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ABSTRACT. In our work, the essential purpose of this paper was to answer the follow-
ing question : Can we spread the used techniques in the differentiable case ([6]) for the
nondifferentiable case by keeping the convergence as well as its rank ? This seems clear
in our study. Indeed, always basing on the augmented Lagrangian method, we solved our
problem by application of the proximal quasi-Newton technique.

Large linear and nonlinear systems of saddle point type arise in a wide variety of appli-
cations throughout computational science and engineering. Due to their indefiniteness and
often poor spectral properties. The main purpose of this work is the study of the nondiffer-
entiable problems of optimization and the determination of the dual bounds associated with
these problems by exploiting the augmented Lagrangian method. We are interested in the
study of a nondifferentiable problem of optimization in both cases: convex and nonconvex.
For the method of resolution, we applied the augmented Lagrangian method. This tech-
nique has a lot of advantage for the regularization of the solution and numerical stability of
the penalty method. We introduce the technique of the augmented Lagrangian. So, we ob-
tain a sequence of unconstrained nondifferentiable subproblems the resolution of which is
based, essentially, on a new method which is the proximal quasi-Newton method. The last
section of this work implements this technique and handles numerical implementations.
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1. INTRODUCTION

The differentiable and nondifferentiable, convex and nonconvex optimization made the
object of several studies. Let us quote as an example the works of Bazaraa-AL ([1]),
Bertsekas ([2]), Fletcher ([15]), Dem’Yanov and Vasil’Ev ([13]) and others.

The nondifferentiable optimization is interested in the resolution of the problems of op-
timization when we lose the differentiability for the objective functions and the constraints,
or for f only, either for the constraints.

The nondifferentiability of the objective function or constraints engenders problems of
nondifferentiable optimization such as the problems of economic origin. Where hence, the
major importance of these problems. Thus, the study of these problems became essential.
Wolfe ([23]) was among the first ones in this domain. He gave an implementable descent
method. Lemaréchal and Mifflin ([17]) proposed several techniques of descent based,
essentially, on the subgradient.

The purpose of our work is the study of the dual bounds in nondifferentiable, convex
and nonconvex optimization problems by exploiting the augmented Lagrangian method.

* AMO - Advanced Modeling and Optimization. ISSN: 1841-4311.
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We saw ([7], [8]) that the calculation of the dual bound brought in the maximization of
a concave function h. For the same reasons quoted previously, we still introduce the aug-
mented Lagrangian method which remains valid in the nondifferentiable case ([9]; [10],
[11]). The resolution of the dual problem for the augmented Lagrangian comes down, in
this context, to the minimization of a nondifferentiable problem of unconstrained mathe-
matical programming problems. This latter is a very active domain of search ([4], [13],
[16], [17] and [18]). Then we transform this problem to the case of the resolution of a
problem via a proximal quasi-Newton method ([4]). In fact, the principle of this method
is a combination between the technique of proximal point algorithm of Rockafellar ([20])
and the quasi-Newton method. We were able to obtain a problem similar to the one that
we studied in ([7]) in favor to the technique of the proximal point of which we used the
cutting plane method. Results of convergence of these techniques are established. Then an
implementation and numerical implementations are produced.

2. MAIN RESULTS

The main purpose of this work is the study of the nondifferentiable convex problems
and the determination of the dual bounds associated to these problems.

More exactly, we study in the first section of this work the geometric interpretation
of the optimality conditions. We give to it, having to raise our problem, necessary and
sufficient conditions.

The second section is intended to the study of a nondifferentiable method of optimiza-
tion and the calculation of the dual bounds by this technique.

In reality, we know well that in the nondifferentiable optimization, the use of the strongest
slope direction obtained by the subgradient of the function which we want to minimize does
not lead, inevitably, to the convergence towards the optimal point (Wolfe, [23]).

The implementable descent algorithms for the general nondifferentiable problems were
presented by Wolfe ([23]), Lemaréchal and Mifflin ([17]).

First, we introduce the technique of augmented Lagrangian (Daili, [10], [11]). So,
we obtain a sequence of nondifferentiable unconstrained sub-problems, the resolution of
which is based, essentially, on a new method which is the proximal quasi-Newton method.

Indeed, this method is proposed by Chen and Fukushima ([4]) ; it is based on the prox-
imal point algorithm of Rockafellar ([20]) and the cutting plane techniques. The latter
establishes the most important part of this algorithm.

We give the results of convergence for each of the methods : proximal quasi–Newton
and augmented Lagrangian.

2.1. Dual Bounds of Convex Nondifferentiable Optimization Problems.
Indeed, we can characterize an optimal point by a generalization of the Fermat condi-

tion of the differentiable case,
5f(x̄) = 0.

We use the subgradient which plays a similar role to that of the gradient.

2.1.1. A Geometric Interpretation of Optimality Conditions .
Consider the following optimization problem :

(1) (P)

{
α := Inff(x)

subject to x ∈ C,
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where f : Rn −→ R is a convex function and C 6= ∅ is a convex set. Let

γ(x0) = {v = λ(z − x0) : λ > 0, z ∈ C} .
The set Γ(x0) = γ(x0) is called the cone of admissible directions of the set C to the point
x0.

We shall denote the conjugate cone of Γ(x0) by Γ+(x0). We always have

0 ∈ γ(x0) ∩ Γ+(x0).

Theorem 1. The function f reaches its optimal value on C at the point x̄ ∈ C, if and only
if

(2) ∂f(x̄) ∩ Γ+(x̄) 6= ∅.

