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Abstract
In this work, a sixth-order linear multistep method (LMM) is constructed for the numerical
integration of linear and nonlinear second order initial value problems of ordinary differential
equations. This method, which depend on certain algebraic parameters is developed following
an extension of higher order derivatives and step length. The analysis of the basic properties
of our method is examined and found to be zero-stable, symmetric and consistent. Error and
step-length control is carried out by using Richardson extrapolation procedure. Extensive
numerical results demonstrate increased accuracy with the same computational effort when
compared with similar sixth and higher order formulas.
Subject classification: 65L05, 65L20
Keywords:Initial-value problems; Stability; Consistent; nonlinear; Error Constant; Implicit
methods; Symmetric.

1 Introduction

In this paper, we shall be concerned primarily with the numerical integration of differential
system of the form

d2y

dx2
= f(x, y(x),

dy

dx
), y(x0) = y0, y′(x0) = y1, f(x, y, y′) ∈ Rn. (1.1)

The numerical solution of second order differential equations of type (1.1) has been the
subject of great activity in areas of scientific research, we shall investigate in this paper the
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class of the above problems whose solution exhibits an oscillatory character. The result of
this activity are methods which can be applied to many problems in quantum mechanics,
radio-active process, celestial mechanics, nuclear physics, astrophysics, electronics, airflow
and transverse motion.
For the approximate solution, many numerical techniques that have been designed for the
integration of (1.1), (see, for example [1], [6], [11], [15], [18], [20] and references therein) are
capable of solving first order problems of type

dy

dx
= f(x, y), y(x0) = y0, (1.2)

by reduction of (1.1) to first order systems. The approach of reducing such equation to a
system of first order equations results to serious challenges in computation and wastage of
computer time which actually lead some of these methods to be inefficient and cumbersome
to implement, [7].
These reasons perhaps motivated some scholars, (see, for example[9], [8], [17],[21, 22, 23] )
to adopt direct discretization methods for the integration of special second-order equation
of the form

d2y

dx2
= f(x, y(x)), (1.3)

that is, differential equations for which the function f is independent from the first derivative
of y [26]. The aim of this paper is to obtain practical and efficient implicit predictor-corrector
method as well as local error estimations that allow the implementation of this method in a
variable step code with a minimum computational cost.
The paper is organized as follows: In section 2, four-step implicit method of order 6 is con-
structed. Error constant, consistency, symmetry and zero-stability are discussed in section 3.
Finally, in section 4, we examine some of the computational aspects and present numerical
results in comparison with existing methods.

2 Construction of the method.

We consider the following general mth- order implicit linear multistep methods:

k∑
j=0

αjyn+j = hm
k∑

j=0

βjfn+j, (2.1)

operationally defined in [12] as
ρ(E)yn = hmδ(E)fn (2.2)

where ρ(E) and δ(E) represent the first and second characteristic polynomials of (2.1), αj

and βj are real constants with constraints

αk 6= 0, | α0 | + | β0 |6= 0. (2.3)
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In order to remove the arbitrary constant in (2.1), we shall always assume that αk = 1 since
we can always divide the coefficients of (2.1) with αk. Setting m = 2, j = 0, ..., 4 in (2.1),
we obtain the following four-step implicit method

αkyn+k + αk−1yn+k−1 + αk−2yn+k−2 + αk−3yn+k−3 + αk−4yn+k−4

= h2[βkfn+k + βk−1fn+k−1 + βk−2fn+k−2 + βk−3fn+k−3 + βk−4fn+k−4] (2.4)

where yn+i = y(x+ ih) with i = 0, 1, ..., 4, fn+i = y′′(x+ ih) with i = 0, 1, ..., 4, h is the step
size.
We associate the principal term of the local truncation error (PLTE) given as Tn+k to method
(2.1)

Tn+k = yn+k −
k−1∑
j=0

αjyn+j + h2
k∑

j=0

βjfn+j (2.5)

Terms yn+k, yn+j and fn+j are expanded in Taylors series about the point (xn, yn) and col-
lected in equal powers of h to yield

Tn+k = (1−
k−1∑
j=0

αj)yn + (k −
k−1∑
j=0

jαj)hy
1
n +

(
k2

2!
−

k−1∑
j=0

j2

2!
αj −

k∑
j=0

βj)h
2y(2)n +

(
k3

3!
−

k−1∑
j=0

j3

3!
αj −

k∑
j=0

jβj)h
3y(3)n + · · ·+

(
kp

p!
−

k−1∑
j=0

jp

p!
αj −

k∑
j=0

j(p−2)

