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Abstract 

A multi-level programming problem is a hierarchical optimization problem 

where the constraint region of the first level is implicitly determined by the 

other optimization problems. In this paper, a multi-level integer programming 

problem (MIPP) with bounded variables is considered in which the objective 

functions are indefinite quadratic and the feasible region is a convex 

polyhedron.  An algorithm is developed for ranking and scanning the set of 

feasible solutions. These ranked solutions are used to solve (MIPP). The 

algorithm is explained with the help of examples. 

Keywords: Indefinite quadratic programming problem, integer programming, 

multi-level programming problem, bounded variables, quasi-concave function. 

Primary : 90C20 

Secondary : 90C10 

Introduction 

A Multi-Level Programming Problem (MLPP) deals with decentralized 

planning problems with multiple decision makers in a multi-level or 
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hierarchical organization where decisions have interacted with each other. In 

multi-level programming, the higher level decision makers make their decision 

in full view of the lower level decision makers. Each decision maker attempts 

to optimize its objective function and is affected by the actions of the other 

decision makers. The mathematical model of the K-level programming 

problem is as follows: 

(MLPP) :  
1

1 11 1 1k K
X

Max f (X) c X ... c X= + +  

  2
2 21 1 2k K

X
Max f (X) c X ... c X= + +

 

  . . . . .  

  K
K K1 1 KK K

X
Max f (X) c X ... c X= + +

 

  subject to 

  i1 1 i2 2 ik k iA X A X .... A X b , i 1,2,....,m+ + + = =  

  1 2 KX , X ,....,X 0≥  

The above problem has one decision maker at each level, n decision variables 

and m constraints. X = (X1, X2, ..., Xk), n = n1 + n2 + .... + nk, where the 

decision vector kn
KX , k 1,...,K∈ =�  is under the control of kth level decision 

maker and has nk number of decision variables. 

(MLPP) can be found in many decision making situations. Candler and Norton 

[3] presented a version of this problem in an economic policy context. Another 

application of (MLPP) can be seen in a market of consumers being served by a 

distribution centre as well as its competitor. Both the players must set a price 

level for its products so that their profits are maximized. However, the 

consumers are at liberty to buy from either of the players depending on the 
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relative prices of this product. The customers' decision will be reached after 

taking into consideration economic criterion such as cost minimization. 

Bard [2] formulated a normal non-linear programming problem by using the 

Kuhn-Tucker conditions for the problems of the third level and second level 

and proposes a cutting plane algorithm employing a vertex search procedure to 

solve a tri-level programming problem. P. Lasunon [8] in 2011 has proposed a 

new method for solving tri-level programming problem. T.I. Sultan et al.[16] in 

2014 has given a decomposition algorithm for (TPP). 

Faisca, Dua, Rustem, Saraiva and Pistikopoulas [14] in the year 2009 have 

discussed multi-parametric programming approach for multi-level hierarchical 

and decentralized optimization problems. Migdalas, Pardalos and Varbrand 

[12] in the year 1997 published a book on multi-level optimization, which is a 

series on Non-Convex optimization and its applications. Latest work on 

multilevel optimization can be found in [4, 5, 6, 10, 15]. 

Quadratic Programming represents a special class of non-linear programming 

in which the objective function is quadratic and the constraints are linear.  

R. Baker [1] in 2008 has given an interior point solution for multilevel 

quadratic programming problems. 

Extensive work has been done on integer programming problems. These 

problems are of particular importance in business and industry where quite 

often, the fractional solutions are unrealistic because units are not divisible.  

Many cutting plane algorithms like Dantzig cut, Gomory cut, edge truncating 

cut etc. are used to solve such problems when decision variables are not 

bounded. Huang, Quing [7], MaZhong Fan [11] and Xu Chang [17] have 

developed various programming problems with bounded variables. Lev and 

Soyster [9] have developed an algorithm for integer programming with 

bounded variables and the upper bounds on the variables are small.  
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Indefinite Quadratic Integer Programming Problem with Bounded 

Variables 

 Consider the indefinite quadratic integer programming probem with 

bounded variables, defined as 

(IQIPP):  
T T

1 2Max Z(X) Z (X).Z (X) (C X )(D X )= = +α +β  

  subject to X ∈ S, 

where S {X | AX b, X u, X= = ≤ ≤�  is an integer vector}. 

Here, S is non-empty and bounded, nX ∈�  is a vector of variables; b ∈ �m; C, 

D ∈ �n; α, β ∈ � and A ∈ �m×n. 

 Both Z1(X) and Z2(X) are positive for all X ∈ S. Thus, the function Z(X) 

is both quasi-concave and quasi-convex on S. Hence, Z(X) is explicitly quasi-

monotone on S. Therefore, the optimal solution to the problems (IQIPP) occurs 

at an extensive point of S. 