The subdifferential of the function f on the set C at the point x0 is given by the follow-
ing lemma :

Lemma 2. If the function f is finite and convex on Rn, then

∂Cf(x0) = ∂f(x0)− Γ+(x0).

According to this lemma the problem (1) can spell under the shape 0 ∈ ∂Cf(x̄).

Corollary 3. If C = Rn, the expression (2) is equivalent to the following condition :
0 ∈ ∂f(x̄).

Corollary 4. If x0 ∈ int(C) and f is finite and convex on C, then

∂Cf(x0) = ∂f(x0).

Lemma 5. So that the expression (2) is satisfied, it is necessary that

(3) 0 ∈ Lη(x̄)

where
Lη(x) = co(∂f(x)) ∪ Tη(x)

and
Tη(x) =

{
g ∈ −Γ+(x) : ‖ g ‖= η

}
.

Besides, this condition is sufficient if int(C) 6= ∅.

Proof. Necessity : We have
∂f(x̄) ∩ Γ+(x̄) 6= ∅,

then
∃ v ∈ ∂f(x̄) , ∃w ∈ Γ+(x̄) : v = w.

If w = 0, then v = 0 and thus 0 ∈ Lη(x̄).
If w 6= 0, then

g = −ηw ‖ w ‖−1∈ Tη(x̄).

As v − w = 0, then we have ηv ‖ w ‖−1 +g = 0.
For α = η ‖ w ‖−1 (1 + η ‖ w ‖−1)−1, we find

vα = αv + (1− α)g = 0.

As α ∈ [0, 1] , v ∈ ∂f(x̄) and g ∈ Tη(x̄), then vα ∈ Lη(x̄) and thus 0 ∈ Lη(x̄).
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Sufficiency : Suppose Tη(x̄) = ∅, then 0 ∈ ∂f(x̄) and since 0 ∈ Γ+(x̄), thus

∂f(x̄) ∩ Γ+(x̄) 6= ∅.

Now, if 0 ∈ Tη(x̄), the condition 0 ∈ Lη(x̄) implies the existence of two vectors v ∈
∂f(x̄) and g ∈ Tη(x̄) and a number α ∈ [0, 1] such that αv + (1 − α)g = 0 and as
int(C) 6= ∅, then 0 /∈ co(Tη(x̄)). What implies α > 0, and then v = (α − 1)α−1g. We
have

(α− 1)α−1g = v ∈ Γ+(x̄)

because (α− 1)α−1 < 0, thus the condition (2) is satisfied. �

2.1.2. Necessary and Sufficient Optimality Conditions.
Consider the following convex mathematical programming problem :

(PP)



α := Inff(x)

subject to


fi(x) ≤ 0, 1 ≤ i ≤ p,

gj(x) = 0, 1 ≤ j ≤ q,

x ∈ Rn,

p, q ∈ N∗,

where f, fi, 1 ≤ i ≤ p and gj , 1 ≤ j ≤ q : Rn −→ R are convex functions.
The Lagrangian of (PP) is the function L : Rn × Rp+ × Rq −→ R defined by

L(x, λ, µ) = f(x) +

p∑
i=1

λifi(x) +

q∑
j=1

µjgj(x).

We associate to it the following dual problem :

(DP)

{
β := Sup

(λ, µ)

Inf
x
L(x, λ, µ).

Theorem 6. Suppose the functions f, fi, 1 ≤ i ≤ p, and gj , 1 ≤ j ≤ q, are convex and
there exists x0 ∈ Rn such that fi(x0) < 0, ∀i (1 ≤ i ≤ p). Let (x̄, λ̄, µ) ∈ Rn × Rp+×
Rq , then (x̄, λ̄, µ) is a saddle point for L(x, λ, µ), if, and only if, (x̄, λ̄, µ) satisfies

(a) 0 ∈ (∂f(x) +
p∑
i=1

λi∂fi(x) +
q∑
j=1

µj∂gj(x)) ;

(b) fi(x̄) ≤ 0, 1 ≤ i ≤ p ;
(c) gj(x̄) = 0, 1 ≤ j ≤ q ;
(d) λ̄ifi(x̄) = 0, for 1 ≤ i ≤ p.

Proof. According to ([6], Theorem 4.9, p. 141), (x̄, λ̄, µ) is a saddle point of L(x, λ, µ)
if, and only if,

(a1) L(x̄, λ̄, µ) = Inf
x∈Rn

L(x, λ̄, µ) ;

(b1) fi(x̄) ≤ 0, 1 ≤ i ≤ p ;
(c1) gj(x̄) = 0, 1 ≤ j ≤ q ;
(d1) λ̄ifi(x̄) = 0, for 1 ≤ i ≤ p.
To establish the proof of the Theorem 6, we notice that it is enough to show the equiva-

lence (a) ⇔ (a1).
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Using the Corollary 3, L reaches its infimum at x if, and only if, 0 is a subgradient of L
at x, that is 0 ∈ ∂L(x̄). As

p
∩
i=0
Si = S 6= ∅,

where

Si = {x ∈ Rn : fi(x) ≤ 0, 1 ≤ i ≤ p} .

We have

∂L(x̄) = ∂f(x̄) +

p∑
i=1

λi∂fi(x̄) +

q∑
j=1

µj∂gj(x̄).

Thus (a) ⇔ (a1). �

3. METHOD OF RESOLUTION

3.1. Motivation.
Once we characterized an optimum x, we are interested in the problem of calculation of

this optimum. As main rule and in a concern of coherence, the nondifferentiable methods
are clearly connected to the algorithms developed for differentiable functions. We shall
give an algorithm which finds a direction dk and a step αk of linear search to update the
current iteration xk.