(p− 2)!
βj)h

py(p)n +O(hp+1) (2.6)

which in compact form means

Tn+k = C0yn + C1hy
1
n + C2h

2y(2)n + C3h
3y(3)n + · · ·+ Cp+2h

p+2y(p+2) +O(hp+3) (2.7)

where

C0 = 1−
k−1∑
j=0

αjyn · · ·

Cp = (
kp

p!
−

k−1∑
j=0

jp

p!
αj −

k∑
j=0

j(p−2)

(p− 2)!
βj)h

py(p)n +O(hp+1). (2.8)
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with k = 4 and αk = α4 in (2.5), we obtain the following system of equations

1 = α0 + α1 + α2 + α3

4 = α1 + 2α2 + 3α3

16

2
=

1

2!
(α1 + 4α2 + 9α3) + (β0 + β1 + β2 + β3 + β4)

64

6
=

1

3!
(α1 + 8α2 + 27α3) + (β1 + 2β2 + 3β3 + 4β4)

256

24
=

1

4!
(α1 + 16α2 + 81α3) +

1

2!
(β1 + 4β2 + 9β3 + 16β4)

1024

120
=

1

5!
(α1 + 32α2 + 243α3) +

1

3!
(β1 + 8β2 + 27β3 + 64β4)

4096

720
=

1

6!
(α1 + 64α2 + 729α3) +

1

4!
(β1 + 16β2 + 81β3 + 256β4)

16384

5040
=

1

7!
(α1 + 128α2 + 2817α3) +

1

5!
(β1 + 32β2 + 243β3 + 1024β4)

65536

40320
=

1

8!
(α1 + 256α2 + 6561α3) +

1

6!
(β1 + 64β2 + 729β3 + 4096β4) (2.9)

Equation (2.9) is represented in the form AX=B and solved with MATLAB package to
obtain the following parameters:

α0 = −1, α1 = 4, α2 = −6, α3 = 4, β0 = − 1

12
, β1 =

8

12
, β2 = −18

12
, β3 =

8

12
, β4 =

1

12
(2.10)

substituting (2.10) into (2.4), we have a symmetric four-step scheme

yn+4 = 4yn+3 − 6yn+2 + 4yn+1 − yn +
h2

12
{fn+4 + 8fn+3 − 18fn+2 + 8fn+1 − fn} (2.11)

In order to use formula (2.11) for the integration of initial value problems (1.1), four impor-
tant factors are considered

(a) the need to generate the starting values yn+j, j = 0(1)4 and their corresponding deriva-
tives y′′n+j, j = 0(1)4, by employing Taylor series expansion about xn for yn+j and its
derivative y′n+j up to the order of method (2.11) in attempt to avoid the initial data
error in our computation.

yn+j = y(xn + jh) = y(xn) + (jh)y′(xn) + · · ·+ jhp

p!
yp(xn) +O(hp+1)

y′n+j = y′(xn + jh) = y′(xn) + (jh)y′′(xn) + · · ·+ jhp

p!
yp+1(xn) +O(hp+2),
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this is achieved by the adoption of predictor corrector mode denoted by PEC meaning
Predict, Evaluate and Correct. The mode is described as

P : yn+j , j = 0(1)4

E : y′′n+j = y′′(tn+j, yn+j), j = 0(1)4

C : yn+4 = 4yn+3 − 6yn+2 + 4yn+1 − yn

+
h2

12
{fn+4 + 8fn+3 − 18fn+2 + 8fn+1 − fn}

The error estimate is obtained from

Error =
y
(s+1)
n+4 − y

(s)
n+4

y
(s)
n+4 − y

(s−1)
n+4

the iteration terminated whenever Error < Tolerance.

(b) the choice of appropriate stepsize h

(c) the need to solve implicit system of equation (2.11), now

yn+4 = A +
h2

12
G(yn+4) (2.12)

where
A = 4yn+3 − 6yn+2 + 4yn+1 − yn
G(yn+4) = y′′n+4 + 8y′′n+3 − 18y′′n+2 + 8y′′n+1 − y′′n

(d) the accuracy of the approximation yn+4 requires the solution of implicit equation (2.11)
rewritten as

F (yn+4) = 0

This can be achieved by the adoption of quasi Newton iteration scheme

[ymt1
n+4 − ymn+4]−G[ymn+4]/(I −

h2

12
ξ)

ξ =
∂G
∂yn+4

(ymn+4),m = 0, 1, 2
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The convergence condition is that

θ =
|y(m+1)

n+4 − y(m)
n+4|

|y(m)
n+4 − y

(m−1)
n+4 |

≤ Tolerance.

