
267

AMO – Advanced Modeling and Optimization, Volume 17, Number 2, 2015

Decentralized Automated Engineering Analysis Workflow Development and
Execution

Steven Finley

Senior Engineer

Pratt & Whitney – Hot Section Engineering – Advanced Methods
400 Main St.

East Hartford, CT 06118
steven.finley@pw.utc.com

Abstract

Development and execution of automated engineering analysis workflows has become
more important in industry as integrated product development teams seek to rapidly
explore multi-disciplinary design spaces and execute optimization and design for
variation studies. Traditional centralized approaches to automated workflow
development require a single person to build and execute the workflow. This approach
is infeasible for high fidelity analyses because it is too challenging for one person to
retain all the modeling and automation expertise for each model and analysis in the
workflow. This paper proposes a decentralized approach when engineers
collaboratively build and execute an engineering analysis workflow together. To
execute a decentralized approach, a new tool called Collaborative Computing
Environment was developed and is discussed in this paper. Furthermore, the
Collaborative Computing Environment tool enables engineers to easily follow software
best practices such as revision management, modular coding, and testing. These
software best practices allow for more efficient automated workflow development. To
demonstrate the feasibility of both the decentralized approach and application of
software development best practices to automated workflow development, the approach
is applied to a real world design.

Keywords: Automated Engineering Analysis Workflow, Computer Collaboration,
Integrated Simulation

Acronyms
API – Application Program Interface
CAD – Computer Aided Design
CCE – Collaborative Computing Environment
CFD – Computational Fluid Dynamics
DFV – Design for Variation
DOE – Design of Experiments
DOME – Distributed Object-based Modeling Environment

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

268

Steven Finley

GUI – Graphical User Interface
HPT – High Pressure Turbine
IPT – Integrated Product Team
LCF – Low Cycle Fatigue
LHS – Latin Hypercube Sample
LPT – Low Pressure Turbine
LSF – Load Sharing Facility
TMF – Thermal Mechanical Fatigue
TMTF – Turning Mid-Turbine Frame

Software Packages
ANSYS® (ANSYS®, 2007)
ANSYS Workbench® (ANSYS Workbench®, 2013)
Apache Subversion® (Apache Subversion®, 2006)
Isight® (Isight®, 2011)
PHX ModelCenter® (PHX ModelCenter®, 2011)
Remote Solve Manager® (ANSYS Workbench®, 2013)
Revision Manager® (Revision Manager®, 2009)
SIMULIA Execution Engine® (SIMULIA Execution Engine®, 2013)
Unigraphics® (Unigraphics®, 2008)
Unigraphics Advanced Simlutation® (Unigraphics®, 2008)

For readability, these software packages will no longer be cited throughout the paper.

1.0 Introduction

Automated engineering analysis workflows are becoming more prevalent. There are
many potential benefits to analyzing the integrated behavior of a potential design
throughout the design cycle. Integrated simulations allow engineers to rapidly explore
the design and quickly analyze different design topologies. This yields higher quality
products with better performance. The ability to rapidly explore a design space enables
creative and try innovative designs.

Automated engineering analysis workflows are also the foundation to creating emulators
and executing probabilistic analyses for high fidelity models and analyses. Companies
are applying probabilistic design and analyses techniques such as Design for Variation
(DFV) (Reinman et al. 2012). The DFV methodology for physics-based model requires
a robust parametric model that can be driven through a Design of Experiments (DOE).
The DOE results are used as training data for the development of emulators that enable
probabilistic analyses. For example, Bunker (2009) utilized a simple automated
workflow to access the effects of manufacturing tolerances on gas turbine cooling.
Beyond variation and uncertainty quantification, automated engineering analysis
workflows facilitate rapid design space exploration and optimization.