However, the nondifferentiable optimization problem presents some difficulties that we
summarize it :

1) The lack of an implementable stop test, because the condition

gk ∈ ∂f(xk) where ‖ gk ‖≤ ε

translated directly of ‖ ∇f(xk ) ‖≤ ε, can be never verified ;
2) the calculation of the approached subgradients : if f is nondifferentiable at x∗, the

classical methods (differentiable case) are not valid. Sometimes in the practice the gradient
is not exactly calculated. It is often obtained by finite differences of the values of the
function f ;

3) the curse of the nondifferentiability : we already know that the multi-application
: x 7−→ ∂f(x) not being continuous, a small variation on xk can give big variations at
∂f(xk), the calculation of dk can give xk+1 very different.

As in our work ([7]), we also use the augmented Lagrangian method. Indeed, this
technique remains valid in the nondifferentiable case.

Let f : R n −→ R be a convex function. Let gi , i = 1, ..., q : R n → R be
convex functions and

S = {x ∈ R n, gi(x) ≤ 0, i = 1, ..., q} .

Consider the following mathematical programming problem :

α := Inf {f(x), x ∈ S} .

The augmented Lagrangian associated is

Lrk(x, λ) = f(x) +
1

2rk

q∑
i=1

(Ψ+((λi + 2rkgi(x))2 − λ2i ),



DUAL BOUNDS IN CONVEX AND NONCONVEX NONDIFFERENTIABLE OPTIMIZATION PROBLEMS... 291

where Ψ+(t) = max(t, 0), namely

Lrk(x, λ) = f(x) +



q∑
i=1

λigi(x) + rk
q∑
i=1

g2i (x), if λi + 2rkgi(x) > 0,

− 1
4rk

q∑
i=1

λ2i , if λi + 2rkgi(x) ≤ 0.

Being given λk ≥ 0 and rk > 0 to determine xk which minimizes Lrk(x, λk).
We generate the sequence {λk} by resting

λik+1 = Ψ+(λik + 2rkgi (xk)) ≥ 0, for i = 1, ..., q,

where
λk+1 = λk + 2rk∇λL(xk, λk).

For the resolution of the unconstrained nondifferentiable sub-problems

Inf
x∈Rn

Lrk(x, λk)

we have choose the proximal quasi-Newton method whose principle we present in what
follows :

3.1.1. Proximal quasi-Newton Method.
In this section, we propose the proximal quasi-Newton method to minimize a convex

nondifferentiable function in Rn. This method is based on the Rockafellar’s ([20]) proxi-
mal point algorithm and the cutting plane method. In every step, we approxime the proxi-
mal point by pα(xk) at the point xk, to define one vk ∈ ∂εkf(xk ) with εk ≤ α ‖ vk‖ , α
constant. The quasi-Newton step is used to reduce the value of ‖ vk‖.

Without the differentiability of f , the method converges globally.
a) The Concept of Proximal Point :
An idea to introduce the quasi-Newton method into the nondifferentiable optimization

problem is to consider the proximal point as it is developed in Rockafellar ([20]).
Consider the following mathematical programming problem :

(4) α := Inf
x∈Rn

f(x),

where f : Rn → R is a convex non-necessarily differentiable function.
In particular we assure that f is finite and continuous on Rn.
This problem can be to transform into a convex differentiable minimization problem

(5) α := Inf
x∈Rn

F (x),

where

(6) F (x) = Inf
y∈Rn

{
f(y) +

µ

2
‖ y − x‖2

}
and µ is a positive real number. (F (x) is called the Moreau-Yosida regularized of f )

Proposition 7. The function Fµ defined by

Fµ : y → Fµ(y) = f(y) +
µ

2
‖y − x‖2

reaches its infimum.
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Proof. The function

Fµ : y → Fµ(y) = f(y) +
µ

2
‖y − x‖2

is continuous. Let us show that it is coercive on Rn. As f is convex by hypothesis, it
possesses an affine minorant, namely there exist s0 ∈ Rn and α0 ∈ R such that

f(y) ≥< s0, y > + α0, ∀ y ∈ Rn

Consequently,

Fµ(y) ≥< s0, y > + α0 + µ
2 ‖y − x‖

2

≥ µ
2

∥∥∥y − ( s0µ − x)
∥∥∥2 − µ

2

∥∥∥ s0µ − x∥∥∥2 + µ
2 ‖x‖

2
+ α0,

thus, we deduct that
lim

‖y‖→+∞
Fµ(y) = +∞.

As a result there is well a point minimizing Fµ on Rn. �

Proposition 8. The infimum of Fµ is reached in an only point of Rn.

Proof. The function Fµ being strictly convex, as sum of a convex function and a strictly
convex function, there is only a point minimizing Fµ on Rn. �

Definition 1. The infimum of Fµ in (6) is called the proximal point of x. We shall note it
by p(x) in all which follows.

Proposition 9. The function F is derivable in all x ∈ Rn and its derivative is given by

(7) ∇F (x) = µ(x− p(x))

(8) µ(x− p(x)) ∈ ∂f(p(x)).

Proof. Let N := µ
2 ‖.‖

2
; then F is the inf-convolution of f and N :

F = (f�N).

Furthermore, this inf-convolution is exact in every point of Rn .

∀x ∈ Rn, F (x) = (f�N)(x) = f(p(x)) +
µ

2
‖x− p(x)‖2 .

