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Abstract 
 
This paper presents the application of probabilistic methodology to a mechanical 
component.  The probabilistic analysis approach assigns Probability Density Functions 
to sources of uncertainty and variation and then propagates the PDFs through a 
physics-based model to produce PDFs of model responses.  This paper discusses how 
appropriate PDFs are selected for boundary condition uncertainty, model uncertainty, 
and manufacturing variation.   A Latin Hypercube experimental design provides a series 
of design points that fill the entire design space.  The Latin Hypercube is run through a 
physics-based model to relate model inputs with analysis outputs.  With this data, the 
model is emulated with a Gaussian Process.  The Gaussian Process serves as a fast 
running approximation of the physics-based model.  The emulator is coupled with lifing 
equations for a Monte-Carlo analysis that yields probability distributions for model 
outputs.  Furthermore, sensitivity analysis quantifies the relative effect of uncertainty 
and variation on part life.  A jet engine turbine component is used as an example of the 
application of the general methodology. 
 
Nomenclature 
 
a, b ,c – thermal mechanical fatigue life equation coefficients 

𝑘1…5– b-spline coefficients 
pf – profile factor 

𝜎 – standard deviation 
R2 – coefficient of determination 

𝑇𝑙𝑜𝑐𝑎𝑙 – local temperature value at given radius 
𝑇𝑎𝑣𝑔 – the average temperature of the temperature profile 

𝑇𝑐– the cooling air temperature 
𝑇𝑔 – the average hot gas path temperature  

𝜇 – mean\nominal 
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Acronyms 
 
CCE – Collaborative Computing Environment 
CFD – Computational Fluid Dynamics 
CVRMSE – Cross Validation Root Mean Squared Error 
DFV – Design for Variation 
DOE – Design of Experiments 
FEM – Finite Element Model 
HPT – High Pressure Turbine 
IPT – Integrated Product Team 
LCF – Low Cycle Fatigue 
LPT – Low Pressure Turbine 
MCMC – Markov Chain Monte-Carlo 
MLEGP – Maximum Likelihood Estimate of Gaussian Processes  
PDF – Probability Density Function 
RCCA – Root Cause Corrective Action 
TMF – Thermal Mechanical Fatigue 
TMTF – Turning Mid Turbine Frame 
 
Software Packages 
ANSYS® (ANSYS® 2007) 
Unigraphics® (Unigraphics® 2008) 
Unigraphics Advanced Simlutation® (Unigraphics®, 2008) 
 
1.0 Introduction 
 
When designing a physical part, there is inherent uncertainty and variation that must be 
accounted for to ensure that the design meets the performance criteria.  The models 
used to access the design may contain inaccurate parameters, biases, or stochastic 
error.  Boundary conditions are typically uncertain because there is not sufficient data to 
accurately quantify the boundary conditions or boundary prediction models contain 
uncertainties.  There is also manufacturing variation that affects final part performance 
in the field.  Finally, there is usage and environmental uncertainty.  While a nominal 
design may meet all the objectives, a manufactured part within tolerance may not.  
Clearly, all this uncertainty and variation must be considered during the design phases 
of a product.  There are two approaches for handling this uncertainty and variation. 
 
The deterministic approach generates a nominal design with sufficient margin such that 
the manufactured part will still meet the requirements even in a worst case scenario.  
Factors of safety are assigned to safety critical metrics and/or key performance criteria.  
With this approach, it is impossible to determine if there truly is sufficient margin.  The 
uncertainty is not explicitly accounted for so the engineer is forced to rely on expert 
opinion and prior demonstrated capability.  This can cause part performance predictions 
to be overstated.  Furthermore, there is no way to calculate how much the margin or  
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safety factor is adversely affecting the design in terms of other metrics.  This can lead to 
a part that is over designed and over cost.  While it is straightforward and easy to apply 
the deterministic approach, there are significant inherent. 
 
An alternative to deterministic design is probabilistic design.  Probabilistic design 
assigns Probability Density Functions (PDFs) to sources of design uncertainty and 
variation.  Thus, the uncertainty is explicitly accounted for in the probabilistic approach. 
The probability distributions are then propagated through the analysis to produce PDFs 
of the responses.  With these output PDFs, the probability that the design will meet its 
requirements can be calculated.  Thus, there is no “sufficient margin” concern and 
opposing design requirements can be effectively traded and balanced.  This allows the 
engineer and company to make the appropriate business decisions. 
 