269

Decentralized Automated Engineering Analysis Workflow Development and Execution

There are several challenges to building and executing an automated workflow. First,
tool automation requires a different skill set in addition to knowledge of tool usage and
application. Many engineering applications provide automation capability through
macro languages and/or Application Program Interfaces (APIs). This requires
programming and software development skills. In addition, engineers need to manage
aspects of the program such as license availability in automated workflows. Second,
compute resources are required to execute the workflow. For simple workflows, a
single desktop computer can be sufficient. Workflows with long running physics-based
models require high performance computing systems. Thus, knowledge of high
performance computing system execution software such as Load Sharing Facility (LSF)
and parallel execution is required. Third, it is often the case that automated workflows
must be built, executed, and post processed within aggressive schedules. Fourth,
knowledge of parametric geometric modelling and robust meshing definition is needed if
the workflow involves a Computer Aided Design (CAD) model. Fifth, technical expertise
is required for each model of the workflow to verify that the model accurately represents
the physics of the problem it is intended to model. Finally, engineers need to be able to
quickly test and debug each piece of the workflow, as well as, the entire workflow.

The challenges listed above are more acute for multi-disciplinary problems that required
an Integrated Product Team (IPT). An IPT is divided based on different engineering
disciplines. For example, an IPT may include aerodynamic, design, thermal, structural,
and manufacturing engineers. Each discipline engineer is responsible for their
particular aspect of the part but the entire team must work together to develop a part
that satisfies all design criteria. These types of problems are inherently more
challenging and require multiple engineers. Thus, the technical expertise and the tool
knowledge to understand and analyze the problem are split amongst several
individuals. This creates difficulty when developing automated workflows.

There are several software packages that facilitate the development of automated
workflows such as Unigraphics Advanced Simlutation, ANSYS Workbench, Isight, and
PHX ModelCenter. Each of these tools provides methods via a Graphical User
Interface (GUI) to link tools and analyses together. Isight works with SIMULIA
Execution Engine and ANSYS Workbench has Remote Solve Manager to simplify high
performance computing system execution. These tools enable the building, testing, and
debugging of workflows.

There are still challenges to automated workflow development and execution that these
software packages do not address. A couple key challenges are the development of
robust parametric model and the required technical knowledge to analyze the
automated workflow results. While Unigraphics and ANSYS Workbench certainly
facilitate the development of CAD models, the creation of robust parametric models is
left to the skill and knowledge of the engineer. Furthermore, these tools are intended to
be utilized by a single engineer who is responsible to building, testing, and executing
the automated workflow. This is known as a centralized workflow.

270

Steven Finley

Centralized automated workflow development and execution works well for single
discipline workflows but does not easily scale to high fidelity multi-disciplinary workflows
that require IPTs. These types of problems need several engineers, who are
responsible for different models, to execute the entire analysis manually. It is unrealistic
for single engineer to be required to build, test, and execute the automated workflow. A
single person would need to have the parametric robust modeling skills and the
technical expertise for each tool and discipline within the workflow. If a team is required
to run the analyses manually, a single engineer cannot be expected to run the analysis
automatically.

There have been many efforts to develop a decentralized approach through an
integrated modeling environment. Wallace et al. (2001) developed an integrated
simulation environment called Distributed Object-based Modeling Environment (DOME)
based on the World-Wide Web. This framework is best suited for problems where only
meta-data is shared between models and analyses are relatively simple and robust.
Wong and Sriram (1993) created an information model for incorporating product
information. Toye et al. (1994) created a prototype environment to help design teams
gather, organize, re-access, and communicate both informal and formal design
information. Wellman (1994) applied a market model using “design economies” to well-
defined design problems and demonstrated that a design can be created relatively
quickly for simple examples. Molina et al. (1995) provides a summary of research on
computer systems in support of simultaneous engineering. Bliznakov et al. (1996)
describe an environment for meta-level design information integration of CAD systems
with other application programs. Case and Lu (1996), Cutkosky et al. (1996), Dabke
and Cox (1998), and Kim and Kim (1998) all researched the development of a
distributed system for collaborative design.

Despite the wide range of approaches, there is a key challenge that is not addressed.
These efforts do not provide a clear mechanism for building and testing individual
pieces of the workflow. If the individual pieces of a workflow are not robust, then the
overall workflow will not execute. When workflows are applied to models that involve
complex geometry and high fidelity models, testing the individual workflow pieces is
critical. This research applies software development and testing practices, such as,
revision management, object-oriented programing, and unit testing to decentralized
automated workflow development.

