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Abstract. In this paper, we have decided to analyze SEIR epi-
demic model by piecewise control function dependent on threshold
policy for diseases management strategy. In this study, Ec is de-
termined as a critical value and based on this threshold have been
defined and then the timing has been specified for triggering inter-
vention measures, when the number of exposed individual exceeds
a threshold level. The solution of this model finally approaches reg-
ular/sliding equilibrium point, and this result shows that outbreak
is not possible.
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1. Introduction

Mathematical models play an important role in epidemiology and
control of diseases. In order to, predict the spread of infectious diseases,
many epidemic models have been studied and analyzed in recent years.
However, in most researches on epidemic systems, assume that the dis-
ease in Chronic is negligible and susceptible (S) individual becomes in-
fectious (I) and later recovers (R). Based on these assumptions, models
are called as SI, SIR, SIRS, etc. There are other models that assume, a
susceptible individual first goes through a latent period( said exposed
or E class) after infections, before becoming infectious, these models are
called SEIR, SEIRS, etc. Thus perusal of these models is important for
control of infectious disease spread. In recent years, several strategies
to control spreading infectious diseases have been designed with a vari-
ety of factors. For example, several studies have examined variation of
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the basic reproduction number [6, 9, 17, 32, 25] or long-term dynamics
on control measures. Also they consider variable periods of seasonality
[23, 13, 21]. Pandemic influenza outbreak [5, 7, 26] has also been stud-
ied and survey has been done on intervention measures. Although such
studies provide vital information, they do not consider situations when
multiple outbreaks are possible. Several analyzes have suggested that
individuals reactively reduced their contact rates during a pandemic
[20, 28, 26, 27]. Some studies investigated global dynamics of an SEIR
epidemic with prevention of vaccinate [29] and some researchers check
out global stability of an SEIR epidemic model with age-dependent
latency and relapse [16]. Some studies have been analyzed stability of
a quarantined epidemic model with latent and breaking-out over the
internet[12]. Also, this study has not considered timing for triggering
intervention measures [33]. Proposed a mathematical model of SIR
epidemic model and they controlled outbreaks of emerging infectious
diseases by sliding mode control. The purpose of this paper is to control
outbreaks of emerging SEIR epidemic model by sliding mode control.
Some studies consider population of varying size with immigration of
infective [26]. Other studies, consider optimal control on SEIR model
with immigration of infective [10].
In this article, researchers investigated SEIR epidemic model and con-
trol it by a piecewise control function concerning threshold policy for
disease management strategy and determined time for administer con-
trol action that depend on critical value. The overall objective is to
develop a systematic way for control of infectious disease and attain
a globally stable equilibrium. To illustrate our ideas, SEIR epidemic
model has been considered by the following system of ordinary differ-
ential equations. This model is a description of threshold policy. In
SEIR epidemic model, population is shared into four groups, and pe-
rused as the dynamics of susceptible (S), infected (I), exposed (E) and
recovered individuals (R).

dS(t)
dt

= µ− βSI − µS
dE(t)
dt

= βSI − µE − σ(1− fε)E
dI(t)
dt

= σ(1− fϵ)E − (µ+ γ)I
dR(t)
dt

= γI − µR,

(1)

where

ϵ =

{
0

1

α(E) = E − Ec < 0

α(E) = E − Ec > 0.
(2)

Model (1) description of threshold policy (TP) which is referred to
as on-off control. TP leads to a variable structure system with two
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Parameter Description
β transmission coefficient
µ natural death rate
γ recovery rate
1
σ

period of latent
f control intensity
Ec critical value for exposed group
Table 1. Parameters and descriptions of model (1)

distinct structure that separated by threshold level.
We only consider first three equations of model (1) because S + E +
I + R = 1 and when specified S,E,I we can obtain R [8]. We denote
the structure without intervention (ϵ = 0) by FS (free system) and
structure with intervention (ϵ = 1) by CS (control system). The solu-
tions of system model (1) bounded by 1, then attraction region for this
system without considering recovered individuals is as follows [11],

D = {(S,E, I) ∈ R3|S(t) + E(t) + I(t) ≤ 1}. (3)

In this section all the possible equilibria with their stability have been
considered. This equilibria divided into two groups; natural and sliding
and each of them may be virtual or real.