There are challenges associated with probabilistic design.  First, probabilistic design 
requires more execution of the physics-based model than the deterministic design 
approach.  This is a challenge because of schedule constraints and computing 
resources.  Due to schedule, the models must be automated because it is infeasible to 
manually execute all of the physics-based analyses.  This means that engineers must 
make engineering mode parametric and robust.  Second, assigning accurate probability 
distributions that represent the true uncertainty is difficult.  Correlated uncertainty makes 
this even more challenging.  Finally, probabilistic design requires thousands of design 
points be analyzed for a Monte-Carlo analysis.  Unless the physics-based analysis runs 
in seconds, which is typically not the case, the physics-based model must be replaced 
with an emulator.  Building an emulator that accurately replicates the physics-based 
model is challenging when there are non-linearities in the design space and residual 
error in the physics-based model predictions. 
 
This paper discusses the application of the Design for Variation (DFV) methodology 
developed by Reinman et al. (2012) to the design and analysis of a turbine jet engine 
component.  Furthermore, the development of an automated engineering analysis 
workflow via a new propriety tool called Collaborative Computing Environment (CCE) is 
presented.  The building of a robust parametric automated engineering analysis 
workflow is one of the largest challenges to implementing the DFV methodology 
especially when high fidelity, multi-disciplinary models need to be coupled together.  
Previous work in this area by Bunker (2009) and Heinze et al. (2012) only account for 
manufacturing variation.  Boundary condition uncertainty and model uncertainty are also 
considered in this paper.  Furthermore, the methodology is applied to a real world 
design with schedule and cost constraints.   
 
2.0 General Methodology 
 
This paper follows and summarizes the methodology described by Reinman et al. 
(2012).  In this methodology, there are five steps for executing a DFV-enabled process. 
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Step 1) Define 
Some customer requirements may be probabilistic while others are deterministic.  All 
deterministic requirements must be converted to probabilistic requirements by including 
the customer and considering the consequence of failure. 
 
Step 2) Analyze 
The analysis processes must be DFV-enabled.  This means that all models and 
analyses in the process, including both geometric and analytical models, are robust 
parametric and batch executable.  Developing a DFV-enabled process is challenging 
and the ten elements of a DFV-enabled process are discussed later.  This DFV-enabled 
process is used to identify root causes of performance variation and uncertainty. 
 
Step 3) Solve 
Identify the optimum design that satisfies the probabilistic customer requirements. 
 
Step 4) Verify/Validate 
Model input and output data from the real world might have already been collected and 
used to calibrate the model, but typically these data sets are too small to cover the full 
range of input variation. Once the optimal design has been obtained and the real-world 
version of the process moves into the validation phase, model input and output data 
should be collected to verify and validate previous variation and uncertainty 
assumptions. 
 
Step 5) Sustain 
Once the model has been validated, data collection and testing continue, but the 
purpose of the data collection changes to ensuring that the model remains consistent 
with the real world.  At this time, efforts are made to stabilize the important causes of 
process performance variation that are under manufacturing control and to monitor 
those that are not. 
 
A fully DFV-enabled physics-based model according to Reinman et al. (2012) has the 
following ten elements within six categories.  The elements and categories are 
summarized as: 
 
Model Preparation 

1. A robust parametric physics-based model 
Model Input Variability and Uncertainty Quantification 

2. Process for retrieving data needed to quantify variability and uncertainty in model 
inputs 

3. Process for performing statistical analysis/developing statistical model of input 
data 

a. Preserve correlations and physical meaning 
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Model Sensitivity Analysis 

4. Process for generating a matrix of space-filling computer experiments (model 
runs) for emulator development 

5. Process for running the physics-based model at the space-filling design points 
6. Process for building and validating the model emulator and performing a 

variance-based sensitivity analysis (Saltelli et al. 2001) 
Model Calibration 

7. Process for determining what experimental/field data are required for model 
calibration and measurement uncertainty (amount and characteristics to be 
measured) 

8. Process for performing Bayesian model calibration (Kennedy and O’Hagan 
2001): calibrate, potentially bias correct, and assess residual variation 

Uncertainty Analysis 
9. Process for generating a Monte-Carlo sample and driving though 

a. Parametric model (if fast enough) 
b. Model emulator 
c. Calibrated and potentially biased corrected emulator model 

Enable Practice 
10. Update local engineering standard work (work instructions and criteria) and local 

training. Establish a process to ensure the model is capable early on and over 
time. 