This paper proposes a collaborative decentralized approach to multi-disciplinary
workflows that enables the application of software development best practices to
automated workflow development. This approach follows the philosophy described by
(Cao and Wallace, 2012). The decentralized approach and systematic procedure are
rooted in software development practices such as revision management (O’Sullivan,
2009), object oriented programming (Savitch, 2007), and code testing (Kumar and
Bansal, 2013). The goal of this paper is to demonstrate that principles from one field of
study, computer science, can be applied to computer simulation in the field of

271

Decentralized Automated Engineering Analysis Workflow Development and Execution

mechanical engineering. In fact, these principles can be applied to any scientific field
that seeks to couple complex computer simulations into an automated workflow. A new
tool called Collaborative Computing Environment (CCE) that facilitates the application of
these principles similar to integrated development environments and other tools that
facilitate software development. The decentralized approach via CCE address the
workflow development challenges that the centralized approach fails to handle while still
retaining the benefits of the centralized tools and approach.

Centralized and decentralized workflows and appropriate applications are discussed in
section 2. Next, section 3 talks about the architecture of CCE and how it can be applied
to both centralized and decentralized workflows. Section 4 discusses how CCE enables
the application of software development practices. The feasibility of the decentralized
approach and the workflow development procedure is demonstrated in section 5 by
discussing a real world application. Finally, conclusions and potential future work are
addressed in section 6.

2.0 Centralized and Decentralized Workflows

Engineers need a methodology to determine if a centralized or decentralized approach
should be employed for automated workflow building and execution. There are two
aspects of an automated workflow that can be centralized or decentralized: workflow
building and workflow execution. When a workflow is fully centralized, it is built and
executed by a single individual from a central location. A fully decentralized workflow is
built and executed by multiple people. The decision between building a centralized or
decentralized workflow is situation dependent as shown in Figure 1. As a general
guideline, answer this question: “If this work was going to be executed manually, how
many practitioners would be needed?” If the answer is one, then a centralized
approach is appropriate, otherwise, a decentralized approach is typically the appropriate
choice.

Figure 1: Decentralized vs. Centralized Decision Matrix

272

Steven Finley

A centralized approach is appropriate when a single practitioner typically executes each
of the individual steps. This occurs most often when a single discipline is involved or
when lower fidelity tools are used by a single practitioner to model several components
or engineering analyses. One practitioner is able to understand all of the analyses
involved and can be expected to build, test, and execute the entire workflow
independently. All the analysis files can be organized and managed in a central
location

A decentralized workflow approach is appropriate for workflows involving multiple
disciplines working as an IPT. An individual is unlikely to possess all the required
technical and modeling expertise. An exceptional engineer may be able to do it but it is
unlikely that the strategy would be successful throughout the entire work force.
Furthermore, each discipline engineer has expertise in their particular discipline. The
decentralized approach keeps the models with the appropriate engineers.

In some cases it is not clear which approach should be used. For example, a single
engineer may be able to handle several low fidelity tools in a centralized manner. At
some point, the quantity of tools becomes so large a single engineer cannot manage all
the tools and a decentralized approach should be used. It depends on the situation
when one switches from the centralized to the decentralized approach.

3.0 CCE Architecture

CCE was developed to aid engineers in building decentralized workflows. However,
CCE is still useful for centralized workflows. CCE is comprised of several self-
functioning modules. Each module can be run individually or concurrently with the other
modules. This organization creates a flexible approach for developing automated
workflows. The user can focus on a single piece of the workflow or the interactions of
several components. The ten modules are described here.

Listener: The listener sits and waits for the upstream tasks that are being run by another
discipline engineer to be completed before allowing the rest of the CCE process to
execute. When files have been checked into a revision manager system call Revision
Manager via subversion commands, the listener is triggered and it copies files into the
user working copy. Once the copying is finished, the listener is complete and the
subsequent CCE modules can begin. The listener is only used in a decentralized
workflow and is not used with the make DOE module, which is described in the next
paragraph.