We use, then, the calculation rule giving the subdifferential of an inf-convolution of the
function F to obtain

∀x ∈ Rn, ∂F (x) = ∂f(p(x)) ∩ ∂N(x− p(x)),

or
∂N(x− p(x)) = {µ(x− p(x))} ,

then
∂F (x) = {µ(x− p(x))} and {µ(x− p(x))} ∈ ∂f(p(x)).

The function F is convex from Rn to R , thus locally Lipschitz on Rn. Then the only
element µ(x − p(x)) of ∂F (x) define a differential (in the Fré chet sens) of F at x as
follows :

G(x) = ∇F (x) = µ(x− p(x)).

�
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Lemma 10. If f is a lower bounded function on Rn, then, the function F is lower bounded
on Rn.

Proof. As

F (x) ≥ f(y) + µ
2 ‖x− y‖

2

≥ f(p(x)) + µ
2 ‖x− p(x)‖2 ≥ f(p(x)) ≥ Inf

x∈Rn

f(x),

F (x) is lower bounded on Rn as soon as f is it. �

Lemma 11. The problems (4) and (5) are equivalent in the sense that all the sets of
solutions of the problems (4) and (5) simultaneous.

Proof. The conjugate N∗ of N is

s ∈ Rn −→ N∗(s) =
1

2µ
‖ s‖2 .

Because F = f�N , we have
F ∗ = f∗ +N∗.

Namely,

∀s ∈ Rn, F ∗(s) = f∗(s) +N∗(s) = f∗(s) +
1

2µ
‖s‖2 .

In particular, F ∗(0) = f∗(0). As

F ∗(0) = − Inf
x∈Rn

F (x) and f∗(0) = − Inf
x∈Rn

f(x),

then, the set of solutions of the problem (4) coincides with the set of solutions of the
problem (5). �

Theorem 12. Let f be a convex function with finite value at least in a point. Then
(a) for all µ > 0 we have

f(p(x)) ≤ F (x) ≤ f(x), ∀x ∈ Rn ;

(b) the following properties are equivalent :
(p1) x minimize f on Rn ;
(p2) x minimize F on Rn ;
(p3) x = p(x) ;
(p4) f(x) = f(p(x)) ;
(p5) f(x) = F (x).

Proof. (a) By definition we have

f(p(x)) ≤ f(p(x)) +
µ

2
‖x− p(x)‖2 = F (x) ≤ f(x), ∀x ∈ Rn.

(b) We prove
(p1)⇒ (p2) : (immediately) by the previous lemma.
(p2)⇒ (p3) : We know that F is convex and differentiable, with

∇F (x) = µ(x− p(x)) ∀ x,
consequently x minimize F on Rn if, and only if,∇F (x) = 0. Thus

µ(x− p(x)) = 0,

then p(x) = x.



294 NOUREDDINE DAILI AND MERZAKA KHALDI

(p3)⇒ (p4)⇒ (p5) : immediately from (a).
(p5)⇒ (p1) : We have

F (x) = Inf
y∈Rn

{
f(y) +

µ

2
‖x− y‖2

}
= f(x).

It means that the lower bounded in the definition of F (x) is reached at x , thus

x = p(x)⇒ x− p(x) = 0⇒ 0 ∈ ∂f(x)⇒ x minimize f .

�

The proximal Newton type method was the object of search for several actors what gave
good results ([4], [16] and [18]).

To solve the problem (4), we resort to the quasi-Newton method a shape of which is the
following one :

(9) xk+1 = xk − αkB−1k G(xk),

where αk is the step of displacement and Bk is generated by the quasi-Newton formula.
We use

(10) sk = xk+1 − xk, yk = G(xk+1)−G(xk).

For example, with Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula

(11) Bk+1 = Bk −
Bksks

t
kBk

stkBksk
+
yky

t
k

ytksk

the global convergence of the BFGS method with a linear search and the convergence
order are already studied in ([7]).

In the general case, it is impossible to obtain the exact proximal point p(xk) for xk
given. We need to approximate p(xk) by an approximative method of resolution of the
problem (6) only.

b) Algorithm and Global Convergence :
In this algorithm, we look for an approximation of proximal point pα(xk) of xk. The

used technique is the cutting plane method such that

µ(xk − pα(xk)) ∈ ∂εkf(pα(xk))

for εk ∈ [0, α ‖vk‖], where α is a constant. ∂εf(x) is the subdifferential of f for any
positive ε,

∂εf(x) :=
{
x ∈ Rn : f(y) ≥ f(x) + gt(y − x)− ε, y ∈ Rn

}
.

Then, we put
Gα(xk) = vk

the approximant of G(x). We use this formula in the quasi-Newton method (10), then we
build Bk+1 by considering

yk = Gα(xk+1)−Gα(xk)

in the formulae (11) and (12). The displacement step αk is determined from the value of
‖Gα(xk)‖ either by a linear search on the function f .

This algorithm works with double iterations, each serves to solve the following approx-
imate problem :

(12) Inf
y∈Rn

f(y) +
1

2
µ ‖y − xk‖2 .
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We use the cutting plane method technique, the point xk is the current iteration given to
the iteration k.

More exactly, the internal iteration generates a sequence {yj} defined as follows :
for j = 1, 2, ..., yj is the only solution of following problem :

(13) Inf
y∈Rn

fk,j(y) +
1

2
µ ‖y − xk‖2 ,

where fk,j is the polyhedral convex function defined by

(14) fk,j =
j−1
max
i=0

{
f(yi) + gti(y − yi)

}
it is an approximation of f in the neighborhood of xk and

gi ∈ ∂f(yi), i = 0, 1, ..., j − 1.