 
One particularly challenging element is the creation of a robust parametric physics-
based model.  In the example discussed in this paper, models from different 
engineering disciplines need to be coupled together in an automated multi-disciplinary 
engineering analysis workflow.   A new decentralized approach was developed to 
facilitate the development of a robust parametric physics-based model.  A decentralized 
approach keeps the building, testing, and workflow execution control with the discipline 
engineers that traditionally own a particular piece of the overall workflow.  This 
parallelizes the development of the workflow and accelerates workflow debugging 
because the discipline experts are directly responsible for failures and bugs.  A tool 
called CCE was developed to allow engineering teams to collaboratively build and 
execute automated multi-disciplinary engineering analysis workflows. 
 
CCE works by first placing all parts of the automated workflow in a revision 
management system where each discipline owns a branch.  The engineers are then 
responsible for making their piece of the workflow parametric and batch enabled.  Once 
that is achieved, CCE parallelizes the execution of multiple design points by submitting 
and retrieving cases from a compute cluster.  Furthermore, CCE provides methods to 
generate a Design of Experiments (DOE) and to summarize the results across multiple 
runs into a single location.  To tie the pieces of the workflow together, CCE automates 
the passing of files between the different branches of the revision management system.  
Execution of each piece of the workflow is controlled by the owning engineer.  During 
execution of the workflow, each piece of the workflow is executed as an entire batch. 
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To illustrate the real world application of the general methodology, an example problem 
using a jet engine component is provided.  This problem contains all the elements and 
steps of a DFV-enabled process and illustrates the application of CCE to build an 
automated workflow. 
 
3.0 Example Problem 
 
A Turning Mid-Turbine Frame (TMTF) is in the gas path between the High Pressure 
Turbine (HPT) and Low Pressure Turbine (LPT) of a jet engine.  The purpose of a 
TMTF is to allow access to the shaft for a bearing while minimizing aerodynamic loses.  
The TMTF also protects the bearing structure from high gas path temperatures.  It is 
challenging to design a TMTF due to harsh boundary conditions, model uncertainty, and 
multiple objectives.  The figure below shows a representative engine cross section with 
a TMTF. 
 

 
Figure 1: PW1000G Cross Section with Highlighted TMTF Region 

(http://www.a320neo.com/pratt-whitney-pw1000g.php)  
 
When designing a TMTF or any mechanical part, the goal is to ensure that production 
hardware meets the requirements in the production engines.  This is a difficult problem 
because there is a great deal of uncertainty.  For example, the gas path temperature 
profile is an important driver of Thermal Mechanical Fatigue (TMF) and Low Cycle 
Fatigue (LCF) life.  The actual gas path temperature profile that is seen by the hardware 
in the engine is unknown.  In many instances, available gas path temperature profile 
data is from engines with different configurations.  Models that are used to predict the 
gas path temperature profile have inherent uncertainty.  Furthermore, the models that 
are used to predict the stress, strain, metal temperature, and life have inherent 
uncertainty.  The models may contain inaccurate parameters, biases, or stochastic  
residual error.  Finally, manufacturing variation effects final part performance.  While the 
nominal design may meet the objectives, a manufactured part within tolerance may not  
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meet requirements.  Clearly, it is difficult to meet all of the requirements without 
needlessly increasing manufacturing cost given the high degree of uncertainty.  
 
3.1 Customer Requirements 
 
The TMTF component requirements were communicated from the customer to the 
Integrated Product Team (IPT).  Engine level requirements such as weight, 
performance, part level requirements were defined.  The TMTF had requirements for 
cost, weight, TMF life, LCF life, oxidation life, pressure loss, reliability, secondary flow, 
and schedule.  In addition, the LPT had a module level efficiency requirement.  The 
TMTF contributes to the overall LPT efficiency. 
 
The goals for the IPT were to allow for more aerodynamic analysis iterations within the 
schedule, quantify the effect of temperature profile uncertainty, increase the part life, 
and improve the LPT module efficiency.  Typically, TMTF IPTs are able to manually 
execute roughly a dozen analyses in six months and within these analyses, only one to 
two aerodynamic iterations would be executed. 
 
Due to the challenging nature of the design problem and schedule, not every output 
could be probabilistically analyzed.  For the TMTF, weight, LCF life, and TMF life were 
dealt with probabilistically while all other requirements were handled deterministically.  
These outputs were selected because they were the most critical and had the most 
difficult requirements to satisfy.    
 