Make DOE: The make DOE module generates a DOE file called doe.txt, which lists all
of the variable values for each design point that is to be executed. The make DOE can
generate a DOE file with a single nominal value, a set of max-min cases, or a Latin
Hypercube Sample (LHS) (Fang et al. 2006). A set of max-min cases is where one
variable is at its max with the rest of the variables at their nominal values. For the next

273

Decentralized Automated Engineering Analysis Workflow Development and Execution

design point, the same variable is at its min value with the rest of the variables at
nominal. This sequence is repeated for every variable. A set of max-min cases is
useful for testing. If desired, a DOE file can be created by an external source for a
custom set of cases. The LHS is typically used as training data for a future emulator
(Santner et al. 2003). The make DOE module is not used with the listener module.

Custom Pre-Process: The custom pre-process module allows users to run any custom
program prior to the design point execution.

Submitter: The submitter module runs all of the jobs that are defined by the DOE file.
The submitter can either run the jobs serially and locally or can run the jobs in parallel
on a compute cluster. The submitter module runs the jobs in parallel by communicating
with LSF, which is installed on the compute cluster. The submitter module is
responsible for copying the necessary files to the compute cluster, executing the job,
and copying back the desired files. The submitter also communicates the run status of
each batch job.

Job Status Checker: The job status checker module is primarily responsible for waiting
until the batch jobs run by the submitter are complete. It retrieves the status for each
job from the submitter. Once all the jobs are complete, the job status checker allows
post batch job execution scripts to run.

Check for Files: One way to determine if a batch job was successful is to determine if it
produced the required output files. The check for files module will determine if the
required output files were produced for each batch run. The results are then stored in a
summary file that lists a 1 or 0 for each case based on the existence of a file.

Summarize: The summarize module gathers results from each of the batch runs and
creates summary files that contains the results for all of the runs. The summarize
module can gather results from any text file that has a “key=value” format.

Check Success: If a batch job produced all of the required output files and numbers,
then that job is considered to be a good case because it ran to completion. A more
thorough analysis is required to determine if the results are valid. The check success
module reads the summary files produced by the check for files and summarize
modules to determine if each batch job was successful.

Post Process & Custom Post-Process: The post processing module formats the data for
statistical analysis software and other post processing programs. There is also an
option to run a custom post processing executable.

Pusher: The last module is the pusher. This module creates a “path to results” file. It
then checks the path to results file, DOE file, and variation definition file into Revision

274

Steven Finley

Manager via subversion commands. Any subsequent tasks are then triggered and will
begin execution.

Figure 2 depicts the modules that are utilized for centralized and decentralized
workflows as well as the input and output files. This illustrates the process flow. Note
that the custom pre-process and post-process modules are not shown in Figure 2.

Figure 2: Centralized and Decentralized Process Flow

For a decentralized workflow, Figure 2 shows the modules that are used by a single
discipline. This becomes a piece of a larger workflow decentralized workflow as shown
in Figure 3.

275

Decentralized Automated Engineering Analysis Workflow Development and Execution

Figure 3: Example 3 Discipline Decentralized Workflow

The decentralized workflow shown in Figure 3 can be thought of as a collection of
centralized workflows. This is intended because it minimizes the work required when
switching back and forth from testing a piece of the workflow to running the entire
workflow. Each centralized workflow can be thought of as an object from object
oriented programming. It is a bundle of information that defines how the model behaves
and it has a clear interface to the other centralized workflows. The files that are passed
between disciplines are CCE input and output files shown in Figure 2. Notice that a
small workflow that simply creates a DOE starts the larger workflow. This small
workflow is owned by the entire team since everyone is responsible for defining the
design space. Thus, the DOE generation is broken out separately rather than being
part of the first discipline’s workflow.