Optimality Criterion for (IQIPP) 

Theorem 1 [13]: Let XB be a non-degenerate basic feasible to the problem 

(IQIPP) and let BX̂  be another basic feasible solution obtained by introducing a 

non-basic column vector aj into the basis, for which 

2 1 2 1
j 1 j j 2 j j j j j j jL Z (z d ) Z (z c ) (z d )(z c )= − + − − θ − −   is negative. Then, BX̂  is a 

basic feasible solution with an improved value of Z. 

The optimality criterion for solving (IQIPP) with bounded variables is that  

L j ≥ 0 for upper bounded non-basic variables and Lj ≤ 0 for lower bounded 

non-basic variables. 
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Mathematical Formulation of the Problem (MIQPP) 

 The Multi-level Integer Indefinite Quadratic Programming Problem with 

bounded variables is formulated as, 

(MIQPP):  
1

1 1 2 p 11 1 2 p 12 1 2 p
X

Max Z (X ,X ,...,X ) Z (X ,X ,....,X ).Z (X ,X ,...,X )=  

  
2

2 1 2 p 21 1 2 p 22 1 2 p
X

Max Z (X ,X ,...,X ) Z (X ,X ,....,X ).Z (X ,X ,...,X ),=  

for a given X1 

- - - - - - - - - - 

  p
p 1 2 p p1 1 2 p p2 1 2 p

X
Max Z (X ,X ,...,X ) Z (X ,X ,....,X ).Z (X ,X ,...,X )=

 
       for a given 1 2 p 1(X ,X ,...,X )− . 

where *
1 2 p(X ,X ,...,X ) S∈ . 

Here, *S {X | AX b, L X U}= = ≤ ≤  is non-empty and bounded. 

Define, *
1S {X | AX b; L X U,X= = ≤ ≤  is an integer vector}. 

Clearly, *
1S S⊆ . We are interested in finding the solution of the given problem 

in *
1S . 

Here,  i1 1 2 p i1 1 i2 2 ip p iZ (X ,X ,...,X ) C X C X ... C X ; i 1,2,....,p= + + + + α =  

 i2 1 2 p i1 1 i2 2 ip p iZ (X ,X ,...,X ) D X D X ... D X ; i 1,2,....,p= + + + +β =  

1 2

1 2

n n1 2 1 1 2 1
1 1 2 n 2 2 2 nX (x , x ,...., x ) ; X (x ,x ,...., x )= ∈ = ∈� � ;....  

p

p

np p p
p 1 2 nX (x ,x ,...., x )= = �

 

Here, 
rn

r r
ir ij j

j 1

C c x , i 1,2,...,p
=

= =∑  
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rn
r r

ir ij j
j 1

D d x , i 1,2,...,p
=

= =∑
 

 i i, ; i 1,2,....,pα β ∈ =�  

im n m 1
1 2 p iA (A ,A ,...,A ),     A ;    i 1,2,....,p;   b× ×= ∈ = ∈� �

 

T
1 2 pL (L ,L ,...,L ) ,=  where in 1

iL ; i 1,2,....,p,×∈ =�  

T
1 2 pU (U ,U ,...,U ) ,=  where in 1

iU ; i 1,2,....,p×∈ =� . 

The objective functions defined for each Zi(X) ; i = 1, 2, ...,p is the product of 

two positive valued affine functions, hence it is quasi-concave. 

 The polyhedron S* defined by the constraint region of the problem 

(MIQPP) is assumed to be non-empty and compact. 

 Constraint region for the problem Zp(X) for some fixed value of 

1 2 p 1(X ,X ,....,X )−  is given by  

*
1 2 p 1 p p p 1 1 2 2 p 1 p 1 p p pS (X ,X ,....,X ) {X | A X A X A X ... A X , L X U ,− − −= = ≤ + + + ≤ ≤    

           Xp is an integer vector} 

The rational reaction set for the follower's problem Zp(X), for fixed value of 

(X1, X2, ..., Xp−1) is given by 

M(X 1, X2, ...,Xp−1) = {X p | Xp ∈ arg max Zp(X1, X2, ..., Xp−1, Xp);  

            Xp ∈ S*(X1, X2, ..., Xp−1)}. 

The inducible region of (MIQPP) is given by 

*
1 2 p 1 2 p 1 p 1 2 p 1IR {(X ,X ,....,X ) | (X ,X ,...,X ) S , X M(X ,X ,....,X )}−= ∈ ∈  
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Technique to solve the problem (MIQPP) in S1
*. 

 Firstly, consider the problem (MIQPP) in S*. For i ≥ 1 and k ≥ 1, let Bk 

be the basis matrix corresponding to the basic feasible solution 
KBX . Suppose 

that the non-basic matrix is decomposed into 1 2
k kN and N , where,  

1 k k
k j k jN {j | a B and x= ∉  is at its lower bound}, 

2 k k
k k k jN {j | a B and x= ∉  is at its upper bound}. 

k t kI {t | a B }= ∈ . 

