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Abstract 
 
Development and execution of automated engineering analysis workflows has become 
more important in industry as integrated product development teams seek to rapidly 
explore multi-disciplinary design spaces and execute optimization and design for 
variation studies.  Traditional centralized approaches to automated workflow 
development require a single person to build and execute the workflow.  This approach 
is infeasible for high fidelity analyses because it is too challenging for one person to 
retain all the modeling and automation expertise for each model and analysis in the 
workflow.  This paper proposes a decentralized approach when engineers 
collaboratively build and execute an engineering analysis workflow together.  To 
execute a decentralized approach, a new tool called Collaborative Computing 
Environment was developed and is discussed in this paper.  Furthermore, the 
Collaborative Computing Environment tool enables engineers to easily follow software 
best practices such as revision management, modular coding, and testing.  These 
software best practices allow for more efficient automated workflow development.  To 
demonstrate the feasibility of both the decentralized approach and application of 
software development best practices to automated workflow development, the approach 
is applied to a real world design. 
 
Keywords: Automated Engineering Analysis Workflow, Computer Collaboration, 
Integrated Simulation 
 
Acronyms 
API – Application Program Interface 
CAD – Computer Aided Design 
CCE – Collaborative Computing Environment 
CFD – Computational Fluid Dynamics 
DFV – Design for Variation 
DOE – Design of Experiments 
DOME – Distributed Object-based Modeling Environment 
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GUI – Graphical User Interface 
HPT – High Pressure Turbine 
IPT – Integrated Product Team 
LCF – Low Cycle Fatigue 
LHS – Latin Hypercube Sample 
LPT – Low Pressure Turbine  
LSF – Load Sharing Facility 
TMF – Thermal Mechanical Fatigue 
TMTF – Turning Mid-Turbine Frame 
 
Software Packages 
ANSYS® (ANSYS®, 2007) 
ANSYS Workbench® (ANSYS Workbench®, 2013) 
Apache Subversion® (Apache Subversion®, 2006) 
Isight® (Isight®, 2011) 
PHX ModelCenter® (PHX ModelCenter®, 2011) 
Remote Solve Manager® (ANSYS Workbench®, 2013) 
Revision Manager® (Revision Manager®, 2009) 
SIMULIA Execution Engine® (SIMULIA Execution Engine®, 2013) 
Unigraphics® (Unigraphics®, 2008) 
Unigraphics Advanced Simlutation® (Unigraphics®, 2008) 
 
For readability, these software packages will no longer be cited throughout the paper. 
 
1.0 Introduction 
 
Automated engineering analysis workflows are becoming more prevalent.  There are 
many potential benefits to analyzing the integrated behavior of a potential design 
throughout the design cycle.  Integrated simulations allow engineers to rapidly explore 
the design and quickly analyze different design topologies.  This yields higher quality 
products with better performance.  The ability to rapidly explore a design space enables 
creative and try innovative designs. 
 
Automated engineering analysis workflows are also the foundation to creating emulators 
and executing probabilistic analyses for high fidelity models and analyses.  Companies 
are applying probabilistic design and analyses techniques such as Design for Variation 
(DFV) (Reinman et al. 2012).  The DFV methodology for physics-based model requires 
a robust parametric model that can be driven through a Design of Experiments (DOE).  
The DOE results are used as training data for the development of emulators that enable 
probabilistic analyses.  For example, Bunker (2009) utilized a simple automated 
workflow to access the effects of manufacturing tolerances on gas turbine cooling.  
Beyond variation and uncertainty quantification, automated engineering analysis 
workflows facilitate rapid design space exploration and optimization. 
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There are several challenges to building and executing an automated workflow.  First, 
tool automation requires a different skill set in addition to knowledge of tool usage and 
application.  Many engineering applications provide automation capability through  
macro languages and/or Application Program Interfaces (APIs).  This requires 
programming and software development skills.  In addition, engineers need to manage 
aspects of the program such as license availability in automated workflows.  Second, 
compute resources are required to execute the workflow.  For simple workflows, a 
single desktop computer can be sufficient.  Workflows with long running physics-based 
models require high performance computing systems.  Thus, knowledge of high 
performance computing system execution software such as Load Sharing Facility (LSF) 
and parallel execution is required.  Third, it is often the case that automated workflows 
must be built, executed, and post processed within aggressive schedules.  Fourth, 
knowledge of parametric geometric modelling and robust meshing definition is needed if 
the workflow involves a Computer Aided Design (CAD) model.  Fifth, technical expertise 
is required for each model of the workflow to verify that the model accurately represents 
the physics of the problem it is intended to model.  Finally, engineers need to be able to 
quickly test and debug each piece of the workflow, as well as, the entire workflow.  
 