3 Basic properties of the method.

In order to ascertain the accuracy and suitability of the method (2.11), analysis of its basic
properties such as consistency, order of accuracy and error constant, symmetry, convergence
and zero-stability are undertaken.

3.1 Order of accuracy and error constant

The local truncation error (2.7) when k = 4 is written as

Tn+4 = C0yn + C1hy
1
n + C2h

2y(2)n + C3h
3y(3)n + · · ·+ C8h

8y(8)n + C9h
9y(9)n +O(h10)

Using the values of αj′s and βj′s earlier obtained in (2), we have

C0 = −1 + 4− 6 + 4− 1 = 0

C1 = 4− 12 + 12− 4 = 0

C2 =
1

2
(4− 24− 36) +

1

12
(1 + 8− 18 + 8 + 1) = 0

C3 =
1

6
(4− 48 + 108− 64) +

1

12
(8− 36 + 24 + 4) = 0

C4 =
1

24
(4− 96 + 324 + 8− 72 + 72 + 16− 256) = 0

C5 =
1

120
(4− 192 + 972− 1024) +

1

72
(8− 144 + 216 + 64) = 0

C6 =
1

720
(4− 384 + 2916 + 8− 4096) +

1

288
(8− 288 + 648 + 256) = 0

C7 =
1

5040
(4− 768 + 8748− 16384) +

1

1440
(8− 576 + 1944 + 1024) = 0

C8 =
1

40320
(4− 1536 + 26244− 65536) +

1

8640
(8− 1152 + 5832 + 4096) = − 1

240

Thus, C8 6= 0, which by [19] implies that C0 = C1 = C2 = C3 = C4 =, . . . ,= C7 = 0, but
C8 = Cp+2 6= 0
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Hence, method (2.11) is of order P = 6 with principal error constant

Cp+2 = − 1

240

3.2 Symmetry of the method

Definition 1. A linear multistep method (2.11) is symmetric ([19], [12], [?]) if the parameters
αj′s and βj′s satisfy the following conditions:

αj = αk−j, βj = βk−j, j = 0(1)k

αj = −αk−j, βj = −βk−j, j = 0(1)k

for even and odd step numbers respectively.
The method (2.11) is symmetric, which means that

αj = αk−j, βj = βk−j, j = 0(1)k

α0 = α4 = 1 β0 = β4 = 1

α1 = α3 = −4 β1 = β3 = 8

α2 = α2 = 6 β2 = β2 = −18

It is easily proved then that both the order of the method and the step number k are even
numbers [19],[28]. Hence, method (2.11) is symmetric.

3.3 Consistency

The method (2.11) is consistent, since

(i) it has order P ≥ 1

(ii)
∑k

j=0 αj = 0

(iii) ρ(r) = ρ′(r) = 0, r = 1

(iv) ρ′′(r) = 2!δ(r), r = 1
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3.4 Zero stability

Definitions:

(i) A linear multistep method for a given initial value problem is said to be zero stable if
no root of the first characteristic polynomial ρ(r) has modulus greater than one and if
every root with modulus one is simple. That is

ρ(r) =
k∑

j=0

αjr
j = 0

from (2.11),
ρ(r) = r4 − 4r3 + 6r2 − 4r + 1 = 0

implies that (r − 1)4 = 0,
therefore, method (2.11) is zero stable, since the roots of ρ(r) all lie in the unit disk,
and those that lie on the unit circle have multiplicity one.

(ii) A numerical solution to the class of system (1.1) is stable if the difference between the
numerical solution and the theoretical solution can be made as small as possible, that
is, if there exist two positive numbers `n and C such that

‖yn − y(tn)‖ ≤ C‖`n‖

We obtain the region of absolute stability (RAS) for the method (2.11) by setting

ρ(r) = r4 − 4r3 + 6r2 − 4r + 1 = eiθ, (3.1)

this region is contained in (0,1] that is 0 < h ≤ 1,
Definition. A linear multistep or predictor-corrector method is said to be absolutely or

relatively stable in a region < of the complex plane if, for all ~ε<, all roots of the stability
polynomial π(r, ~) associated with the method satisfy

|rs| < 1

, for s = 1, 2, . . . , k

3.5 Convergence

Definition A linear multistep method that is consistent and zero stable is convergent ([2],
[12], [20]).
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Figure 1: The stability regions of method (2.11) at different steps

4 Numerical experiments.

In this section, efficiency and applicability of our new method is demonstrated on some
initial-value problems having as solution the combination of cosine and sine functions. The
first two examples are taken from the previous work of Simos [25] and combined effort of
Vadeen Berghe et. al [27]. The last example is taken from the independent work work of
Badmus and Yahaya [9] which was later revised by Kayode [17] for the purpose of comparison.