There are three requirements that CCE places on the task automation. First, the task
automation must be able to be run from a command line in the background on a single
operating system. This is known as running in batch. Second, the task must
completely run a single analysis in the current working directory. All the files needed to
execute the task must be in the current working directory. This does not mean that the
task cannot reference programs installed in a network location as long as that location is
known to the compute cluster. The task automation simply needs to handle a single
case since CCE handles running multiple cases. Finally, the task must take a variation
text file as an input and produce “key=value” formatted files as an output. This is the

276

Steven Finley

defined interface between CCE and task. See Figure 4 for an illustration that depicts
the CCE-task interface. It should be noted that a task can be executed manually if
warranted by the situation. However, an automated task is preferred.

Figure 4: CCE-Task Interface

CCE requires that the variation file be named “_variation_.txt”. The file lists input
variables and values in a “key=value” format. This is a file produced by CCE. The
output files list output variables and values and the file itself can have any name. This
simple text file interface allows CCE to work with any task automation method that
satisfies the three requirements listed above. Thus, CCE has no tool dependencies.

Tool automation refers to the tools that are included in an individual task. All tool
automation must be completed as a prerequisite to running CCE. Tool automation can
involve a single tool or multiple tools. There are multiple ways to automate a task.
Many engineering tools such as Unigraphics and ANSYS provide APIs or macro
languages. Code written via an API or macro language provides a method to automate
the tool. Engineering tools have started to add additional capability through products
such as Unigraphics Advanced Simulation and ANSYS Workbench for running multiple
tools as part of a task. There are also tools such as Isight from Simulia® and PHX
ModelCenter from Phoenix Integration® that provide generic capability to link multiple
tools. In some instances, tool automation can be a custom program. The best
approach for tool automation is task dependent.

4.0 Software Development Best Practices

CCE was developed such that software development best practices can be easily
applied when building an automated workflow. The application of these best practices
reduces development time and improves workflow robustness.

4.1 Revision Management

Revision management tracks the changes to documents during the building and
execution of automated workflows. Revision management removes ambiguities from
file versions because the latest is always the last version checked into the revision
management system. It also keeps track of changes so the developer does not have to
do housekeeping of files and folders. While revision management will not force good
naming conventions, it will keep track of who did what and when. The files are kept in a
central, backed-up, repository where engineers can check out working copies. This

277

Decentralized Automated Engineering Analysis Workflow Development and Execution

enables multiple developers to work on the same project simultaneously. Furthermore,
a single engineer can manage multiple working copies for separate ideas. This helps
the developer follow a “one idea, one commit” philosophy. This is important because it
makes it more efficient to identify and fix bugs and improves traceability. CCE directly
integrates with a revision management system (Revision Manger) through the listener
and pusher modules. Using a revision management system allows the engineer to
focus more time on the analysis and less time on file management and organization.
This facilitates the building and maintenance of automated workflows. The setup of a
revision management system is dependent on the tools used for revision management.

4.2 Object-Oriented Programming and Modular Coding

Each task of the workflow can be thought of its own independent object with an
interface. The task contains all the data, attributes, and methods. With an object-
oriented approach, individual tasks of a larger workflow can be built separately, see
Figure 3. The only requirement is that all the inputs and outputs of the various tasks be
in sync with one another. Breaking the workflow down into independent tasks allows
workflow development to be parallelized amongst multiple developers. This speeds up
workflow development, which is important to ensure that schedule restraints are
satisfied.

4.3 Testing

Since the workflow has been modularly developed, each task of the workflow can be
tested individually. This is similar to unit testing in software development. A workflow
builder can follow a develop-debug loop like a software developer. Each task of the
workflow can be fully tested before being integrated with the larger workflow. This
makes debugging easier because it allows the builder to focus on a single piece of the
workflow while testing. Once the entire workflow has been coupled, it is possible to
employ system testing. This testing ensures that all of the tasks of the workflow fit
together.

5.0 Example Application – Turning Mid-Turbine Frame

To demonstrate the feasibility of the decentralized workflow approach and workflow
development procedure, the approach and procedure are applied to a real world
problem.

