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NUMERICAL IMPLEMENTATION OF THE ADM FOR THE
NONLINEAR SECOND KIND WEAKLY SINGULAR VOLTERRA

INTEGRAL EQUATIONS

M. JALALVAND

Abstract. In this paper we propose new idea for the implementation of the Adomian
decomposition method to solve nonlinear weakly singular Volterra integral equations. This
method represents the solution of proposed integral equations as a series generated by the
Adomian decomposition method and coefficients are evaluated by the product integration
technique. Some examples are prepared to show the efficiency and simplicity of the method.
Keywords: Nonlinear Integral Equation, Weakly Singular Volterra, product integration
method.
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1. Introduction

Integral equations of Volterra type with weakly singular kernels arise in many modelling
problems in mathematical physics and chemical reactions, such as stereology [13], heat
conduction, crystal growth, electrochemistery, superfluidity [14], the radiation of heat from
a semi infinite solid [15] and many other practical applications.We remark here that equations
of this type have been the focus of many papers [5, 7, 8, 11] in recent years.
In this paper we consider nonlinear Volterra integral equations of the second kind,

u(t) = f(t) +
∫ t

0

p(t, s)K(t, s, u(s))ds, s ∈ [0, 1], (1.1)

where u(t) is the unknown function whose value is to be determined in the interval 0 < t < 1.
We are primarily interested in the case when p(t, s) is unbounded in the region of integration,
since equations of this type arise in a number of important practical applications. Typical
forms of p(t, s) are

p(x, t) = |x− t|−α, 0 < α < 1,

or (1.2)
p(x, t) = log(x− t).

For the purpose of this paper we shall assume:
(a): f(t) is bounded and continuous in 0 < t < 1; K(t, s, u) is bounded and continuous

in t and s, for 0 ≤ s ≤ t ≤ 1, and satisfies the Lipschitz condition

| K(t, s, u1)−K(t, s, u1) |≤ L | u1 − u2 |;

(b):
∫ t

0
p(t, s)ds ≤ M < ∞, 0 ≤ t ≤ 1;

(c): for every ε > 0 there exists a δ = δ(ε) > 0, independent of t and α, such that∫ α+δ

α

| p(t, s) | ds < ε, 0 ≤ α ≤ t− δ;
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Under these conditions (1.1) has a unique and continuous solution in [0, 1].
For regular Volterra integral equations the smoothness of the kernel and of the forcing
functionf(t) determines the smoothness of the solution on the closed interval [0, 1]. Whereas
if we allow weakly singular kernels, then the resulting solutions are typically nonsmooth at
the initial point of the interval. Some results concerning the behavior of the unique solutions
of equations of type (1.1) are given in [8]. Note that the numerical solvability of weakly sin-
gular Volterra integral equations have been investigated, see for example [8].
In recent years the applications of the Adomian decomposition method (ADM) in mathe-
matical problems has been developed by scientists. This method continuously transforms a
complicated problem into a sequence of simpler problems which can be easily solved. The
ADM solves successfully different types of linear and nonlinear equations in deterministic
and stochastic fields [3, 4]. Application of ADM for solving different types of integral equa-
tions has been discussed by many authors [6, 10]. The objective of the present paper is to
approximate the solution of equation (1.1) using a new strategy of product integration, in
conjunction with ADM.
This paper is organized as follows. In section 2, some basic concepts of Adomian decom-
position method (ADM) are presented. In section 3, we describe an algorithm based on
product integration method and ADM for numerical solution of the nonlinear weakly singu-
lar Volterra integral equation (1.1). Section 4 is devoted to the numerical examples selected
from the literature in connection with Volterra integral equations.

2. Adomian Decomposition Method

The Adomians decomposition method (ADM) is a solution method with a wide range of
applications including the solution of algebraic, differential, integral and integro-differential
equations or system of equations. This method was first introduced by Adomian. In the
beginning of the 1980s. In this method the solution is considered as an rapidly converging,
infinite series. The convergence of the method proved by Y. Cherrualt et al. [1].
In this work, the nonlinear Volterra integral equation of the second kind (1.1) is considered.
The Adomian process gives

u(t) =
∞∑

i=0

ui(t) (2.1)

and the nonlinear term K(t, s, u(s)) has the Adomian polynomial representation

K(t, s, u(s)) =
∞∑

n=0

An(t, s, u0, u1, ..., un), (2.2)

where the An are functions called Adomian’s polynomials. We remark that the An are
formally obtained from the relationship

An =
1
n!

