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Abstract

In [3], Li and Wang proposed a derivative-free modified Fletcher-Reeves (MFR)
method for solving symmetric nonlinear equations, which determines the stepsize
and the search direction simultaneously by the use of some norm descent backtrack-
ing type line search. This method is an extension of the MFR method proposed by
Zhang, Zhou and Li [4] for general optimization. In this paper, based on the idea of
the alternate direction method, we present a nonmonotone inexact MFR method for
symmetric nonlinear equations with global convergence, which can reduce the com-
putational cost of function values. Some preliminary numerical results are reported
to show its efficiency.
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1 Introduction

In this paper, we consider the symmetric nonlinear system

F (x) = 0, (1.1)

where F : Rn → Rn is a continuously differentiable mapping, and its Jacobian J(x) ,
J ′(x) is symmetric. There are many practical problems with symmetric Jacobian such
as the KKT systems of equality constrained optimization problems, the discretized two-
point boundary value problem, and etc. [2].

The symmetric nonlinear problem (1.1) has been considered by some authors. Li and
Fukushima [2] proposed a globally and superlinearly convergent Gauss-Newton-based
BFGS method for such problems. This method has been extended to the norm descent
case and the symmetric nonlinear least squares by Gu et al. [1] and Zhou [5], respectively.
Recently, Li and Wang [3] introduced a derivative-free method for (1.1), which is an
extension of the modified Fletcher-Reeves (MFR) method proposed by Zhang et al. [4]
for general unconstrained optimization.

1This work was supported by the NSF (11371073) of China, the Project of the Scientific Research
Fund (13B137) of the Hunan Provincial Education Department, and the NSF (14JJ3084) of Hunan
Province.
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In this paper, we will further study the MFR method in [4] and modify it to solve the
symmetric problem (1.1) using a different way from that of [3]. Consider the following
smooth unconstrained optimization problem

min
x∈Rn

f(x). (1.2)

The search direction dk generated by the MFR method in [4] is given by

dk =

{
−∇f(xk), if k = 0,
−θMFR

k ∇f(xk) + βFR
k dk−1, if k ≥ 1,

(1.3)

where ∇f(xk) is the gradient of f at xk and

θMFR
k =

dTk−1

(
∇f(xk)−∇f(xk−1)

)
∥∇f(xk−1)∥2

, βFR
k =

∥∇f(xk)∥2

∥∇f(xk−1)∥2
. (1.4)

An important feature of the MFR method is that dTk∇f(xk) = −∥∇f(xk)∥2.
Throughout the paper, we denote sk = xk+1 − xk = αkdk, Fk = F (xk) and Jk =

J(xk). We assume that the problem (1.1) is symmetric and f in (1.2) is specified by

f(x) , 1

2
∥F (x)∥2. (1.5)

Then the problem (1.1) is equivalent to the global optimization problem (1.2). However,
when f(x) is given by (1.5), ∇f(x) = J(x)TF (x) = J(x)F (x), which requires the exact
computation of Jacobian or the exact gradient. Hence the MFR method (1.3) is not
suitable for such problems whose Jacobian is not available or very difficult to compute.

To overcome this difficulty, Li and Wang [3] proposed the following derivative-free
MFR method for solving (1.1). They consider the search direction with a parameter
α > 0 as follows:

dk(α) =

{
−gk(α), if k = 0,
−θMFR

k (α)gk(α) + βFR
k (α)dk−1, if k ≥ 1,

(1.6)

with

gk(α) =
F (xk + αFk)− F (xk)

α
, (1.7)

and

θMFR
k (α) =

dTk−1

(
gk(α)− gk−1

)
∥gk−1∥2

, βFR
k (α) =

∥gk(α)∥2

∥gk−1∥2
, (1.8)

where gk−1 is an estimation to ∇f(xk−1) to be determined. Then they use the following
procedures to compute the stepsize αk and dk simultaneously.
Procedure 1. Let gk(α) be defined by (1.7) and dk(α) be computed by (1.6) and (1.8).
Given constants σ1, ρ ∈ (0, 1) and σ2 > 0, σ3 > 0. Let ik be the smallest nonnegative
integer such that the following inequality holds with α = ρi, i = 0, 1, · · · ,

f(xk + αdk(α)) ≤ f(xk) + σ1(F (xk + αFk)− F (xk))
Tdk(α)− σ2∥αFk∥2 − σ3∥αdk(α)∥2.