The challenges listed above are more acute for multi-disciplinary problems that required 
an Integrated Product Team (IPT).  An IPT is divided based on different engineering 
disciplines.  For example, an IPT may include aerodynamic, design, thermal, structural, 
and manufacturing engineers.  Each discipline engineer is responsible for their 
particular aspect of the part but the entire team must work together to develop a part 
that satisfies all design criteria.  These types of problems are inherently more 
challenging and require multiple engineers.  Thus, the technical expertise and the tool 
knowledge to understand and analyze the problem are split amongst several 
individuals.  This creates difficulty when developing automated workflows. 
 
There are several software packages that facilitate the development of automated 
workflows such as Unigraphics Advanced Simlutation, ANSYS Workbench, Isight, and 
PHX ModelCenter.  Each of these tools provides methods via a Graphical User 
Interface (GUI) to link tools and analyses together.  Isight works with SIMULIA 
Execution Engine and ANSYS Workbench has Remote Solve Manager to simplify high 
performance computing system execution.  These tools enable the building, testing, and 
debugging of  workflows. 
 
There are still challenges to automated workflow development and execution that these 
software packages do not address.  A couple key challenges are the development of 
robust parametric model and the required technical knowledge to analyze the 
automated workflow results.  While Unigraphics and ANSYS Workbench certainly 
facilitate the development of CAD models, the creation of robust parametric models is 
left to the skill and knowledge of the engineer. Furthermore, these tools are intended to 
be utilized by a single engineer who is responsible to building, testing, and executing 
the automated workflow.  This is known as a centralized workflow. 
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Centralized automated workflow development and execution works well for single 
discipline workflows but does not easily scale to high fidelity multi-disciplinary workflows 
that require IPTs.  These types of problems need several engineers, who are 
responsible for different models, to execute the entire analysis manually.  It is unrealistic 
for single engineer to be required to build, test, and execute the automated workflow.  A 
single person would need to have the parametric robust modeling skills and the 
technical expertise for each tool and discipline within the workflow.  If a team is required 
to run the analyses manually, a single engineer cannot be expected to run the analysis 
automatically. 
 
There have been many efforts to develop a decentralized approach through an 
integrated modeling environment.  Wallace et al. (2001) developed an integrated 
simulation environment called Distributed Object-based Modeling Environment (DOME) 
based on the World-Wide Web.  This framework is best suited for problems where only 
meta-data is shared between models and analyses are relatively simple and robust. 
Wong and Sriram (1993) created an information model for incorporating product 
information.  Toye et al. (1994) created a prototype environment to help design teams 
gather, organize, re-access, and communicate both informal and formal design 
information.  Wellman (1994) applied a market model using “design economies” to well-
defined design problems and demonstrated that a design can be created relatively 
quickly for simple examples.  Molina et al. (1995) provides a summary of research on 
computer systems in support of simultaneous engineering.  Bliznakov et al. (1996) 
describe an environment for meta-level design information integration of CAD systems 
with other application programs.  Case and Lu (1996), Cutkosky et al. (1996), Dabke 
and Cox (1998), and Kim and Kim (1998) all researched the development of a 
distributed system for collaborative design.   
 
Despite the wide range of approaches, there is a key challenge that is not addressed.  
These efforts do not provide a clear mechanism for building and testing individual 
pieces of the workflow.  If the individual pieces of a workflow are not robust, then the 
overall workflow will not execute.  When workflows are applied to models that involve 
complex geometry and high fidelity models, testing the individual workflow pieces is 
critical.  This research applies software development and testing practices, such as, 
revision management, object-oriented programing, and unit testing to decentralized 
automated workflow development. 
 