dn

dλn
K(

∞∑
i=0

λiui)]λ=0. (2.3)

For more details see [1, 2, 3]. Adomian polynomials are defined as

A0 = K(u0),
A1 = u1K

′(u0),

A2 = u2K
′(u0) +

1
2!

u2
1K

′′(u0),

A3 = u3K
′(u0) + u1u2K

′′(u0) +
1
3!

u3
1K

′′(u0), (2.4)

...
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The author in [10] deduced another programmable formula for the Adomian polynomials:

An = K(Sn)−
n−1∑
j=0

Aj , (2.5)

where the partial sum is Sn =
∑n

i=0 ui(t).
Substitutes (2.1) and (2.3) into (1.1) to obtain un(t) recursively using

u0(t) = f(t)

un+1(t) =
∫ t

0

p(t, s)An(t, s)dt, n ≥ 0. (2.6)

When the kernel of the integral equation is complicated or where calculating terms of the
series

∑∞
i=0 ui(t) is difficult or impossible analytically, the Adomian method needs modifi-

cations. We deal with this in the following section.

3. Description of Numerical Procedure

3.1. Discretization of Problem. According to the ADM, the solution of equation (1.1)
may be derived using the series introduced as (2.1). Many authors used the zeroes of
Chebyshev and Legendre orthogonal polynomials as collocation points, see [12]. Here we
discretize equation (2.6) at the collocation nodes {ti}N

i=1

⋃
{0}, which yields using orthog-

onal Chelyshkov polynomials PN,0(t) on [0, 1] with the weight function 1, (see,[9]). These
polynomials are defined as follows

PN,k(t) =
N−k∑
j=0

(−1)j(N−k
j )(N+k+1+j

N−k )tk+j , k = 0, 1, ..., N. (3.1)

The polynomials PN,k(t) have properties which are analogous to the properties of the clas-
sical orthogonal polynomials. In the family of orthogonal polynomials {PN,k(t)}N

k=0 every
member has degree N with N − k simple roots. Hence for every N, polynomial PN,0(t) has
exactly N simple roots in (0, 1).
Using a quadrature which is based on N + 1 nodal points {ti}N

i=1

⋃
{0}, and selecting collo-

cation points to be the same as nodal points, then for i = 0, 1, ..., N , we have

un+1(ti) =
∫ ti

0

p(ti, s)An(ti, s)ds, (3.2)

where {ti}N
i=1 are the roots of N th degree polynomials PN,0(t).

3.2. Product Integration Techniques. To obtain an approximate solution to (3.2) we
must replace the integral by a numerical quadrature, but since the integrand is unbounded,
standard methods are not applicable. In such circumstances product integration is often
employed. Thus, to approximate an integral of the form

I =
∫ b

a

φ(t)f(t)dt,

where φ(t) is unbounded, one chooses a functionf̄ such that f̄(t) ' f(t), and such that∫ b

a

φ(t)f̄(t)dt

can be evaluated in a simple manner (for example, by analytical methods). In the present
paper we use quadrature rules derived by approximating the integrand by piecewise polyno-
mials of fixed degree, such as straight lines. In this way one obtains composite quadrature
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rules analogous to the trapezoidal method. In order to applying product trapezoidal method,
we can rewrite equation (3.2) as a follow:

un+1(ti) =
∫ ti

0

p(ti, s)An(ti, s)ds =
i∑

k=1

∫ tk

tk−1

p(ti, s)An(ti, s)ds, (3.3)

The product trapezoidal method is constructed by approximating An(ti, s) by piecewise
linear functions (for more details see Linz, [15]), in particular

An(ti, s) =
t− tk

tk−1 − tk
An(ti, tk−1) +

t− tk−1

tk − tk−1
An(ti, tk), tk−1 ≤ t ≤ tk (3.4)

This leads to the integration formula∫ ti

0

p(ti, s)An(ti, s)ds ' αi,1An(ti, t0) +
i−1∑
k=1

(αi,k+1 + βi,k)An(ti, tk) + βi,iAn(ti, ti), (3.5)

where

αi,k =
1

tk−1 − tk

∫ tk

tk−1

(t− tk)p(ti, s)ds, (3.6)

βi,k =
1

tk − tk−1

∫ tk

tk−1

(t− tk−1)p(ti, s)ds. (3.7)

The numerical method for solving (1.1) is then

un+1(ti) = αi,1An(ti, t0) +
i−1∑
k=1

(αi,k+1 + βi,k)An(ti, tk) + βi,iAn(ti, ti), (3.8)

Hence we obtain the following numerical values by ADM as

u0(ti) = u0,i = f(ti), i = 1, ..., N,

u1(ti) ∼= u1,i = αi,1A0(ti, t0) +
i−1∑
k=1

(αi,k+1 + βi,k)A0(ti, tk) + βi,iA0(ti, ti), i = 1, ..., N,

... (3.9)

un(ti) ∼= un,i = αi,1An(ti, t0) +
i−1∑
k=1

(αi,k+1 + βi,k)An(ti, tk) + βi,iAn(ti, ti), i = 1, ..., N.