3.2 Model Preparation 
 
The TMTF was a full wheel cast part consisting of fourteen airfoils.  Two airfoils with 
cyclic symmetry boundary conditions were analyzed.  This modeling technique captures 
the necessary physics while reducing computational solution time.  Thirty-three input 
variables were parametric and thirty-three outputs were tracked.  For the thirty-three 
input variables, twenty-four were geometric, five defined the temperature profile, and 
four parameters characterized the TMF life model.  The geometry is shown in the figure 
below. 
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Figure 2: Geometry 

 
These parameters were selected because they were expected to be important drivers of 
stress, temperature, and life in the life limiting locations.  This decision was based on 
previous sensitivity analyses and engineering experience. 
 
Design space limits were assigned to geometric parameters based on expert elicitation.  
It was decided, that the limits would far exceed typical manufacturing tolerances 
because the goal was to find a nominal geometry that was robust to variation and  
 
uncertainty.  The details of the temperature profile and TMF life model parameters will 
be discussed later in the paper.  TMF life and LCF life were tracked at every fillet 
location for each airfoil in the model for a total of thirty-two life outputs.  The last output 
was the weight of the part.  
 
The engineering analysis workflow consisted of the following analyses: 3d geometry 
generation, gas path temperature profile generation, external thermal boundary 
condition generation and application, internal thermal boundary condition generation 
and application, thermal meshing, thermal Finite Element Model (FEM) solution, 
structural meshing, structural FEM solution, TMF life calculation, and LCF life 
calculation.  The engineering workflow is shown in the figure below. 
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Figure 3: Automated Engineering Analysis Workflow 

 
The 3-dimensional TMTF geometry was modeled and meshed using Unigraphics and 
Unigraphics Advanced Simulation.  The weight of the part was also calculated in 
Unigraphics.  Two separate meshes were created for the analysis, one thermal and one 
structural.  Transient Internal and external boundary conditions were generated via 
proprietary Pratt & Whitney software.  The thermal and structural analyses were solved 
in ANSYS.  During the transient structural solution, the stress, strain, and metal 
temperature were stored at the life limiting time point for the life limiting regions.  These 
values were then used to calculate TMF life and LCF life via a proprietary Pratt & 
Whitney lifing system. 
 
All of the analyses were coupled together in an automated engineering analysis 
workflow via the CCE tool.  Each piece of the workflow was parametric with the ability to 
be executed on a compute cluster.  Once the pieces of the workflow were finished, the 
IPT collaboratively built and executed the automated workflow.  The development of the 
automated workflow eliminated a major hurdle of coupling models and analyses 
together to create a parametric physics-based model.  CCE enabled the automated 
workflow because each engineer had ownership over their own piece of the workflow.  
This means they were responsible for building, testing, and controlling the execution of 
their piece of the workflow.  Furthermore, CCE ties the analysis files to a revision 
management system.  This allowed automation experts to work with the IPT since files 
could easily be shared and kept in sync.  CCE allowed the IPT to build, test, and 
execute the workflow while satisfying schedule constraints. 
 
The automated workflow was executed at 870 discrete design points.  A Latin 
Hypercube (Fang et al. 2006) was generated to fill the design space.  There were 
twenty-nine input variables in the Latin Hypercube.  The team selected thirty runs per 
input variable because this was expected to sufficiently fill the design space to produce  
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an accurate emulator.  The automated workflow achieved a 60.9% success rate.  Due 
to schedule constraints, the IPT was not able to improve the robustness of the models 
any further.  The biggest causes of model failure were structural meshing and 
parametric geometry.  The structural meshing was difficult due to refined sub models 
and maintaining boundary conditions at the cut plane boundaries.  The parametric 
geometry would fail due to complex endwall contouring not updating in the Unigraphics 

model.  A Root Cause Corrective Action (RCCA) is proposed in the sustain section of 
this paper to address this issue. 
 
3.3 Model Input Variability and Uncertainty Quantification 
 
Each geometric variable was assumed to follow a normal distribution and each 
parameter was assumed to be independent.  The standard deviation associated with 
each distribution was selected based on expert opinion.  The goal of the analysis was to 
determine the mean of the distribution.  The normal distribution and independence 
assumptions were not validated due to time constraints.  Ideally, manufacturing data 
from other similar parts that use the same manufacturing process would be used to test 
the normal and independent assumptions. 
 
