested methods is

|J k+1 − J k|
|J k|

≤ 10−5,

where J k is the objective function value of (1) at the kth iteration.

The test images are 256-by-256 (li = 0, ui = 255 for all i = 1, 2, . . . , n) images as shown in Figure 1:

Text, Heart, Cameraman and Lena. According, n = 65, 536 in model (1) for these images. The blurring

matrix A is chosen to be the out-of-focus blur and the matrix B is taken to be the gradient matrix. The

observed image c is expressed as c = Ax̄+ω, where ω is the Gaussian or impulse noise. Here, we employ

the Matlab scripts: A=fspecial(‘average’,alpha) and c=imfilter(x,A,‘circular’,‘conv’)+ω, in

which alpha is the size of the kernel. In the experiment, we apply Algorithm 1 and ADM to solve model

Figure 1: The original test images: Text, Heart, Cameraman and Lena

(1) with Gaussian noise and λ = 0.16. Here, we set ω = η ∗ randn(n,n), and η is the level of noise.

For Algorithm 1, we set α = 0.9, β = 0.1, τ = 1.01 · ρ(A⊤A), υ = 1.01 · ρ(B⊤B). For ADM, we also set

β = 0.1. All iterations start with the blurred images. For each test case, we repeat the experiment three

times and report the average performance in Table 1. We report the CPU time (in seconds), the number

of iterations (Niter) required for the whole deblurring process.
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Table 1: Comparison of Algorithm 1 with ADM

Image alpha η Algorithm 1 ADM

Time Iter PSNR Time Iter PSNR

Text 3 3 1.05 13 25.02 1.19 16 25.02

3 5 0.92 13 24.91 1.36 17 24.90

Heart 3 3 0.94 16 33.46 1.20 20 33.46

3 5 1.09 16 31.73 1.20 22 31.72

Cameraman 5 3 1.44 19 25.47 1.48 21 25.47

5 5 1.25 19 25.05 1.62 22 25.05

Lena 5 3 1.51 19 27.80 1.53 21 27.80

5 5 1.26 20 27.08 1.37 22 27.08

The numerical results in Table 1 indicate that both methods reach almost the same restored PSNR,

and the restored PSNR by Algorithm 1 is always the same or a litter higher than that by ADM. In

addition, Algorithm 1 is always faster than ADM, and the number of iterations of Algorithm 1 is always

smaller than that of ADM. Thus, Algorithm 1 is more efficient and robustness than the famous ADM.

5 Conclusions

In this paper, we have proposed a linearized PRSM, which is free from any matrix inversion. Under

standard assumption, it is global convergent. The numerical results reported indicate that the proposed

method is quite efficient and promising.
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