This paper proposes a collaborative decentralized approach to multi-disciplinary 
workflows that enables the application of software development best practices to 
automated workflow development.  This approach follows the philosophy described by 
(Cao and Wallace, 2012).   The decentralized approach and systematic procedure are 
rooted in software development practices such as revision management (O’Sullivan, 
2009), object oriented programming (Savitch, 2007), and code testing (Kumar and 
Bansal, 2013).  The goal of this paper is to demonstrate that principles from one field of 
study, computer science, can be applied to computer simulation in the field of  
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mechanical engineering.  In fact, these principles can be applied to any scientific field 
that seeks to couple complex computer simulations into an automated workflow.  A new 
tool called Collaborative Computing Environment (CCE) that facilitates the application of 
these principles similar to integrated development environments and other tools  that 
facilitate software development. The decentralized approach via CCE address the 
workflow development challenges that the centralized approach fails to handle while still 
retaining the benefits of the centralized tools and approach. 
 
Centralized and decentralized workflows and appropriate applications are discussed in 
section 2.  Next, section 3 talks about the architecture of CCE and how it can be applied 
to both centralized and decentralized workflows.  Section 4 discusses how CCE enables 
the application of software development practices.  The feasibility of the decentralized 
approach and the workflow development procedure is demonstrated in section 5 by 
discussing a real world application.  Finally, conclusions and potential future work are 
addressed in section 6. 
 
2.0 Centralized and Decentralized Workflows 
 

Engineers need a methodology to determine if a centralized or decentralized approach 
should be employed for automated workflow building and execution.  There are two 
aspects of an automated workflow that can be centralized or decentralized: workflow 
building and workflow execution.  When a workflow is fully centralized, it is built and 
executed by a single individual from a central location.  A fully decentralized workflow is 
built and executed by multiple people.  The decision between building a centralized or 
decentralized workflow is situation dependent as shown in Figure 1.  As a general 
guideline, answer this question:  “If this work was going to be executed manually, how 
many practitioners would be needed?”  If the answer is one, then a centralized 
approach is appropriate, otherwise, a decentralized approach is typically the appropriate 
choice. 

 

Figure 1: Decentralized vs. Centralized Decision Matrix 
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A centralized approach is appropriate when a single practitioner typically executes each 
of the individual steps.  This occurs most often when a single discipline is involved or 
when lower fidelity tools are used by a single practitioner to model several components 
or engineering analyses.  One practitioner is able to understand all of the analyses 
involved and can be expected to build, test, and execute the entire workflow 
independently.  All the analysis files can be organized and managed in a central 
location 
 
A decentralized workflow approach is appropriate for workflows involving multiple 
disciplines working as an IPT.  An individual is unlikely to possess all the required 
technical and modeling expertise.  An exceptional engineer may be able to do it but it is 
unlikely that the strategy would be successful throughout the entire work force.  
Furthermore, each discipline engineer has expertise in their particular discipline.  The 
decentralized approach keeps the models with the appropriate engineers. 
 
In some cases it is not clear which approach should be used.  For example, a single 
engineer may be able to handle several low fidelity tools in a centralized manner.  At 
some point, the quantity of tools becomes so large a single engineer cannot manage all 
the tools and a decentralized approach should be used.  It depends on the situation 
when one switches from the centralized to the decentralized approach.   
 
3.0 CCE Architecture 
 
CCE was developed to aid engineers in building decentralized workflows.  However, 
CCE is still useful for centralized workflows.  CCE is comprised of several self-
functioning modules.  Each module can be run individually or concurrently with the other 
modules.  This organization creates a flexible approach for developing automated 
workflows.  The user can focus on a single piece of the workflow or the interactions of 
several components.  The ten modules are described here. 
 
Listener: The listener sits and waits for the upstream tasks that are being run by another 
discipline engineer to be completed before allowing the rest of the CCE process to 
execute.  When files have been checked into a revision manager system call Revision 
Manager via subversion commands, the listener is triggered and it copies files into the 
user working copy.  Once the copying is finished, the listener is complete and the 
subsequent CCE modules can begin.  The listener is only used in a decentralized 
workflow and is not used with the make DOE module, which is described in the next 
paragraph.   
 