The thermal profile was the 1-dimensional radial gas path temperature profile in front of 
the TMTF.  Proprietary Pratt & Whitney models used the thermal profile as an input to 
determine the full thermal boundary conditions that were applied to the TMTF.  There 
were three data sets available to quantify the uncertainty in the gas path temperature 
profile.  Unfortunately, these data were from different engines that had different 
combustor designs, different HPT airfoils counts, and different core sizes.  While 
applying this data to the TMTF was an extrapolation, it was the most applicable engine 
data available.  Each data set contained temperature measures at fixed circumferential 
and radial positions for multiple time points and power conditions.   
 
The goal for the uncertainty quantification was to model the engine-to-engine 
uncertainty and apply it to the worst temperature profile.  Because this was a single cast 
part, the worst profile at any circumferential location was used in the model.  If one 
airfoil fails, the entire part fails.  The analysis system was designed to model the worst 
temperature profile and subsequently scale the thermal results to different power 
conditions.  While the gas path temperature profile shape certainly changes with 
different power conditions, it was assumed to be fixed for this analysis because the 
analysis tools could not handle analyzing different temperature profiles at different 
power conditions.  Hence, the goal was to quantify the uncertainty of engine to engine 
variation in the worst temperature profile, regardless of circumferential location. 
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The 1-dimensional radial gas path temperature profile was typically modeled as a non-
dimensional profile factor (pf) instead of an absolute temperature.  The formula for 
profile factor was: 
 

𝑝𝑓 =
𝑇𝑙𝑜𝑐𝑎𝑙−𝑇𝑎𝑣𝑔

𝑇𝑔−𝑇𝑐
                                                         (1) 

 
where 𝑇𝑙𝑜𝑐𝑎𝑙 was the local temperature value at given radius, 𝑇𝑎𝑣𝑔 was the average 

temperature of the temperature profile, 𝑇𝑔 was the average hot gas path temperature 

produced by the combustor, and 𝑇𝑐 was the cooling air temperature from upstream of 
the combustor. 
 
Each engine dataset had temperature profiles at multple circumferential locations at 
many time points.  Since the worst profile was being modeled, the data needed to be 
processed to find the worst profile, regardless of circumferential location, for every time 
point.  Thus, an equation that relates temperature profile to min part life was developed 
to determine the worst temperature profile. 
 
To develop the equation, a Latin Hybercube Sample (Fang et al. 2006) of one hundred 
temperature profiles was generated and run through the full analysis.  Each profile was 
generated using a b-spline with five independent coefficients (Ramsay et al. 2009).  
Once the thermal, structural, and life analyses were complete, each profile had an 
associated TMF life and LCF life at each fillet location.  From analyzing the data, the 
TMF life was more limiting than the LCF life.  Therefore, the LCF life was eliminated and 
the minimum TMF life was used.  Using this data, an equation was developed that 
relates b-spline coefficients (k) and profile factor (pf) to the TMF life.  Figure 4 shows the 
results of the residual analysis. 
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Figure 4: Residual Plots for TMF life 

 
The R2 value for the equation was 99.1%.  The residual analysis shows that the 
residuals are normally distributed and independent of the fitted values.  Given the high 
R2 value and the residual analysis, it was suitable to use this equation to determine the 
worst profile at a given time point.   
 
For each time point of each engine dataset, the worst profile was determined via the 
TMF life equation.  With this dataset of worst temperature profiles, a Bayesian 
hierarchical model fitting procedure was executed to develop a statistical sample of 
temperature profiles.  This statistical sample represents the engine to engine variation in 
the worst temperature profile.  The sample was then centered on a computationally 
derived worst profile.  The computationally derived worst profile was treated as a 
nominal worst profile. 
 
3.4 Model Emulation and Sensitivity Analysis 
 
Due to the large number of outputs, a reduction in the number of outputs was 
necessary.  This reduced the emulator building and execution time and allowed 
schedule constraints to be met.  There were some regions that were obviously not life 
limiting when compared to other regions.  Furthermore, the life results of many regions 
were highly correlated.  In many of these instances, one region always had lower life 
than another.  In these cases, the higher life region was eliminated.  For this problem, 
the thirty-three outputs were reduced to ten, seven TMF regions, two LCF regions, and 
weight. 