5.1 Problem Introduction

A Turning Mid-Turbine Frame (TMTF) is in the gas path between the High Pressure
Turbine (HPT) and Low Pressure Turbine (LPT) of a jet engine. The purpose of a
TMTF is to allow access to the shaft for a bearing while minimizing aerodynamic loses.
The TMTF also protects the bearing structure from high gas path temperatures. It is

278

Steven Finley

challenging to design a TMTF due to harsh boundary conditions, model uncertainty, and
multiple objectives. The figure below shows a representative engine cross section with
a TMTF.

Figure 5: PW1000G Cross Section with Highlighted TMTF Region

(http://www.a320neo.com/pratt-whitney-pw1000g.php)

When designing a TMTF, the goal is to ensure that production hardware meets the
requirements in the production engines. This is a difficult problem because there is a
great deal of uncertainty. For example, the gas path temperature profile is an important
driver of Thermal Mechanical Fatigue (TMF) and Low Cycle Fatigue (LCF) life. The
actual gas path temperature profile that is seen by the hardware in the engine is
unknown. In many instances, available gas path temperature profile data is from
engines with different configurations. Models that are used to predict the gas path
temperature profile have inherent uncertainty. Furthermore, the models that are used to
predict the stress, strain, metal temperature, and life have inherent uncertainty. The
models may contain inaccurate parameters, biases, or stochastic residual error. Finally,
manufacturing variation effects final part performance. While the nominal design may
meet the objectives, a manufactured part within tolerance may not. Clearly, it is difficult
to meet all of the requirements without needlessly increasing cost given the high degree
of uncertainty.

The goals for the TMTF IPT were to allow for more aerodynamic analysis iterations
within the schedule, quantify the effect of temperature profile uncertainty, recover
previous design life requirement misses, and recover the LPT module efficiency miss.
Typically, TMTF IPTs were able to manually execute roughly twelve analyses in six
months. Within these twelve analyses, only one to two aerodynamic iterations would be
executed.

279

Decentralized Automated Engineering Analysis Workflow Development and Execution

The team decided to apply the DFV approach (Reinman et al. 2012) to achieve the
assigned goals. This required the development of a multi-disciplinary automated
workflow. The CCE tool and the workflow development procedure were applied to
develop a decentralized automated workflow.

5.2 The workflow

The TMTF was a full wheel cast part consisting of fourteen airfoils. Only two airfoils
were analyzed with cyclic symmetry to capture the necessary physics while reducing
computational solution time. Twenty-nine input variables were parametric and thirty-
three outputs were tracked in the automated workflow. For the twenty-nine input
variables, twenty-four were geometric and five defined the temperature profile. The
geometry is shown in the figure below.

Figure 6: TMTF Geometry

These parameters were selected because they were expected to be important drivers of
stress, temperature, and life in the sixteen fillet locations. This was based on previous
sensitivity analyses and engineering experience. Design space limits were assigned to
geometric parameters based on expert opinion that far exceeded typical manufacturing
tolerances because the goal was to find a nominal geometry that was robust to variation
on uncertainty.

The thermal temperature profile was a 1D radial profile that is defined by a b-spline.
Engine data was utilized to determine the number of the b-spline coefficients and
corresponding limits. TMF life and LCF was tracked at every fillet location for each
airfoil in the model for a total of thirty-two life outputs. The last output was the weight of
the part.

The engineering analysis workflow consists of the following analyses: 3d geometry
generation, gas path temperature profile generation, external thermal boundary
condition generation and application, internal thermal boundary condition generation
and application, thermal meshing, thermal Finite Element Model (FEM) solution,

280

Steven Finley

structural meshing, structural FEM solution, TMF life calculation, and LCF life
calculation. The engineering workflow is shown in the figure below.

Figure 7: Automated Engineering Analysis Workflow

The 3-dimensional TMTF geometry was modeled and meshed using Unigraphics and
Unigraphics Advanced Simulation. The weight of the part was also calculated in
Unigraphics. Two separate meshes were created for the analysis, one thermal and one
structural. Transient internal and external boundary conditions were generated via
proprietary Pratt & Whitney software. The thermal and structural analyses were solved
in ANSYS. During the transient structural solution, the stress, strain, and metal
temperature were stored at the life limiting time point for the life limiting regions. These
values were used to calculate TMF and LCF life via propriety Pratt and Whitney
equations.