Let dk = dk(ρ
ik) and gk = gk(ρ

ik).
Procedure 2. Let dk be generated by Procedure 1. Let constants σi, i = 1, 2, 3 and ρ
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be the same as those in Procedure 1. If ik = 0, we let αk = 1. Otherwise, we let jk be
the largest positive integer jk ∈ {0, 1, 2, · · · , ik − 1} satisfying

f(xk+ρik−jkdk) ≤ f(xk)+σ1(F (xk+ρik−jkFk)−F (xk))
Tdk−σ2∥ρik−jkFk∥2−σ3∥ρik−jkdk∥2.

Let αk = ρik−jk .

However, we note that Procedures 1-2 requires many computations on function values
since it need to compute F (xk + αFk) and F (xk + αdk(α)). Based on this observation,
we use the idea of the alternate direction method to reduce the computational cost on
function values, that is, we first give a stepsize αk−1, then determine the search direction
dk by αk−1 and use some line search to compute the next stepsize αk. In [2], Li and
Fukushima used the term

gk , F (xk + αk−1Fk)− F (xk)

αk−1
, (1.9)

to approximate ∇f(xk). Hence, if we replace the terms ∇f(xk) and ∇f(xk−1) in (1.3)
and (1.4) by the terms gk and gk−1, respectively, then we obtain an inexact MFR method
for solving (1.1), that is,

dk =

{
−gk, if k = 0,
−θkgk + βkdk−1, if k ≥ 1,

(1.10)

where gk is defined by (1.9) and

θk =
dTk−1yk−1

∥gk−1∥2
, βk =

∥gk∥2

∥gk−1∥2
, yk−1 = gk − gk−1. (1.11)

It is easy to verify that

gTk dk = −∥gk∥2, (1.12)

which implies that

∥gk∥ ≤ ∥dk∥. (1.13)

Since dk given by (1.10) may be not a descent direction of (1.5), the standard Wolfe
and Armijo line searches can not be used to compute the stepsize directly. Hence, we
adopt the following nonmonotone line search, which was proposed by Li and Fukushima
in [2], to compute the next stepsize αk. Let σ1 > 0, σ2 > 0, η > 0, r ∈ (0, 1) be constants
and {ηk} be a given positive sequence such that

∞∑
k=0

ηk ≤ η < ∞. (1.14)

Let αk = max{1, r, r2, ...} satisfy

f(xk + αdk) ≤ f(xk)− σ1∥αdk∥2 − σ2∥αFk∥2 + ηkf(xk). (1.15)

It is clear that the line search (1.15) is well-defined. This line search can not guarantee
that the function value sequence {f(xk)} is decreasing. Therefore, we obtain the following
nonmonotone inexact MFR method for (1.1).

Algorithm 1.
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Step 0. Choose x0 ∈ Rn, σ1 > 0, σ2 > 0, α−1 > 0, r ∈ (0, 1) and a positive sequence
{ηk} satisfying (1.14). Let k := 0.

Step 1. Compute dk by (1.9)-(1.11).
Step 2. Compute αk by the line search (1.15).
Step 3. Set xk+1 = xk + αkdk.
Step 4. Let k := k + 1 and go to Step 1.
In the next section, we show global convergence of Algorithm 1 under some assump-

tions. In Section 3, we report some numerical results.

2 Global convergence

In this section, we prove global convergence of Algorithm 1. To this end, we use the
following assumption.
Assumption 1.