So there, yj is the solution of the sub-problem in it j-th iteration.
The internal iteration stops if one of the following conditions is satisfied :

(15) f(xk)− fk, j(yj) < ρ

(16) f(yj) ≤ f(xk)− σk(f(xk)− fk, j(yj)),
where ρ > 0 and σk ∈ [0, 1] are parameters.

Remark 1. The procedures (13), (14) form the pure cutting plane algorithm.

The relation (14) of fk, j and the subgradient inequality imply :

(17) fk,j(y) ≤ f(y), ∀ y ∈ Rn.

We have the inequalities :

(18)

fk,j(yj) ≤ fk,j(yj) + 1
2µ ‖yj − xk‖

2
= Inf
y∈Rn

{
fk,j(y) + 1

2µ ‖y − xk‖
2
}

≤ Inf
y∈Rn

{
f(y) + 1

2µ ‖y − xk‖
2
}
≤ f(xk), ∀ j = 1, 2, ..

Consequently, if (16) is satisfied, from (18), it results that

f(yj) +
1

2
µ ‖yj − xk‖2 ≤ Inf

y∈Rn

{
f(y) +

1

2
µ ‖y − xk‖2

}
+ ρ.

This inequality means that, if ρ is enough small, then yj is a good approximtion of the
solution of the problem (12).

Consider the condition (16). We can show ([16], Proposition 3) that, when j in-
creases, f(yj) and fk, j(yj) approach one of the other one and yj converges to the proximal
point p(xk).

When (16) is satisfied, we put
pα(xk) := yj

to use it as an approximation of the proximal point of xk.
If σk −→ 1, then pα(xk) is the best approximation of the proximal point p(xk).
Algorithm :
Step 0 : put k = 0
Choose an initial point x0 ∈ Rn and parameters ρ > 0, σ, c, γ ∈ [0, 1] , a constant M

enough large such that M ≥ f(x0) and a sequence {σk}k such that σ < σk < 1.
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Step 1 : solve the sub-problem (13) by the procedures (14) and (15) to obtain yj there
satisfying (16) or (17).

. If (16) is satisfied, then stop, end.

. If (17) is satisfied, then one put

jk = j and pα(xk) = yj

and go to the step 2.
Step 2 : Put

vk = µ(xk − pα(xk)).

Step 3 : Let B0 = (1 + µ)I, for k = 0.
If k ≥ 1, we build a definite positive and symmetric matrix Bk ∈ Rn×n, we use the

quasi-Newton formula with

sk = xk − xk−1 and yk = vk − vk−1
Step 4 : Calculate dk = −(Bk − µ−1I)vk.

. If k = 0 and η1 = ‖v0‖ , go to step 5.

. If k ≥ 1, ‖vk‖ ≤ cηk and f(pα(xk) + dk) ≤M, we put αk = 1 and go to step 6.
. Else put η = ηk and go to step 5.

Step 5 : Let mk be the smallest positive number of m such that

f(pα(x) + γmdk) ≤ f(xk)− γmσ

µ
‖vk‖2 .

Put αk = γmk
.

Step 6 : Calculate xk+1 = xk + αkdk, k = k + 1 and return to the step 1.
To assure that each of the steps of this algorithm is well defined, we need to establish

some propositions. In what follows, we indicate by fk the polyhedral function fk, j for
which the condition of the formula (17) is satisfied. So pα(xk) satisfies the inequality

(19) f(pα(xk)) ≤ f(xk)− σk(f(xk)− fk(pα(xk))).

The following proposition shows that the step 1 is always finitely feasible.

Proposition 13. ([4]) In every iteration k of the algorithm, the step 1 is executed in a finite
number of steps, and gives a sequence yj which verifies (16) and (17) for all j = 1, 2, ....

The following propositions give the error, from the approximation of the function fk
and the approximation of the proximal point pα(xk).

Proposition 14. ([4])For all k ≥ 0, put

Fα(xk) = f(pα(xk)) + µ
2 ‖p

α(xk)− xk‖

Gα(xk) = vk

εk = (1− σk)(f(xk)− fk(pα(xk))).

Then,

(20) F (xk) ≤ Fα(xk) ≤ F (xk) + εk

(21) ‖pα(xk)− p(xk)‖ ≤
√

2εk
µ
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(22) ‖Gα(xk)−G(xk)‖ ≤
√

2µεk

(23) vk ∈ ∂εkf(pα(xk))

Moreover, if the sequences {xk} and {pα(xk)} are bounded, then

(24) εk ≤ β ‖vk‖ ,
where

β = (1− σ)
L

σµ

and L is a Lipschitz constant of f .

Proposition 15. For all k, there exists τk > 0 such that

(25) f(pα(x) + τdk) ≤ f(xk)− τσ

µ
‖vk‖2 , ∀τ ∈ [o, τk] .

We are going to show here that, under reasonable hypotheses, the proximal quasi-
Newton method converges.

Theorem 16. (Convergence) Let f be a convex function such that the bounded set of
minimizers of f is non empty and {‖Bk‖}k is a bounded sequence, then the previous
algorithm converges in a finite number of iterations.

Proof. Let us indicate K = {1, 2, 3, ...} and

K0 = {0} ∪ {k ∈ K : excluding step 5 } .

The hypothesis f has a bounded set of minimizers implies the functions f and F have a
bounded level set. By construction, for every k, xk and pα(xk) remain in the bounded set

D = {x : f(x) ≤M} .