420-2-4

99.9

99

90

50

10

1

0.1

Standardized Residual

P
e

r
c
e

n
t

10.09.59.08.58.0

3.0

1.5

0.0

-1.5

-3.0

Fitted Value

S
ta

n
d

a
r
d

iz
e

d
 R

e
s
id

u
a

l

210-1-2-3

20

15

10

5

0

Standardized Residual

F
r
e

q
u

e
n

c
y

9080706050403020101

3.0

1.5

0.0

-1.5

-3.0

Observation Order

S
ta

n
d

a
r
d

iz
e

d
 R

e
s
id

u
a

l

Normal Probability Plot Standardized Residual Versus Fits

Histogram Standardized Residuals Versus Order

Residual Plots for log(min(TMF life))



135 
 

Probabilistic Assessment of a Mechanical Component 
 
Emulators were created for strain, stress, and temperature and life equations were then 
used directly.  The life equations were easy to program and ran quickly so there was no 
need to emulate life.  Furthermore, emulating life values was difficult due to the inherent 
nonlinearities.  The emulators were created via the R (R Development Core Team 
2010) package MLEGP (Dancik 2010).  MLEGP stands for Maximum Likelihood 
Estimate of Gaussian Processes.  For this problem, this approach delivered the best 
accuracy while maintaining execution time requirements when compared to other 
available emulation software.  The emulator error was higher than the desired goal of 
+/- 4%.  Emulator error is quantified through the Cross Validation Root Mean Squared 
Error (CVRMSE) statistic.  The goal of +/- 4% was derived from the typical uncertainty in 
the FEM due to mesh size.  Per past experience, this level of uncertainty was deemed 
to be acceptable.  The likely cause of the emulator error was the 39.1% failure rate in 
the Latin Hypercube runs.  The design space was not adequately filled to generate a 
quality emulator.  However, the emulators were still trend wise accurate for the 
important drivers and emulator uncertainty was accounted for in the final uncertainty 
analysis.  Actual versus predicted plots for a subset of the outputs are shown below. 
 

 
Figure 5: Actual versus Predicted Plots for Emulators 

 
Regions 1 and 2 in figure 5 are two regions that could be life limiting.  Figure 5 shows 
that the emulators are highly accurate for temperature based on the CVRMSE but are 
less accurate for strain and stress.  However, the emulators are acceptable to make 
trend wise decisions and the emulator error will be accounted for in the final uncertainty 
analysis.  For the sensitivity results, the emulator error was the largest contributor to the 
variance in the life output as shown in figure 6.  This emulator error could cause the 
weight of the final part to be higher to ensure that the life metric would be met.  Life may 
need to be increased at the expense of weight to account for the large degree of 
emulator error. 
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Figure 6: Sensitivity Analysis Results 

 
These sensitivity results were the global sensitivity results.  The entire range of the 
geometric values was used to calculate the sensitivity.  A uniform distribution was 
assumed for the geometric parameters.  In the left hand sensitivity analysis, geom_prof, 
geom_life, and prod_life represent interaction effects of geometry and profile, geometry 
and life, and profile and life, respectively.  The full profile and life uncertainty was 
captured.  Intuitively, these results made sense based on expert opinion.  This shows 
that the selected nominal design was the most important factor towards determining the 
life of the part.  Furthermore, there was minimal interaction between the parameters.  
Thus, the same engineering design would be optimal regardless of the temperature 
profile and life coefficients.  This shows that the trend wise accurate emulators could be 
used to find the optimal design.  However, the actual life results of the optimal design 
point would have to be determined by the full computational analyses. 
 
The sensitivity results revealed a beneficial situation.  Half of the geometric factors that 
drove life did not drive weight.  The right hand sensitivity analysis in figure 6 shows the 
major drivers of weight and the left hand sensitivity analysis shows the level of impact 
those parameters have on life.  Thus, there was an opportunity to increase the life of the 
part without increasing weight because there were parameters that affected life but not 
weight.  Once all of those parameters were optimized, the IPT would have to increase 
the weight of the part to increase life.  Furthermore, the uncertainty in the life result due 
to emulator error would require an increase to the nominal life of the part to ensure that 
the life metric was met.  
 
3.5 Model Calibration 
 
The TMF life model was a nonlinear regression equation derived from experimental 
data.  The two inputs were strain and temperature.  The TMF life equation had three 
uncertain coefficients: a, b, and c that represent the intercept and the coefficients on 
strain and temperature. A Bayesian regression was performed to determine the full 
posterior distributions of a, b, c and the square root of the residual variance along with  
 



137 
 

Probabilistic Assessment of a Mechanical Component 
 
the associated Maximum a Posteriori estimates based on the experimental data.  To 
facilitate numerical stability, the Markov Chain Monte-Carlo (MCMC) was executed on 
the natural logarithm of TMF life instead of TMF life directly.  For a detailed description 
of Bayesian regression theory, see Gelman et al. 2003.  The Bayesian regression was 
executed using the R package R2WinBUGS (Sturtz et al. 2005).  The full posterior 
distributions of the life equation coefficients and the residual variance are shown in 
figure 7. 
 