(i) The level set Ω = {x| f(x) ≤ eηf(x0)} is bounded.
(ii) In some neighborhood N of Ω, the Jacobian is Lipschitz continuous, namely, there

exists a constant L > 0 such that

∥J(x)− J(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N. (2.1)

It is clear that the sequence {xk} ⊂ Ω. Moreover, Assumption 1 implies that there
exist positive constants M1, M2 and L1 such that

∥F (x)∥ ≤ M1, ∥J(x)∥ ≤ M2, ∀x ∈ N, (2.2)

∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥, ∀x, y ∈ N. (2.3)

Lemma 2.1. Let Assumption 1 hold. Then we have

∞∑
k=0

∥αkdk∥2 < ∞,

∞∑
k=0

∥αkFk∥2 < ∞. (2.4)

Proof. It follows from (1.15) and (1.14) directly. �
Lemma 2.1 implies that

lim
k→∞

∥αkdk∥ = lim
k→∞

∥sk∥ = 0, lim
k→∞

∥αkFk∥ = 0. (2.5)

Lemma 2.2. Let the sequence {xk} be generated by Algorithm 1. Then we have

∥dk∥2

∥gk∥4
≤

k∑
i=0

1

∥gi∥2
. (2.6)

Proof. From (1.10), (1.11) and (1.12), we have

∥dk∥2 = β2
k∥dk−1∥2 − 2θkg

T
k dk − θ2k∥gk∥2

=
∥gk∥4

∥gk−1∥4
∥dk−1∥2 + 2θk∥gk∥2 − θ2k∥gk∥2

=
∥gk∥4

∥gk−1∥4
∥dk−1∥2 − (1− θk)

2∥gk∥2 + ∥gk∥2

≤ ∥gk∥4

∥gk−1∥4
∥dk−1∥2 + ∥gk∥2.
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This implies that
∥dk∥2

∥gk∥4
≤ ∥dk−1∥2

∥gk−1∥4
+

1

∥gk∥2
,

which together with d0 = −g0 yields (2.6). �
The following result shows that Algorithm 1 is globally convergent.

Theorem 2.1. Let Assumption 1 hold. Then the sequence {xk} generated by Algorithm
1 converges globally, that is,

lim inf
k→∞

∥∇f(xk)∥ = 0. (2.7)

Proof. We prove this theorem by contradiction. Suppose that (2.7) is not true, then
there exists a positive constant τ such that

∥∇f(xk)∥ ≥ τ, ∀k ≥ 0. (2.8)

Since ∇f(xk) = JT
k Fk, (2.8) implies that there exists a positive constant τ1 satisfying

∥Fk∥ ≥ τ1, ∀k ≥ 0. (2.9)

Case (i): lim supk→∞ αk > 0. Then by (2.5), we have lim infk→∞ ∥Fk∥ = 0, which
contradicts (2.9).

Case (ii): lim supk→∞ αk = 0. Since αk ≥ 0, this case implies that

lim
k→∞

αk = 0. (2.10)

Moreover, by the definition of gk in (1.9) and the symmetry of the Jacobian, we have

∥gk −∇f(xk)∥ =
∥∥∥F (xk + αk−1Fk)− F (xk)

αk−1
− JT

k Fk

∥∥∥
=

∥∥∥ ∫ 1

0

(
J(xk + tαk−1Fk)− Jk

)
dtFk

∥∥∥
≤ Lαk−1∥Fk∥2 ≤ LM2

1αk−1, (2.11)

where we use (2.1) and (2.2) in the last inequality. (2.10), (2.11) and (2.8) show that
there exists a constant τ2 > 0 such that

∥gk∥ ≥ τ2, ∀k ≥ 0. (2.12)

By (1.9) and (2.2), we know

∥gk∥ =
∥∥∥ ∫ 1

0
J(xk + tαk−1Fk)Fkdt

∥∥∥ ≤ M1M2, ∀k ≥ 0. (2.13)

Since limk→∞ αk = 0, then α′
k = αk/r does not satisfy (1.15), namely,

f(xk + α′
kdk) > f(xk)− σ1∥α′

kdk∥2 − σ2∥α′
kFk∥2 + ηkf(xk),

which means that

f(xk + α′
kdk)− f(xk)

α′
k

> −σ1α
′
k∥dk∥2 − σ2α

′
k∥Fk∥2. (2.14)
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By the mean-value theorem and (2.3), there exists θk ∈ (0, 1) such that

f(xk + α′
kdk)− f(xk)

α′
k

= ∇f(xk + θkα
′
kdk)

Tdk

= ∇f(xk)
Tdk +

(
∇f(xk + θkα

′
kdk)−∇f(xk)