We obtain disease-free equilibrium that is (1, 0, 0), with specified
jacobian matrix and obtain eigenvalue for this point. Issue the disease-
free equilibrium point is asymptotically stable [15].
For FS, the basic reproduction number given by [11],

R01 =
σβ

(µ+σ)(µ+γ)
.

Also, the basic reproduction number have been defined for CS as
fallow

R02 =
σ(1−f)β

(µ+σ(1−f))(µ+γ)
,

Now, the endemic state, equilibrium point of FS given by

E1 = ( 1
R01

, µ(µ+γ)
βσ

(R01 − 1), µ
β
(R01 − 1)).

If R01 > 1 then E1 is globally asymptotically stable,
because eigenvalues of E1 : −0.0002+0.0041i,−0.0002−0.0041i,−0.2144
are negative.
In endemic state, equilibrium point for CS is obtained as follows,
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E2 = ( 1
R02

, µ(µ+γ)
βσ(1−f)

(R02 − 1), µ
β
(R02 − 1)).

If R02 > 1 then E2 is globally asymptotically stable. For calculat-
ing eigenvalue, suppose one of them λ = −µ, for obtaining remainder
eigenvalues, The following process has been performed. If
I be indicative identity matrix,

det(λI− J) = 0

⇒ λ3 + (µR02 + 2µ+ σ + γ)λ2 + µR02(2µ+ σ + γ)λ+ µ(R02 − 1)

(µ+ σ)(µ+ γ) = 0.

Since in more cases σ and γ are greater than µ and µR02 then one
of solution approximate λ ∼ −(σ + γ) and one solution with second
degree as follows to be left, [11]

λ2 + µR02λ+ γσ
σ+γ

µ(R02 − 1) ≈ 0

=⇒ △ = (µR02)
2 − 4( γσ

σ+γ
µ(R02 − 1)).

Now if △ ≥ 0 then E2 is stable node and if △ < 0, E2 is spiral
stable.
Moreover, if we choice 0 < f < 1 then R02 > 1 is satisfied and eigenval-
ues of E2 are complex with negative real part; therefore, E2 is asymp-
totically stable.
Define H1 and H2 as follows;

H1 =
µ

µ+σ(1−f)
− µ(µ+γ)

βσ(1−f)
, H2 =

µ
µ+σ

− µ(µ+γ)
βσ

.

Now we have several cases: If Ec < H1 then the endemic state of
FS is virtual equilibrium, that denoted by E1

V and the endemic state
of control system is regular equilibrium point that denoted by E2

R.
Now, if Ec > H2, FS has regular equilibrium point that is denoted by
E1

R and CS has virtual equilibrium point denoted by E2
V .

When H1 < Ec < H2 then we have virtual equilibrium points for both
theFS and CS. Therefore, we need to defined sliding domain for re-
gion H1 < Ec < H2 and obtain sliding equilibrium.
At first we examine existence of the sliding mode and then sliding re-
gion have been defined . The manifold η is define as follows,

156



Analysis and Control of SEIR Epidemic Model Via Sliding Mode Control

Figure 1. Bifurcation set for system (1) with respect
to the control intensity f and threshold level Ec.

Figure 2. Bifurcation set for system (1) with respect
to the control intensity f and change in number of indi-
vidual infectious I.

η = {(S,E, I) ∈ R3 : α(E) = 0},
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that it is discontinue surface between two different structures of the
system. Therefore, sliding domain has been defined as follow,

Ω = {(S,E, I) ∈ R3 : (µ+γ)(µ+σ)
βσ

≤ S ≤ (µγ)(µ+σ(1−f))
βσ(1−f)

,

E = Ec,
µσ

(µ+γ)(µ+σ)
− µ

β
≤ I ≤ µσ(1−f)

(µ+γ)(µ+σ(1−f))
− µ

β
}

For obtaining equivalent control in this system ε have been calculated
and replace to another equation. Therefore, α̇ = Ė = 0

=⇒ βSI − µE − σ(1− fε)E = 0

=⇒ ε = 1
f
(1− βSI−µE

σE
),

now if ε and E = Ec replace into equations system (1) then gives
the system dynamic on the switching surface,

{
Ṡ = µ− βSI − µS

İ = βSI − µEc − (µ+ γ)I.
(4)