Let f be the minimum value of f , suppose that (14) is not satisfied, that is

(26) f(xk)− fk(pα(xk)) > ρ, ∀k.
According to the Proposition 13, the previous algorithm generates two sequences {xk} and
{pα(xk)}. We prove that every cluster point of {xk} and {pα(xk)} minimizes f .

Case 1 : Consider the case where K0 is infinite. Let us put

K0 = {k0 = 0 ≤ k1 ≤ k2 ≤ ...} .
By construction, we have

‖vkl‖ ≤ cηkl = c
∥∥ vkl−1

∥∥ , ∀l = 0, 1, 2, ...

and as vk = Gα(xk), then

‖vk‖ ≤ cl ‖Gα(x0)‖ , ∀ l = 0, 1, 2, ...

Thus, we find

(27) lim
(l−→+∞)

‖Gα(xkl)‖ ≤ lim
(l−→+∞)

cl ‖Gα(x0)‖ = 0

Let L be a Lipschitz constant of f . From the formula (25), of the Proposition 15, we have

εkl ≤ β ‖Gα(xk)‖ ,
where

β =
(1− σ)L

σµ
.
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By the formula (23) of the Proposition 15, we have then

(28) ‖G(xkl)‖ ≤ ‖Gα(xkl)‖+
√

2µεkl ≤ ‖Gα(xkl)‖+
√

2µα ‖Gα(xkl)‖

It results from the formula (28) that

lim
(l−→+∞)

‖G(xkl)‖ = 0.

Because for xk, pα(xk) ∈ D for all l ≥ 0 ; there is an infinite subset K ′ ⊂ K0 such that

lim
(k−→∞, k∈K′)

xk = x and lim
(k−→∞, k∈K′)

pα(xk) = p .

Thus, from
µ ‖x− p‖ ≤ lim

(k−→∞, k∈K′)
‖Gα(xk)‖ = 0

and the formula (28), we have x = p and G (x) = 0. Then the cluster point x of the
subsequence {xk}k∈K′ is an optimal solution.

Let us show, now, that every cluster point of the sequence {xk} is an optimal solution
of f .

Indeed; if there is a k such that k ≥ k for all k ∈ K0, then from

‖Gα(xk+1)‖ ≤ c ‖Gα(xk)‖ , k ≥ k,

it holds that every cluster point of {xk} is an optimal point.
On the other hand, if k do not exist, then by construction, for every k ∈ K0 there exists

a sufficiently large integer kl ∈ K0 such that kl ≤ k and

f ≤ f(xk+1) ≤ f(xkl + 1) = f(xkl −Bkvkl).

Because {‖Bk‖}k is bounded, ‖ vk‖ −→ 0 and f(xk) −→ f then every cluster point of
{xk}k is an optimal solution of f .

Case 2 : Consider the case where K0 is finite, let k̂ = max
k∈K0

k.

As the level sets of f are bounded, the sequences {xk}k and {pα(xk)} are bounded by
construction, then

(29)
σ

µ

∞∑
k=k̂+1

τk ‖vk‖2 ≤ f(xk̂+1)− f <∞

which implies

(30) lim
(k−→∞)

αk ‖vk‖2 = 0.

Because
σ < σk and µ ‖xk − pα(xk)‖2 ≤ f(xk)− fk(pα(xk)).

We have, according to the Proposition 15,

(31) f ≤ f(pα(xk)) ≤ f(xk)− σ

µ
‖vk‖2 .

Moreover, as {xk}k and {pα(xk)}k are bounded, there exists a subsequence K1 ⊂
K such that

lim
(k−→∞, k∈K1)

pα(xk) = p , lim
(k−→∞, k∈K1)

xk = x , lim
(k−→∞, k∈K1)

vk = v.
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If lim
(k−→∞, k∈K1)

αk > 0, then the formula (34) implies v = 0. On the other hand, if

lim
(k−→∞, k∈K1)

αk = 0, then the definition of mk in step of linear search gives

(32) f(pα(xk ) + γmk−1dk) > f(xk)− γmk−1σ

µ
‖vk‖2 .

As
γmk−1 =

αk
γ
−→ 0,

the formula (31) implies

(33) f(p) ≥ f(x).

From the formula (32), we will have

(34) f(p) ≤ f(x)− σ

µ
‖v‖2 .

Both formulae (34) and (35) implie v = 0 and x = p. So, we have

ε = lim(1−σk)(f(xk)−fk(pα(xk))) ≤ 1− σ
σ

lim
(k−→∞, k∈K1)

(f(xk)−fk(pα(xk))) = 0,

what implies ε = 0.
We have vk ∈ ∂εkf(pα(xk)), the formula of ε-subdifferential implies 0 ∈ ∂f(p). Then,

x = p minimize f and f(x) = f .
Knowing that

(35) f ≤ f(xk+1) ≤ f(xk )− αkσ

µ
‖vk‖2 , ∀ k > k̂ .

{f(xk )}k>k̂ is a decreasing sequence thus has a limit f∗. In passing in the limit in (35)

with k ∈ K1,we obtain f∗ = f . Then, every cluster point of {xk}k stays an optimal
point. Consequently, if the formula (27) is verified for all k, it follows that every cluster
point of {xk}k and {pα(xk)} minimize f and

f(pα(xk))− f(xk) ≤ σk(f(xk))− fk(pα(xk))) ≤ −σ(f(xk)− fk(pα(xk))), ∀ k.
However, this returns us to a contradiction with (2) because

f(pα(xk))− f(xk) −→ 0.