)T
dk

≤ ∇f(xk)
Tdk + L1α

′
k∥dk∥2. (2.15)

Then by (2.14)-(2.15) and (1.12), we know

αk ≥ r
−∇f(xk)

Tdk
(L1 + σ1)∥dk∥2 + σ2∥Fk∥2

= r
−gTk dk +

(
gk −∇f(xk)

)T
dk

(L1 + σ1)∥dk∥2 + σ2∥Fk∥2

= r
∥gk∥2 +

(
gk −∇f(xk)

)T
dk

(L1 + σ1)∥dk∥2 + σ2∥Fk∥2
. (2.16)

From (2.11), (1.10), (2.13), (2.12) and (2.5), we get

∥
(
gk −∇f(xk)

)T
dk∥ ≤ Lαk−1M

2
1 (∥gk∥+ βk∥dk−1∥)

= Lαk−1M
2
1 ∥gk∥+ Lαk−1M

2
1

∥gk∥2

∥gk−1∥2
∥dk−1∥

≤ Lαk−1M
2
1M1M2 +

LM2
1 (M1M2)

2

τ22
∥sk−1∥ → 0,

which together with (2.16) and (2.12) shows that there exist two positive constants C1

and C2 such that

αk ≥ C1

∥dk∥2 + C2
. (2.17)

On the other hand, by (2.6), (2.12) and (2.13), we obtain

∥dk∥2 ≤
(M1M2)

4

τ22
(k + 1). (2.18)

By (2.4) and (2.17), we get that

∞∑
k=0

∥dk∥2

(∥dk∥2 + C2)2
=

∞∑
k=0

1

∥dk∥2 + 2C2 +
C2

2
∥dk∥2

< ∞.

This together with (2.18), (1.13) and (2.12) yields that

∞∑
k=0

1
(M1M2)4

τ22
(k + 1) + 2C2 +

C2
2

τ22

≤
∞∑
k=0

1

∥dk∥2 + 2C2 +
C2

2
∥dk∥2

< ∞,

which leads to a contradiction since

∞∑
k=0

1
(M1M2)4

τ22
(k + 1) + 2C2 +

C2
2

τ22

= ∞.

The proof is then completed. �

92



A nonmonotone inexact MFR method for solving symmetric nonlinear equations

3 Numerical experiments

In this section, we compare the performance of the following two methods for solving
nonlinear equations (1.1).

• DF-MFR: the derivative-free modified Fletcher-Reeves method in [3]. We set σ1 =
σ2 = σ3 = 10−4, ρ = 0.1.

• Algorithm 1: we set parameters ηk = 1
(k+1)2

, σ1 = σ2 = 10−4, α−1 = 0.01 and
r = 0.1.

The codes were written in Matlab 7.4 and run on a personal computer 2.66 GHz
CPU processor and 1 GB RAM memory. We stopped the iteration if the total number
of iterations exceeds 3× 103 or ∥Fk∥ ≤ 10−3. We tested both methods on the following
two test problems with different initial points and n values.

Problem 1. The discretized two-point boundary value problem [2]:

F (x) =


2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2

x+
1

(n+ 1)2
(sinx1 − 1, · · · , sinxn − 1)T .

Problem 2. The gradient of the Engval function [2]:

F1(x) = x1(x
2
1 + x22)− 1,

Fi(x) = xi(x
2
i−1 + 2x2i + x2i+1)− 1, i = 2, 3, · · · , n− 1,

Fn(x) = xn(x
2
n−1 + x2n).

Table 1 lists numerical results of the two methods on the problems with the initial
points x0 = (−1, · · · ,−1)T , x0 = (1, · · · , 1)T and x0 = (10, · · · , 10)T . In Table 1, ”P”
indicates the problem; ”Iter” and ”Time” stand for the total number of iterations and
the CPU time in seconds, respectively; ”Fcnt” is the total number of function values;
”–” means that the method failed to find the solution of the problem within 3 × 103

iterations; ”∥Fk∥” is the norm of the residual at the stopping point.
From Table 1, we can see that Algorithm 1 performed better than the DF-MFR

method for both problems. The DF-MFR method needs more computations on function
values and CPU time. Moreover, both methods are very sensitive to the initial points.
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