Therefore, we have,

Es = (S∗, Ec, I
∗) such that I∗ = − Ecµ

γ+µ−βS
and S∗ = µ

µ+βI

which is equilibrium point of equations (4) and it is locally asymp-
totically stable on switching surface, moreover, it is sliding equilibrium
point for system (1). If

(µ+γ)(µ+σ)
βσ

< S∗ < (µ+γ)(µ+σ(1−f))
βσ

and µσ
(µ+γ)(µ+σ)

− µ
β
< I∗ < µσ(1−f)

(µ+σ(1−f))(µ+γ)
− µ

β
,

then sliding equilibrium point Es belongs to sliding domain.
Now, for analysing globally stability and behavior of system (1) we
need to obtain attraction region and discover relation between sliding
domain and attraction region. Expression between these regions have
been investigated.
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2. Global behavior

In this section asymptotically behavior of system (1) have been con-
sidered to achieve stability for this model. We consider this model with
different control intensity f and the threshold level Ec. The result of
this ascertainment is given by following theorems.

Theorem 1. E2
R is globally asymptotically stable if

Ec >
µ

µ+σ(1−f)
− µ(µ+γ)

βσ(1−f)
.

Proof. We replace S and I with maximum value of them in sliding
domain and Ec replace with above value. Then we have İ > 0 and
Ṡ > 0 so, when trajectories hit the sliding domain Ω, the state vector
starts to move to the right end of the sliding domain along the sliding
domain. □

Claim 1. The trajectory initiating from right end of sliding domain
will not hit the sliding domain again.

Claim 2. No limited cycle surround the regular equilibrium E2
R

and sliding mode domain.
Denote the right-hand side of three equations of model (1) by f1, f2 and
f3. For E < Ec, choosed D = 1

EI
as a Dulac function [22] then we have,

∂(Df1)
∂S

+ ∂(Df2)
∂E

+ ∂(Df3)
∂I

= β
E
− βS

E2 − σ(1−f)
I2

< 0.

Therefore, according to Bendixson-Dulac theorem [22] there is no limit
cycle that surrounds the equilibrium E2

R and sliding mode domain.
In this case if we choose 0 < f < 0.9999 and Ec = 0.00001 then E2 is
asymptotically stable with complex eigenvalues that they have negative
real part. Also, if f be as previous and Ec = 0.0001, E2 is asymptoti-
cally stable again.
combination of Claim 1, Claim 2, and local stability of E2

R implies that
it is globally asymptotically stable.

Theorem 2. The sliding equilibrium Es is globally stable if

H2 < Ec < H1.

Proof. By choosing the value 0 < f < 1 and Ec = 0.00001 inequality
H2 < Ec < H1 is satisfied and Es (sliding equilibrium) has eigenvalues
as follows:

−0.000040395190097 + 0.000000119460617i
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0.219956196209510 + 0.074604651500485i
−0.398583347844065− 0.074595331823543i.

So Es has two complex eigenvalues with negative real part and one
complex eigenvalue with positive real part then it is asymptotically
stable. Also by using a analogous manner to Claim 2 in Theorem 1 we
can prove that no limit cycle surrounds the sliding domain. Therefore,
ES is globally stable.

□
Theorem 3. The equilibrium E1

R is globally stable if Ec < H2.

Proof. If we choose Ec ≤ 0.0001 , inequality Ec < H2 is possible and
E1 has complex eigenvalues with negative real parts therefore, E1 is
asymptotically stable. Using alike style theorem 1 we can prove that
E1

R is globally stable. □

Conclusion

In this paper SEIR epidemic model have been studied then shown
how we can prevent of outbreak of infectious diseases. Piecewise con-
trol function has been applied depending on threshold policy to diseases
management strategy. In the case that two equilibrium points of free
system and control system, to be real, the model will be stable in two
points and in the case that both of equilibrium points be virtual then
we obtain sliding equilibrium point and showed that this point is sta-
ble. In general, control on exposed individual was defined and different
modes were investigated. Finally, we found if critical value for exposed
individual was defined then we can determine when intervention on
system occurred. This process utilized by piecewise control function.
Theorems in previous section show that in different cases one of equi-
librium points of free system, control system and sliding equilibrium
point is stable. Therefore, outbreak seems impossible.
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