4.1 Example 1.

We consider the nonlinear undamped Duffin’s equation,

y′′ + y + y3 = B cos(ω − x)′ (4.1)

where B = 0.002 and ω = 1.01. The exact solution is given by

y(x) =
∑
i=0

3A2i+1 cos[(2i+ 1)ωx], (4.2)

where A1 = 0.200179477536, A3 = 0.24696143x10−3, A5 = 0.304016x10−6 and A7 =
0.374x10−9. Equation (4.1) has been solved with various step-sizes, h = 2−n n ≥ o,
0 ≤ x ≤ 1. In Table 1, comparison of the end-point global errors in approximation ob-
tained by using method of Simos [25] (denoted as Method [a]), Vanden Barghe et al. [27]
(denoted as Method [b]) and the new implicit method (denoted as Method [e])

117



K.M. Owolabi

Table 1: Solution to problem 4.1

h Exact [E] Computed Method [A] Method [B] Method [E]

1 0.2004263232 0.1981153035 1.10e-03 1.70e-03 2.31e-03
0.5 0.2004266269 0.2003937937 5.42e-05 1.88e-04 3.28e-05
0.25 0.2004267028 0.2004259025 1.86e-06 1.37e-05 8.00e-07
0.125 0.2004267217 0.2004266854 6.19e-08 8.70e-07 3.64e-08
0.0625 0.2004267265 0.2004267248 2.40e-09 5.41e-08 1.73e-09

4.2 Example 2.

u′′ + u = 0.001 cos(x), u(0) = 1, u′(0) = 0, (4.3)

with exact solution
u(x) = cos(x) + 0.0005x sin(x). (4.4)

Table 2 displays the result of equation (4.3) that has been solve with several step-sizes,

Table 2: Solution to problem (4.3)

h Exact [E] Computed Method [A] Method [B] Method [E]

1 0.5407230414 0.5399419065 1.40e-02 1.20e-03 7.81e-04
0.5 0.8777024183 0.8776930516 8.52e-04 7.54e-05 9.37e-06
0.25 0.9689433472 0.9689427425 5.30e-05 4.74e-06 6.05e-07
0.125 0.9922054594 0.9922054162 3.31e-06 2.96e-07 4.32e-08
0.0625 0.9980494626 0.9980494597 2.07e-07 1.86e-08 2.88e-09

h = 2−2 n is positive number in the interval 0 ≤ x ≤ 1, comparison of the end-point global
errors in approximation obtained by using method of Simos [25] (denoted as Method [a]),
Vanden Barghe et al. [27] (denoted as Method [b]) and the new implicit method (denoted
as Method [e])

4.3 Example 3.

y′′ +
6

x
y′ +

4

x2
y = 0, y(0) = 1, y′(0) = 1, x > 0, h =

0.1

32
, (4.5)

whose theoretical solution is

y(x) =
5

3x
− 2

3x4
. (4.6)

In Table 3, we present the comparison of the global errors in approximations of the new
method (indicated as Method [E])at some selected step-size given in the first column by
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Table 3: Solution to problem (4.5)

x Exact [E] Computed Method [C] Method [D] Method [E]

0.025 1.022049164 1.022049012 2.21e-04 7.74e-06 1.52e-07
0.015625 1.014447543 1.014447461 1.56e-04 5.93e-06 8.18e-08
0.0125 1.011741018 1.011740982 1.35e-04 3.68e-06 3.63e-08
0.00625 1.006057503 1.006057499 7.50e-04 1.86e-07 4.09e-09
0.003125 1.003076526 1.003076525 3.84e-05 1.10e-07 1.40-09

using both the block method [9] (which is denoted as Method [C]) and the zero-stable
method [17](denoted as Method [D]).

5 Conclusions

A new method of order six for direct integration of linear, nonlinear, special and general
second order initial value problems has been developed. The method is found to be consistent
and zero-stable, these two conditions are the major ingredients for a linear multistep method
to be convergent. It is clear from the results obtain in Tables 1-3 that the new method enjoys
a significant level of accuracy on comparison with the existing methods that solved the same
set of problems.
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