Make DOE: The make DOE module generates a DOE file called doe.txt, which lists all 
of the variable values for each design point that is to be executed.  The make DOE can 
generate a DOE file with a single nominal value, a set of max-min cases, or a Latin 
Hypercube Sample (LHS) (Fang et al. 2006).  A set of max-min cases is where one 
variable is at its max with the rest of the variables at their nominal values.  For the next  
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design point, the same variable is at its min value with the rest of the variables at 
nominal.  This sequence is repeated for every variable.  A set of max-min cases is  
useful for testing.  If desired, a DOE file can be created by an external source for a 
custom set of cases.  The LHS is typically used as training data for a future emulator 
(Santner et al. 2003).  The make DOE module is not used with the listener module. 
 
Custom Pre-Process: The custom pre-process module allows users to run any custom 
program prior to the design point execution.  
 
Submitter: The submitter module runs all of the jobs that are defined by the DOE file.  
The submitter can either run the jobs serially and locally or can run the jobs in parallel 
on a compute cluster.  The submitter module runs the jobs in parallel by communicating 
with LSF, which is installed on the compute cluster.  The submitter module is 
responsible for copying the necessary files to the compute cluster, executing the job, 
and copying back the desired files.   The submitter also communicates the run status of 
each batch job. 
 
Job Status Checker: The job status checker module is primarily responsible for waiting 
until the batch jobs run by the submitter are complete.  It retrieves the status for each 
job from the submitter.  Once all the jobs are complete, the job status checker allows 
post batch job execution scripts to run. 
 
Check for Files: One way to determine if a batch job was successful is to determine if it 
produced the required output files.  The check for files module will determine if the 
required output files were produced for each batch run.  The results are then stored in a 
summary file that lists a 1 or 0 for each case based on the existence of a file. 
 
Summarize: The summarize module gathers results from each of the batch runs and 
creates summary files that contains the results for all of the runs.  The summarize 
module can gather results from any text file that has a “key=value” format. 
 
Check Success: If a batch job produced all of the required output files and numbers, 
then that job is considered to be a good case because it ran to completion.  A more 
thorough analysis is required to determine if the results are valid.  The check success 
module reads the summary files produced by the check for files and summarize 
modules to determine if each batch job was successful. 
 
Post Process & Custom Post-Process: The post processing module formats the data for 
statistical analysis software and other post processing programs.  There is also an 
option to run a custom post processing executable. 
 
Pusher: The last module is the pusher.  This module creates a “path to results” file.  It 
then checks the path to results file, DOE file, and variation definition file into Revision  
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Manager via subversion commands.  Any subsequent tasks are then triggered and will 
begin execution. 
 
Figure 2 depicts the modules that are utilized for centralized and decentralized 
workflows as well as the input and output files.  This illustrates the process flow.  Note 
that the custom pre-process and post-process modules are not shown in Figure 2. 

 
Figure 2: Centralized and Decentralized Process Flow 

 
For a decentralized workflow, Figure 2 shows the modules that are used by a single 
discipline.  This becomes a piece of a larger workflow decentralized workflow as shown 
in Figure 3. 
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Figure 3: Example 3 Discipline Decentralized Workflow 

 
The decentralized workflow shown in Figure 3 can be thought of as a collection of 
centralized workflows.  This is intended because it minimizes the work required when 
switching back and forth from testing a piece of the workflow to running the entire 
workflow.  Each centralized workflow can be thought of as an object from object 
oriented programming.  It is a bundle of information that defines how the model behaves 
and it has a clear interface to the other centralized workflows.  The files that are passed 
between disciplines are CCE input and output files shown in Figure 2.  Notice that a 
small workflow that simply creates a DOE starts the larger workflow.  This small 
workflow is owned by the entire team since everyone is responsible for defining the 
design space.  Thus, the DOE generation is broken out separately rather than being 
part of the first discipline’s workflow. 
 
There are three requirements that CCE places on the task automation.  First, the task 
automation must be able to be run from a command line in the background on a single 
operating system.  This is known as running in batch.  Second, the task must 
completely run a single analysis in the current working directory.  All the files needed to 
execute the task must be in the current working directory.  This does not mean that the 
task cannot reference programs installed in a network location as long as that location is 
known to the compute cluster.  The task automation simply needs to handle a single 
case since CCE handles running multiple cases.  Finally, the task must take a variation 
text file as an input and produce “key=value” formatted files as an output.  This is the  
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defined interface between CCE and task.  See Figure 4 for an illustration that depicts 
the CCE-task interface.  It should be noted that a task can be executed manually if 
warranted by the situation.  However, an automated task is preferred. 