Thus, the algorithm converges in a finite number of iterations. �

We have following both theorems :

Theorem 17. Let us suppose that the asymptotic optimal value for the problem ( PP) is
finite. Let (λk)k be a bounded sequence which maximizes the problem (P ∗rk), (rk > 0), let
xk ∈ Rn be satisfying

Lrk(xk, λk)− InfLrk(., λk) = Lrk(xk, λk)− drk(λk) ≤ εk,
where εk −→ 0, as (k −→ +∞) . Then (xk)k is an asymptotically minimizing sequence
of ( PP).

Theorem 18. Let us suppose that the problem (PP) admits a strict feasible solution (the
Slater condition is verified) and that the optimal value of (PP) is finite. Let (λk)k be a
sequence solution of the problem (P ∗rk), (rk > 0), and let xk ∈ Rn and εk be satisfying

Lrk(xk, λk)− InfLrk(., λk) = Lrk(xk, λk)− drk(λk) ≤ εk,
where εk −→ 0, as (k −→ +∞) . Then
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(a) (xk)k is asymptotic minimizing ;
(b) there exists a sequence (xk)k of feasible solutions of the problem (PP) such that

lim
(k−→+∞)

(xk − xk) = 0 and lim
(k−→+∞)

f(xk) = lim
(k−→+∞)

f(xk) = α,

where α is at the same time an optimal value and asymptotically optimal of (PP);
(c) furthermore, the sequence (λk)k is bounded and all cluster values are Kuhn-Tucker

(K.T) vectors for the problem (PP).

Proof. For the proof of these theorems, we can see ([10]; [11]). �

4. MAIN ALGORITHM AND STUDY OF THE CONVERGENCE

The purpose of this section is to show that sequences {xk}k and {λk}k given by the
algorithm above, converge globally for one fixed positive rk and with at least the Slater
condition is satisfied.

Algorithm :
Step 0 : (k = 0) Choose a factor r0 > 0, a multiplier λ0 ∈ Rm

+ and a sequence (εk)k
with

εk ≥ 0 , lim
(k−→+∞)

εk = 0.

Step 1 : Give rk > 0, λk ≥ 0, find one solution xk of the problem

Inf {Lrk(x, λk), x ∈ R n}

such that
Lrk(xk, λk)− Inf {Lrk(x, λk), x ∈ R n} ≤ εk

using proximal quasi-Newton method.
Step 2 : Put

λik+1 = max(λik + 2rkgi(xk), 0), i = 1, ..., q,

or
λk+1 = λk + 2rk∇λLrk(xk, λk)

Step 3 : If
‖∇Lrk(xk, λk)‖ ≤ δ

stop and take xk as solution of (PP).
Choose rk+1 ≥ rk (if necessary), and return to the step 1.
The convergence result is given by the following theorem :

Theorem 19. ([10]; [7]) Let us suppose the (PP) problem has a Kuhn-Tucker (K.T.)
vector and that ∑

k≥1

εk < +∞.

Then we have the following properties :
(p1) : (λk)k converges towards to an K.T. vector ;
(p2) : the sequence {xk}k satisfies

lim
(k−→+∞)

sup gi(xk) ≤ 0 , for i = 1, ..., q ; lim
(k−→+∞)

f(xk) = α.
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5. COMPUTATIONAL RESULTS

Example 1. (n = 2; m = 2)
Consider the following mathematical programming problem :

(PP)


α := Inf f(x) = Inf max(f1, f2)

subject to

 x1 − 2x2 + 1 ≤ 0

x1 + 2x2 − 1 ≤ 0,

where 
f1(x1, x2) = x32 + x21 + 1 ;

f2(x1, x2) = (2− x2)
2 − x1.

We have

λ0 xk f(opt) iterations rk εk time(s)
(2; 2)

t
(−0.9076; 0.7413)

t
2.35557133 30 1.5 10−3 0.11s

(2; 2)
t

(−0.8216; 0.8045)
t

2.22491671 16 5.5 10−3 0.05s

(1; 3)
t

(−0.8039; 0.8138)
t

2.21093811 33 1.5 10−3 0.06s

(1; 3)
t

(−0.9579; 0.7854)
t

2.43303965 20 10 10−3 0.05s

(1.5; 2.5)
t

(−0.7780; 0.8216)
t

2.19451953 61 5.5 10−3 0.05s

(1.5; 2.5)
t

(−0.7784; 0.8227)
t

2.19445110 74 5.5 10−4 0.06s

(1.5; 2.5)
t

(−0.7790; 0.8226)
t

2.19444251 89 5.5 10−5 0.11s

(4; 6)
t

(−0.7258; 0.8342)
t

2.17547419 57 5.5 10−4 0.05s

(10; 1)
t

(−0.7666; 0.8344)
t

2.16525885 41 5.5 10−4 0.06s

δ = 10−8

Example 2. (n = 2; m = 2)
Consider the following mathematical promming problem :

(PP)


α := Inff(x) = Inf max(f1, f2, f3)

subject to

 x1 + x2 + 1 ≤ 0,

x1x2 − 1 ≤ 0,

where 
f1(x1, x2) = x22 + x1x2 ;

f2(x1, x2) = (4− x1)2 + (1− x2)2 + 5 ;

f3(x1, x2) = exp(−x1 + x2).
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We have
λ0 xk f(opt) iterations rk εk time(s)