5.3 Workflow Development and Execution

All of the analyses were coupled together in a decentralized automated engineering
analysis workflow by applying the systematic approach and the CCE tool. Every
particular analysis was assigned to a discipline engineer. Each individual piece of the
workflow was made to be parametric and compatible with a compute cluster. Once
testing was complete, the IPT collaboratively coupled the entire workflow together and
executed the workflow. There were many building-testing iterations loops at both the
discipline analysis and full workflow levels. As the design progressed, topology
changes required rebuilding and testing of the automated workflow.

The team was able to execute approximately 1200 design iterations. The largest DOE
that was executed contained 870 discrete design points. A Latin Hypercube (Fang et al.
2006) was generated to fill the design space. There were twenty-nine input variables in

281

Decentralized Automated Engineering Analysis Workflow Development and Execution

the Latin Hypercube. The team selected thirty runs per input variable because this was
expected to sufficiently fill the design space to produce an accurate emulator. The
automated workflow achieved a 60.9% success rate. If a design point was executed
through the entire workflow and it produced valid results, it is considered successful.
Due to schedule constraints, the IPT was not able to improve the robustness of the
models any further. A part design was required by a specified date to meet the overall
engine development schedule. The biggest causes of failure were structural meshing
and parametric geometry. The structural meshing was difficult due to refined sub
models and maintaining boundary conditions at the cut plane boundaries. The
parametric geometry would fail due to complex endwall contouring not updating in the
Unigraphics model.

While parametric modeling and robust meshing remained challenging, the overall
automation was not a challenge. Files were successfully passed between discipline
analyses and the team was able to work together to build the automated workflow. The
team always used the latest and correct files in the automated workflow. This showed
the benefit of applying revision management to workflow development.

To overcome the parametric modeling and robust meshing challenges, the team
implemented a ‘person in the loop’ optimization strategy. In a ‘person in the loop’
optimization strategy, the team replaced the role of a formal optimization algorithm and
designed the part. The IPT selected the design points to execute based on the previous
automated workflow results and their expertise. The team would select approximately
five to fifteen points to run. Each team member used the automation to run the points.
For cases that failed, manual intervention was employed to fix the issue. Once all the
cases worked for a given discipline analysis, the next discipline in the workflow would
execute. This process would take anywhere from one to three days, which is much
faster than the original manual process. The ‘person in the loop’ optimization was
successful because each discipline had ownership of their piece of the workflow and
had the expertise to manually fix failed cases. The person in the loop optimization
combined with the DFV analysis allowed the team to satisfy all of the design
requirements. Table 1 shows the benefits to the TMTF as a result of the person in the
loop optimization and the DFV results.

Metric Improvement

Weight 2.2% Below
Requirement

LCF Life 1.8x Over Requirement

TMF Life 2.5x Over Requirement
Table 1: Final TMTF Results

282

Steven Finley

6.0 Conclusions and Future Work

The TMTF example illustrates that the decentralized workflow approach and the
systematic workflow development procedure are viable approaches for workflow
development in real workflow problem. The decentralized approach kept the various
models with the discipline experts. Each team member built and tested their piece of
the workflow in parallel. The entire team collaboratively assembled and executed the
entire workflow within schedule constraints. The decentralized approach allowed the
team to make significant progress in overcoming the challenges of robust parametric
modeling and meshing to the point where the team could make design decisions based
on the workflow.

Furthermore, computer science concepts such as revision manager, code testing, and
object oriented programming are applicable to automated workflows in the field of
Mechanical Engineering. CCE and Revision Manager were the tools that allowed the
team to effectively follow these principles. This is similar to how an integrated
development environment facilitates software development. These principles enabled
the team to efficiently develop an automated workflow within schedule constraints.

For future work, the decentralized and centralized approaches should be quantifiably
compared. In addition, the benefits of a systematic workflow develop procedure should
be quantified relative to a non-structured approach. While the decentralized approach
has been shown to work for DOEs, it has not been applied to optimization or Monte-
Carlo analyses. Finally, hybrid approaches, where the building and execution of the
workflow follow different decentralized and centralized approaches can be investigated.