 
Figure 4: CCE-Task Interface 

 
CCE requires that the variation file be named “_variation_.txt”.  The file lists input 
variables and values in a “key=value” format.  This is a file produced by CCE.  The 
output files list output variables and values and the file itself can have any name.  This 
simple text file interface allows CCE to work with any task automation method that 
satisfies the three requirements listed above.  Thus, CCE has no tool dependencies. 
 
Tool automation refers to the tools that are included in an individual task.  All tool 
automation must be completed as a prerequisite to running CCE.  Tool automation can 
involve a single tool or multiple tools.  There are multiple ways to automate a task.  
Many engineering tools such as Unigraphics and ANSYS provide APIs or macro 
languages.  Code written via an API or macro language provides a method to automate 
the tool.  Engineering tools have started to add additional capability through products 
such as Unigraphics Advanced Simulation and ANSYS Workbench for running multiple 
tools as part of a task.  There are also tools such as Isight from Simulia® and PHX 
ModelCenter from Phoenix Integration® that provide generic capability to link multiple 
tools.  In some instances, tool automation can be a custom program.  The best 
approach for tool automation is task dependent.   
 
4.0 Software Development Best Practices 
 
CCE was developed such that software development best practices can be easily 
applied when building an automated workflow.  The application of these best practices 
reduces development time and improves workflow robustness. 
 
4.1 Revision Management 
 
Revision management tracks the changes to documents during the building and 
execution of automated workflows.  Revision management removes ambiguities from 
file versions because the latest is always the last version checked into the revision 
management system.  It also keeps track of changes so the developer does not have to 
do housekeeping of files and folders.  While revision management will not force good 
naming conventions, it will keep track of who did what and when.  The files are kept in a 
central, backed-up, repository where engineers can check out working copies.  This  
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enables multiple developers to work on the same project simultaneously.  Furthermore, 
a single engineer can manage multiple working copies for separate ideas.  This helps 
the developer follow a “one idea, one commit” philosophy.  This is important because it 
makes it more efficient to identify and fix bugs and improves traceability.  CCE directly 
integrates with a revision management system (Revision Manger) through the listener 
and pusher modules.  Using a revision management system allows the engineer to 
focus more time on the analysis and less time on file management and organization.  
This facilitates the building and maintenance of automated workflows.  The setup of a 
revision management system is dependent on the tools used for revision management. 
 
4.2 Object-Oriented Programming and Modular Coding 
 
Each task of the workflow can be thought of its own independent object with an 
interface.  The task contains all the data, attributes, and methods.  With an object-
oriented approach, individual tasks of a larger workflow can be built separately, see 
Figure 3.  The only requirement is that all the inputs and outputs of the various tasks be 
in sync with one another.  Breaking the workflow down into independent tasks allows 
workflow development to be parallelized amongst multiple developers.  This speeds up 
workflow development, which is important to ensure that schedule restraints are 
satisfied. 
 
4.3 Testing 
 
Since the workflow has been modularly developed, each task of the workflow can be 
tested individually.  This is similar to unit testing in software development.  A workflow 
builder can follow a develop-debug loop like a software developer.  Each task of the 
workflow can be fully tested before being integrated with the larger workflow.  This 
makes debugging easier because it allows the builder to focus on a single piece of the 
workflow while testing.  Once the entire workflow has been coupled, it is possible to 
employ system testing.  This testing ensures that all of the tasks of the workflow fit 
together. 
 
5.0 Example Application – Turning Mid-Turbine Frame 
 
To demonstrate the feasibility of the decentralized workflow approach and workflow 
development procedure, the approach and procedure are applied to a real world 
problem.  
 
5.1 Problem Introduction 
 
A Turning Mid-Turbine Frame (TMTF) is in the gas path between the High Pressure 
Turbine (HPT) and Low Pressure Turbine (LPT) of a jet engine.  The purpose of a 
TMTF is to allow access to the shaft for a bearing while minimizing aerodynamic loses.  
The TMTF also protects the bearing structure from high gas path temperatures.  It is  
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challenging to design a TMTF due to harsh boundary conditions, model uncertainty, and 
multiple objectives.  The figure below shows a representative engine cross section with 
a TMTF. 
 