Therefore the approximation of u(ti) may be obtained using the M -term partial sum of the
Adomian decomposition series solution as follows

u(ti) ' ûi = u0,i + u1,i + ... + un,i, n = 1, ...,M. (3.10)

4. Numerical Examples

We evaluate the efficiency of our method using some examples by comparing the numerical
results with the analytical solution of the problem. To show the efficiency of the presented
method we calculate the error norms which are defined in the following:

(1): Maximum error :

E = ‖u− û‖ = max
0≤i≤N

|ui − ûi| (4.1)

(2): Root mean square error (RMS) :

ERMS =

√√√√ 1
N

N∑
i=1

[ui − ûi]2 (4.2)
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where ui denotes the exact solution and ûi denotes the approximate solution at the nodes
ti, i = 0, 1, 2, ..., N . We note that this error formula represents a reasonable measure of
the accuracy. We consider Chelyshkov polynomials {PN0(t)} of different degrees (N =
8, 16, 32, 64) to examine the accuracy of our proposed algorithms of the previous section in
the following examples. In addition in our computations, we consider a fixed M = 15.

Example 1. Consider the following integral equation

u(t) =
√

t(1− t

3
) +

1
4

∫ t

0

u2(s)√
t− s

ds.

One may see that u(t) =
√

t is the solution of this equation. Table 1 shows the errors for
different values of N . Example 1 has been solved using the radial basis functions (RBF)
method in [11]. The global error of this method is 3.59E − 9 with five basis functions. In
comparison with this BFM method, the accuracy of the our proposed scheme is considerable
and its running time is reasonable.

N E ERMS

8 1.9E − 8 2.64E − 9
16 7.88E − 9 6.66E − 10
32 5.52E − 9 3.12E − 10
64 4.39E − 9 1.94E − 10

Table 1. Results of Example 1.

Example 2. Consider the following integral equation

u(t) =
√

t− 3πt2

8
+

∫ t

0

u(s)3√
t− s

ds.

It can be investigated that u(t) =
√

t is the solution of this equation. Table 2 shows the error
between exact and approximate solutions at the nodes xi, i = 1, · · · , N , for different values
of N . Example 2 is solved in [16] with variable transformation methods in combination with
the trapezoidal quadrature rule and the absolute error between the exact and the approximate
solution evaluated at the mesh points is presented. In comparisons with this method, our
proposed method is very simple and the accuracy of the numerical results obtained with this
method is considerable.

N E ERMS

8 6.82E − 4 2.15E − 4
16 1.93E − 4 4.32E − 5
32 5.18E − 5 8.21E − 6
64 1.34E − 5 1.51E − 6

Table 2. Results of Example 2.

Example 3. As the final example consider following nonlinear integral equation

u(t) = t +
11
18

t3 − 1
3
t3lnt +

∫ t

0

ln(t− s)u2(s)ds.

One may show that following function is the solution of this equation u(t) = t. Table 3
shows the error approximation solutions at the nodes xi, i = 1, · · · , N for different values of
N . Khater et al. [12] have been solved the example 3, by Chebyshev polynomials expansion.
Comparing results reported in [12] show that for N = 128 and 64 issued maximum errors of
this problem are O(10−6) and O(10−9), respectively. Looking at Table 3, we can observe an
improvement of the accuracy for N = 64 in the case of our algorithm respect to methods in
[12].
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N E ERMS

8 5.78E − 5 2.21E − 6
16 1.75E − 6 1.69E − 7
32 4.15E − 8 1.18E − 8
64 8.6E − 10 7.92E − 10

Table 3. Results of Example 3.

5. Conclusion

In this work, a class of nonlinear weakly singular Volterra integral equations of the second
kind is investigated by using an algorithm based on Adomian decomposition method and
product integration approaches. The method of product integration is constructed with
respect to a new family of orthogonal polynomials, named Chelyshcov polynomials. The
new orthogonal polynomials keep distinctively of the classical orthogonal polynomials and
give more accurate quadratures and hence better results.
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