References

ANSYS® (2007). ANSYS Mechanical Version 11.0, ANSYS, Canonsburg, PA.

ANSYS Workbench® (2013). Version 15.0, ANSYS, Canonsburg, PA.

Apache Subversion® (2006). Version 1.4.6, The Apache Software Foundation.

Bliznakov, P. I. et al. (1996). “Integration Infrastructure to Support Concurrence and
Collaboration in Engineering Design”. 1996 ASME Design Engineering Technical
Conferences, Irvine, CA.

Bunker, R. S. (2009). “The Effect of Manufacturing Tolerances on Gas Turbine Cooling”.
ASME: Journal of Turbomachinery, 131, 1 – 11.

Cao, Q. and Wallace, D. (2012). “Crowd-driver Ecosystem for Evolutionary Design”.
Defense Advanced Research Projects Agency: Tactical Technology Office (TTO).
DARPA/CMO Contract No. HR0011-11-C-0092.

283

Decentralized Automated Engineering Analysis Workflow Development and Execution

Case, M. P. and Lu, S. C.-Y. (1996). “Discourse model for collaborative design”.
Computer-Aided Design, 28, 333-345.

Cutkosky, M. R. et al. (1996). “PACT: An Experiment in Integrating Concurrent
Engineering Systems”. IEEE Computer, 28-37.

Dabke, P. and Cox, A. (1998). “NetBuilder: an environment for integrating tools and
people”. Computer-Aided Design, 30, 465-472.

Fang, K., Li, R., Sudjianto, A. (2006). Design and Modeling for Computer Experiments.
Chapman & Hall/CRC, Boca Raton, Florida.

Isight® (2011). Version 5.6-2, Dassault Systemes, Velizy Villacoublay, France.

Kim, C., and Kim, Y. (1998). “Internet-based Concurrent Engineering: An Interactive 3D
System with Markup”. ASME 18th Computers in Engineering Conference.

Kumar, S., Bansal, S. (2013). “Comparative Study of Test Driven Development
Traditional Techniques”. International Journal of Soft Computing and Engineering
(IJSCE), Volume 3, Issue 1, 2231-2307.

Molina, A. et al. (1995). “A review of computer aided simultaneous engineering
systems”. Research in Engineering Design, 7, 28-63.

O’Sullivan, B. (2009). “Making sense of revision-control systems”. Communications of
the ACM, 52, 9, 56-62.

PHX ModelCenter (2011). Version 10.0, Phoenix Integration, Philadelphia,
Pennsylvania.

Reinman, G. et al. (2012). “Design for Variation”. Quality Engineering, 24:2, 317-345.

Revision Manager® (2009). Version 2.8.3, Oculus Technologies Corporation, Boston,
Massachusetts.

Santner, T. J., Williams, B. J., Notz, W. I. (2003). The Design and Analysis
of Computer Experiments. New York: Springer-Verlag.

Savitch, W. (2007). Problem Solving with C++ (6th Edition). Boston: Pearson Education,
Inc.

SIMULIA Execution Engine® (2013). Version 5.8, Dassault Systemes, Velizy
Villacoublay, France.

284

Steven Finley

Toye, G. et al. (1994). “SHARE: a methodology and environment for collaborative
product development”. International Journal of Intelligent & Cooperative Information
Systems, 3, 129-153.

Unigraphics® (2008). Version NX 6.0.5.2, Siemens, Munich, Germany.

Wallace, D. (2001). “Integrated Simulation and Design Synthesis”. Technical report.
Available at http://dspace.mit.edu/handle/1721.1/3802.

Wellman, M. (1994). “A Computational Market Model for Distributed Configuration
Design”. 12th National Conference on Artificial Intelligence. AAAI Press, Menlo Park,
CA.

Wong, A. and D. Sriram (1993). “SHARED: an information model for cooperative
product development”. Research in Engineering Design, 5, 21-39.

http://dspace.mit.edu/handle/1721.1/3802