 
Figure 5: PW1000G Cross Section with Highlighted TMTF Region  

(http://www.a320neo.com/pratt-whitney-pw1000g.php) 

 
When designing a TMTF, the goal is to ensure that production hardware meets the 
requirements in the production engines.  This is a difficult problem because there is a 
great deal of uncertainty.  For example, the gas path temperature profile is an important 
driver of Thermal Mechanical Fatigue (TMF) and Low Cycle Fatigue (LCF) life.  The 
actual gas path temperature profile that is seen by the hardware in the engine is 
unknown.  In many instances, available gas path temperature profile data is from 
engines with different configurations.  Models that are used to predict the gas path 
temperature profile have inherent uncertainty.  Furthermore, the models that are used to 
predict the stress, strain, metal temperature, and life have inherent uncertainty.  The 
models may contain inaccurate parameters, biases, or stochastic residual error.  Finally, 
manufacturing variation effects final part performance.  While the nominal design may 
meet the objectives, a manufactured part within tolerance may not.  Clearly, it is difficult 
to meet all of the requirements without needlessly increasing cost given the high degree 
of uncertainty.  
 
The goals for the TMTF IPT were to allow for more aerodynamic analysis iterations 
within the schedule, quantify the effect of temperature profile uncertainty, recover 
previous design life requirement misses, and recover the LPT module efficiency miss.  
Typically, TMTF IPTs were able to manually execute roughly twelve analyses in six 
months.  Within these twelve analyses, only one to two aerodynamic iterations would be 
executed. 
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The team decided to apply the DFV approach (Reinman et al. 2012) to achieve the 
assigned goals.  This required the development of a multi-disciplinary automated 
workflow.  The CCE tool and the workflow development procedure were applied to 
develop a decentralized automated workflow. 
 
5.2 The workflow 
 
The TMTF was a full wheel cast part consisting of fourteen airfoils.  Only two airfoils 
were analyzed with cyclic symmetry to capture the necessary physics while reducing 
computational solution time.  Twenty-nine input variables were parametric and thirty-
three outputs were tracked in the automated workflow.  For the twenty-nine input 
variables, twenty-four were geometric and five defined the temperature profile.  The 
geometry is shown in the figure below. 
 

 
Figure 6: TMTF Geometry 

 
These parameters were selected because they were expected to be important drivers of 
stress, temperature, and life in the sixteen fillet locations.  This was based on previous 
sensitivity analyses and engineering experience.  Design space limits were assigned to 
geometric parameters based on expert opinion that far exceeded typical manufacturing 
tolerances because the goal was to find a nominal geometry that was robust to variation 
on uncertainty.   
 
The thermal temperature profile was a 1D radial profile that is defined by a b-spline.  
Engine data was utilized to determine the number of the b-spline coefficients and 
corresponding limits.  TMF life and LCF was tracked at every fillet location for each 
airfoil in the model for a total of thirty-two life outputs.  The last output was the weight of 
the part.  
 
The engineering analysis workflow consists of the following analyses: 3d geometry 
generation, gas path temperature profile generation, external thermal boundary 
condition generation and application, internal thermal boundary condition generation 
and application, thermal meshing, thermal Finite Element Model (FEM) solution,  
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structural meshing, structural FEM solution, TMF life calculation, and LCF life 
calculation.  The engineering workflow is shown in the figure below. 
 

 
Figure 7: Automated Engineering Analysis Workflow 

 
The 3-dimensional TMTF geometry was modeled and meshed using Unigraphics and 
Unigraphics Advanced Simulation.  The weight of the part was also calculated in 
Unigraphics.  Two separate meshes were created for the analysis, one thermal and one 
structural.  Transient internal and external boundary conditions were generated via 
proprietary Pratt & Whitney software.  The thermal and structural analyses were solved 
in ANSYS.  During the transient structural solution, the stress, strain, and metal 
temperature were stored at the life limiting time point for the life limiting regions.  These 
values were used to calculate TMF and LCF life via propriety Pratt and Whitney 
equations. 
 