(5; 4)
t

(1.1250; 1.8750)
t

21.53253229 10 1.5 10−5 0.05s

(5; 4)
t

(1.0208;−1.9792)
t

22.75086814 13 11.5 10−4 0.05s

(5; 4)
t

(1.0208;−1.9792)
t

22.75086814 14 11.5 10−6 0.05s

(5; 4)
t

(1.0122;−1.9878)
t

22.85395638 12 20 10−5 0.05s

(24; 1)
t

(0.6547;−2.1304)
t

24.76234123 186 11.5 10−4 0.11s

(9; 1)
t

(0.9375;−2.0625)
t

23.75812712 14 11.5 10−4 0.06s

(0; 0)
t

(1.0732;−1.9569)
t

22.63629699 17 20 10−5 0.05s

(5.5; 7)
t

(1.0061;−1.9939)
t

22.92690486 12 20 10−5 0.05s

(6; 80)
t

(1.0000;−2.0000)
t

23.00001645 7 20 10−5 0.00s

δ = 10−6

Example 3. (n = 3; m = 3; δ = 10−8)

Consider the following mathematical programming problem :

(PP)



α := Inff(x) = Inf
3

max
i=1

( 1
2x

tAix+ btix + ci)

subject to


x21 − 1 ≤ 0,

x22 − 1 ≤ 0,

x23 − 1 ≤ 0,

where

A1 =

 2 1 0
1 3 0
0 0 1

 , b1 =

 1
0
0

 , c1 = 2,

A2 =

 5 3 1
2 10 1
1 0 20

 , b2 =

 1
1
0

 , c2 = 0,

A3 =

 2 0.5 0.5
0.5 2 0.5
0.5 0.5 2

 , b3 =

 1
1
1

 , c2 = 0.

We have
λ0 xk f(opt) iterations rk εk time(s)

(1; 1; 1)
t

(−0.5987; 0.1998; 0.0008)
t

1.70000180 48 1.5 10−4 0.05s

(1; 4; 7)
t

(−0.4457; 0.0628; 0.0019)
t

1.73089727 44 0.5 10−4 0.06s

(1; 4; 7)
t

(−0.6000; 0.1.999; 0.0002)
t

1.70000033 57 1.5 10−4 0.11s

(1; 4; 7)
t

(−0.5860; 0.2073; 0.0028)
t

1.70038087 50 5 10−4 0.06s

(0.5; 1; 2)
t

(−0.6000; 0.2000; 0.0001)
t

1.70000000 49 1.5 10−4 0.05s

(0.5; 1; 2)
t

(−0.5762; 0.2138; 0.0008)
t

1.70118323 52 5.5 10−5 0.06s

(0.5; 1; 2)
t

(−0.6000; 0.2000; 0.0001)
t

1.70000000 59 5.5 10−6 0.11s

(12; 12; 1)
t

(−0.2138; 0.0712; 0.0006)
t

1.82426573 99 5.5 10−4 0.11s

(2; 0; 0)
t

(−0.5998; 0.1998; 0.0002)t 1.70000006 71 10.5 10−4 0.11s
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Example 4. (n = 2; m = 2)
Consider the following mathematical programming problem :

(PP)


α := inf f(x) = Inf exp(x1x2) + |x1|

subject to

 x1 + x2 + 1 ≤ 0,

x22 − 1 ≤ 0.

We have
λ0 xk f(opt) iterations εk rk time(s)

(1; 1)
t

(−0.0029;−0.9921)
t

1.00577409 11 10−2 1.5 0.05s

(1; 1)
t

(−0.0122;−08877)
t

1.02305248 9 10−5 2.5 0.05s

(1; 1)
t

(−0.0022;−0.7916)
t

1.00386107 15 10−5 1.5 0.06s

(9; 0)
t

(0;−1)
t

1.00001757 6 10−5 1.5 0.05s

(9; 0)
t

(−0.0008;−1.0000) 1.00151714 5 10−4 10 0.00s

(1.6; 2)
t

(−0.0023;−0.5006)
t

1.00347098 13 10−5 1.5 0.05s

(4; 4)
t

(−0.0121;−0.3612)
t

1.01649251 14 10−5 2.5 0.06s

(4; 4)
t

(−0.0103;−0.8906)
t

1.01948055 8 10−5 10.5 0.05s

(4; 4)
t

(−0.0037;−0.9887) 1.00746318 6 10−5 100 0.05s

δ = 10−8

6. COMMENTS AND CONCLUSIONS

In this work, we were interested in the calculation of the dual bounds of nondifferen-
tiable optimization problems. A very important remark to indicate : the extreme difficulty
of the calculation of sub-gradient.

Then, on one hand, we introduce the proximal quasi-Newton method to surmount this
inconvenience. On the other hand, to spread the quasi–Newton method in the nondifferen-
tiable case.

The obtained results of the numerical tests show that the convergence is global and that
the number of iterations depends on three parameters : the used algorithm to solve the
sub-problems, the initial points and the factor of penalty rk.

The calculation of the dual bound for differentiable or nondifferentiable optimization
problems is an interesting and vast domain of research. In spite of few attempts were made
in the nondifferentiable case for these problems.

In our work, the essential purpose of this paper was to answer the following question :
Can we spread the used techniques in the differentiable case ([6]) for the nondifferen-

tiable case by keeping the convergence as well as its rank ?
This seems clear in our study. Indeed, always basing on the augmented Lagrangian

method, we solved our problem by application of the proximal quasi-Newton technique.
The development of other methods, in the nondifferentiable case, is a center of current

searches and are open problems.

Acknowledgement 1. The authors would like to thank the referees for some corrections
which greatly improved the presentation of this paper.
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