 
Figure 7: Beer and Eggs Correlation Plot (Schnute et al. 2014) of TMF Life Equation 

Parameter Distributions 
 
The eggs in the lower left hand corner are a contour plot that shows the correlation 
between parameters.  The beer in the upper right hand corner shows the strength and 
direction of the correlation.  Visually, the residual variance follows the chi-squared 
distribution, as is expected for the regression.  The correlation plot of the posterior 
distributions showed that the life equation parameters were highly correlated.  Thus, the 
MCMC samples were used directly in the TMTF probabilistic life assessment.  The 
regression uncertainty in the TMF life equation was large relative to the lives predicted 
by the equation.  This was large contributor to the final TMF life prediction uncertainty 
for the TMTF. 
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3.6 Uncertainty Analysis 
 
The objective of the uncertainty analysis was to propagate all sources of uncertainty 
and variation through the computational analysis to calculate probabilistic distributions 
on all of the desired outputs.  To do this, a Monte-Carlo analysis was executed for a 
given nominal design point.  First, a nominal design point was selected and distributions 
were calculated for each of the geometric variables.  Each geometric variable had a 
normal distribution and was independent of the other geometric parameters.  Second, a 
sample of temperature profiles was generated.  With this information, emulators were 
used to predict stress, strain, temperature, and weight.  With each emulator prediction, 
a nugget error term was added to the prediction to account for the emulator error.  
Third, LCF and TMF life were calculated from the emulator stress, strain, and 
temperature values.  For TMF life, a sample of life equation coefficients was generated 
to calculate the sample of TMF life.  The LCF and TMF life samples were created for the 
nine regions of interest on the TMTF.  Finally, the minimum LCF and TMF lives across 
all of the regions were saved to produce probabilistic distributions for the minimum LCF 
and TMF lives.  These distributions along with the probabilistic weight distribution 
constituted the objective of the uncertainty analysis.  This procedure is illustrated in 
figure 8.  It is important to note that the uncertainty analysis was computationally 
feasible because of the speed of the emulators. 
 

 
Figure 8: Uncertainty Analysis Procedure 

 
3.7 Solve – Probabilistic Solution 
 
The goal of the TMTF IPT was to find a nominal design that was robust to variation and 
uncertainty, such that, the design objectives were met.  Thus, an optimizer was 
wrapped around the uncertainty analysis to determine the nominal part design (μ).  The 
standard deviations (σ) were fixed because there was no output in the analysis, such 
as, cost or manufacturability to prevent the optimizer from driving the standard deviation  
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to zero.  The objective for the optimization was to minimize the mean weight while 
satisfying the TMF and LCF life constraints.  The R function optim (Nash and Ravi 
2011) and the algorithm L-BFGS-B algorithm (Byrd et al. 1995) were used for the 
optimization.  The optimization procedure is illustrated in figure 9. 

 

 
    Figure 9: Optimization Procedure  
 
The life equation used for TMF life predicts actual TMF life while the LCF life equation 
predicts the B.1 LCF life.  B.1 LCF life was the life of a 0.1 percentile part.  The weight 
equation predicted the actual weight.  The probabilistic solutions are shown in figure 10. 
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Figure 10: Probabilistic Results for TMF Life, LCF Life, and Weight 

 
The probabilistic requirements for TMF life and LCF life were met.  Figure 10 shows the 
distribution of minimum B50 TMF life and the minimum B.1 LCF life.  50% of the lives 
are below the B50 life and 0.1% are below the B.1 life. The IPT was able to access the 
probability of satisfying the TMF life and LCF life requirements by using these 
distributions.  The factors that increased TMF life also increased LCF life.  Between the 
TMF and LCF life, the TMF life requirement was more difficult to satisfy.  However, the 
TMF life metric was met even after accounting for uncertainty.  Because of this, weight 
was able to be significantly reduced.  This was an advantage of the automation and the 
probabilistic approach.  The optimization was able to minimize weight and meet the life 
constraints since the driving parameters were partially decoupled.  In a manual 
deterministic approach, the engineer would not have known how the parameters were 
decoupled.  The automated, probabilistic approach yielded a significant benefit. 
 