5.3 Workflow Development and Execution 
 
All of the analyses were coupled together in a decentralized automated engineering 
analysis workflow by applying the systematic approach and the CCE tool.  Every 
particular analysis was assigned to a discipline engineer.  Each individual piece of the 
workflow was made to be parametric and compatible with a compute cluster.  Once 
testing was complete, the IPT collaboratively coupled the entire workflow together and 
executed the workflow.  There were many building-testing iterations loops at both the 
discipline analysis and full workflow levels.  As the design progressed, topology 
changes required rebuilding and testing of the automated workflow.   
 
The team was able to execute approximately 1200 design iterations.  The largest DOE 
that was executed contained 870 discrete design points.  A Latin Hypercube (Fang et al. 
2006) was generated to fill the design space.  There were twenty-nine input variables in  
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the Latin Hypercube.  The team selected thirty runs per input variable because this was 
expected to sufficiently fill the design space to produce an accurate emulator.  The 
automated workflow achieved a 60.9% success rate.  If a design point was executed 
through the entire workflow and it produced valid results, it is considered successful.  
Due to schedule constraints, the IPT was not able to improve the robustness of the 
models any further.  A part design was required by a specified date to meet the overall 
engine development schedule.  The biggest causes of failure were structural meshing 
and parametric geometry.  The structural meshing was difficult due to refined sub 
models and maintaining boundary conditions at the cut plane boundaries.  The 
parametric geometry would fail due to complex endwall contouring not updating in the 
Unigraphics model. 
 
While parametric modeling and robust meshing remained challenging, the overall 
automation was not a challenge.  Files were successfully passed between discipline 
analyses and the team was able to work together to build the automated workflow.  The 
team always used the latest and correct files in the automated workflow.  This showed 
the benefit of applying revision management to workflow development.   
 
To overcome the parametric modeling and robust meshing challenges, the team 
implemented a ‘person in the loop’ optimization strategy.  In a ‘person in the loop’ 
optimization strategy, the team replaced the role of a formal optimization algorithm and 
designed the part.  The IPT selected the design points to execute based on the previous 
automated workflow results and their expertise.  The team would select approximately 
five to fifteen points to run.  Each team member used the automation to run the points.  
For cases that failed, manual intervention was employed to fix the issue.  Once all the 
cases worked for a given discipline analysis, the next discipline in the workflow would 
execute.  This process would take anywhere from one to three days, which is much 
faster than the original manual process.  The ‘person in the loop’ optimization was 
successful because each discipline had ownership of their piece of the workflow and 
had the expertise to manually fix failed cases.  The person in the loop optimization 
combined with the DFV analysis allowed the team to satisfy all of the design 
requirements.  Table 1 shows the benefits to the TMTF as a result of the person in the 
loop optimization and the DFV results. 
 

Metric Improvement 

Weight 2.2% Below 
Requirement 

LCF Life 1.8x Over Requirement 

TMF Life 2.5x Over Requirement 
Table 1: Final TMTF Results 
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6.0 Conclusions and Future Work 
 
The TMTF example illustrates that the decentralized workflow approach and the 
systematic workflow development procedure are viable approaches for workflow 
development in real workflow problem.  The decentralized approach kept the various 
models with the discipline experts.  Each team member built and tested their piece of 
the workflow in parallel.  The entire team collaboratively assembled and executed the 
entire workflow within schedule constraints.  The decentralized approach allowed the 
team to make significant progress in overcoming the challenges of robust parametric 
modeling and meshing to the point where the team could make design decisions based 
on the workflow. 
 
Furthermore, computer science concepts such as revision manager, code testing, and 
object oriented programming are applicable to automated workflows in the field of 
Mechanical Engineering.  CCE and Revision Manager were the tools that allowed the 
team to effectively follow these principles.  This is similar to how an integrated 
development environment facilitates software development.  These principles enabled 
the team to efficiently develop an automated workflow within schedule constraints. 
 
For future work, the decentralized and centralized approaches should be quantifiably 
compared.  In addition, the benefits of a systematic workflow develop procedure should 
be quantified relative to a non-structured approach.  While the decentralized approach 
has been shown to work for DOEs, it has not been applied to optimization or Monte-
Carlo analyses.  Finally, hybrid approaches, where the building and execution of the 
workflow follow different decentralized and centralized approaches can be investigated. 
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