3.8 Verify and Validated Assumptions 
 
At this point, the model accounted for variation and uncertainty in the model inputs, as 
well as uncertainty in the model itself.  The model has also been exercised to determine 
how probabilistic design requirements can be achieved.  This process has depended on 
the process model being an accurate representation of the real world.  As the part  
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enters the manufacturing stage, all the variation and uncertainty assumptions and 
results should be validated. 
 
The sensitivity results in figure 6 shows that emulator error was the largest driver of life 
uncertainty.  A RCCA should be conducted to determine the cause of the emulator 
uncertainty.  For the TMTF, one likely cause is the high failure rate of the analyses due 
to lack of robust parametric geometry and meshing.  The analysis should then be re-
executed using emulators with reduced uncertainty.  The 2nd biggest driver of 
uncertainty was the geometric variation.  The geometry parameters were assumed to be 
independent and normally distributed.  To validate this assumption, the first sets of 
hardware should be measured.  The 3rd biggest driver of life uncertainty was the thermal 
temperature profile.  The temperature profile uncertainty sample should be updated 
when engine data becomes available.  Furthermore, high fidelity CFD analysis can be 
used for a more accurate prediction of the gas temperature profile.  Finally, highly 
instrumented engine tests should be used to validate the CFD model.  The 4th largest 
drive of uncertainty was the life equations.  Additional TMF life data should be gathered 
to reduce the life equation parameter uncertainty.  Furthermore, physics-based TMF life 
prediction can be used to obtain a more accurate life prediction.  Once these sources of 
uncertainty and variation have been verified and validated, the nominal design can be 
ensured to be robust. 
 
3.9 Sustain 
 
Once the model has been validated, data collection and testing continue, but the 
purpose of the data collection changes to ensuring that the model remains consistent 
with the real world. At this time, efforts are made to stabilize the important causes of 
process performance variation that are under manufacturing control and to monitor 
those that are not.  For geometric parameters, important parameters will be Key Product 
Characteristics.  Less important parameters could have their tolerances expanded to 
improve manufacturability or reduce costs if supported by an uncertainty analysis.  The 
temperature profile uncertainty should be tied back to geometric variables in other parts 
via a combined combustor-turbine gas path uncertainty analysis.  Once the important 
drivers of temperature profile are discovered, they can be appropriately controlled and 
monitored.  Finally, Statistical Process Control can be applied with periodic material 
tests to ensure that material properties do not significantly change over time.   
 
4.0 Conclusions 
 
The probabilistic approach yielded significant benefits for the design of the TMTF.  All 
key sources of variation and uncertainty were quantified to ensure that the part would 
meet the design criteria.  Sensitivity analysis revealed the important input drivers of life 
and weight.  Emulators were generated because they were much more computationally 
efficient and their ability to be used in Monte-Carlo analysis and optimization.  A full  
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uncertainty analysis within an optimization yielded a final design that significantly 
reduced the weight while meeting the life metrics. 
 
The key challenges were building a robust parametric geometry model, robust meshing, 
and building quality emulators.  For the TMTF, it was challenging to get the complex 3-
dimensional geometry to automatically and consistently update for new geometric 
values.  In addition, it was difficult to robustly mesh the geometry.  This was related to 
the quality of the geometry being produced but there were also issues like maintaining 
cyclic boundary conditions that were specific to meshing.  It is expected that parametric 
geometry and robust meshing will be challenging for other complex parts as well.  
Finally, it was hard to build quality emulators for stress and strain.  If the design space 
were more adequately filled, then more accurate emulators could have been generated.  
However, it is expected that stress and strain will continue to be more challenging to 
emulate for complex parts. 
 
If the automated workflow and probabilistic approach were not employed, it was unlikely 
that the IPT would have found a design that satisfied all the criteria.  The IPT would not 
have been able to explore the entire design space.  Only ten to twenty analyses could 
have been completed within the schedule.  If the team were to find a viable solution in 
the handful of cases, the IPT would have little confidence that the manufactured part 
would satisfy life requirements in a real engine.  Factors of safety would have to be 
assumed and it would be difficult to determine if the factors of safety were sufficient 
without explicitly accounting for sources of variation and uncertainty.  Clearly, the 
automated workflow coupled with the probabilistic analysis yielded significant benefits. 
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