Further,  1
k

k 1
j kN

A {a A | j N }= ∈ ∈ ,  2
k

k 2
j kN

A {a A | j N }.= ∈ ∈  

Let 1
k

k 1
j kN

X {x | j N }= ∈  be a vector of non-basic variable at their lower bounds 

and 2
k

k 2
j kN

X {x | j N }= ∈  be a vector of non-basic variables at their upper bounds 

respectively. 

For k ≥ 1, we have 1 2
k k k

1 2
k B k kN N

B X N X N X b+ + = . 

This implies  1 2
k k k

1 1 1 2 1
B k k k k kN N

X (B N )X (B N )X B b− − −+ + =     (1) 

This implies  
k j j

1 2
k k

k k 1
B k j k j k

j N j N

X y x y x B b−

∈ ∈

+ + =∑ ∑ .    (2) 

For i ≥ 1 and k ≥ 1, the objective function value corresponding to the basis Bk 

is given by 

 1 1 2 2
k k k k k k

i1 B i B i i iN N N N
Z (C ) X (C ) X (C ) X= + + + α  

      1 2 1 1 2 2
k k k k k k k

1 1 1 1 2
B i k k k k k i i iN N N N N N

(C ) [B b (B N )X (B N )X ] (C ) X (C ) X− − −= − − + + + α  
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    1 1 2 2
k k kk k k k

1 1 1 1 2
B i k i B i k k i B i k k iN N N N

(C ) B b [(C ) (C ) B N ]X [(C ) (C ) B N )]X− − −= + − + − + α

  

k
1 2
k k

1 i1 k i1 k
i1 B i k j j k j j j k j i

j N j N

Z (C ) B b (z c ) x (z c ) x−

∈ ∈

∴ = − − − − + α∑ ∑    (3) 

Similarly, we have 

 
k

1 2
k k

1 i1 k i1 k
i2 B i k j j k j j j k j i

j N j N

Z (D ) B b (z d ) x (z d ) x−

∈ ∈

= − − − − +β∑ ∑   (4) 

Suppose that we have a current basic feasible solution, 
k

0 0
B jkX (x ),=  where 

0 1 0 2
jk jk k k jk jk k kx , j N and x u , j N= ∈ = ∈� . 

Therefore, improved objective function values are given by  

 

k k k
1 2
k k

k k
2 2
k k

0 1 i1 i1
i1 B B i k j j k l j j k jk i

j N j N

0 1 i2 i2
i2 B B i k j j k jk j j k jk i

j N j N

Z (X ) (C ) B b (z c ) l (z c ) u

Z (X ) (D ) B b (z d ) (z d ) u

−

∈ ∈

−

∈ ∈


= − − − − + α 




= − − − − +β 


∑ ∑

∑ ∑�

 (5) 

Also, 
k k k

0 0 0
i B i1 B i2 BZ (X ) Z (X ). Z (X ), i 1,2,....,p.= =  

In order to find a new feasible solution, consider a non-basic variable 
kr

x  at its 

lower bound which undergoes a change k
rφ . Using reference [13],  the new 

solution is given by k jk
ˆ ˆX (x ),=  where  

 

0 k k
t k t k tr r k

k
r k r k r

0 1 2
jk jk k k k

ˆ(x ) (x ) y , t I

ˆ(x ) ( )

x̂ x , j N N \{r}

 = − φ ∀ ∈


= + φ
 = ∈ ∪

�     (6) 
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The objective function value corresponding to a new feasible solution kX̂  is 

given by 

kk 1 2
k k

1 i1 i1 k i1
i1 k k j j k j r r k rk r j j k jk iB

j N \{r} j N

ˆZ (X ) C (B b) (z c ) (z c ) ( ) (z c ) u−

∈ ∈

= − − − − + φ − − + α∑ ∑� �  

kk 1 2
k k

1 i1 i1 k i1 i1
k j j k j r r k rk r r r k j j k jk iB

j N \{r} j N

C (B b) (z c ) (z c ) (z c ) (z c ) u−

∈ ∈

 
= − − + − − φ − − − + α 

  
∑ ∑� �  

kk 1 2
k k

1 i1 i1 k i1
k j j k j j j k jk i r r r kB

j N \{r} j N

C (B b) (z c ) (z c ) u (z c )−

∈ ∈

 
= − − − − + α − φ − 

  
∑ ∑�  

0 k i1
i1 r r r kZ (X ) (z c ) .= −φ − . 

0 k i1
i1 k i1 k r r r k

0 k i2
i2 k i2 k r r r k

ˆZ (X ) Z (X ) (z c )

ˆsimilarly, Z (X ) Z (X ) (z d )

∴ = − φ −


= − φ − 
    (7) 

i k i1 k i2 k
ˆ ˆ ˆZ (X ) Z X ).Z (X )∴ = .       (8) 

The new solution is a feasible extreme point, provided 

t t

k k k
B Bt B Btk

r r r k tj k k tj k k
tj k tj k

x u x
Min (u ) , (y ) 0, t I (y ) 0, t I .

(y ) (y )

   − − 
φ = − > ∈ < ∈         

�
�  

The following possibilities may arise depending on the value of k
rφ : 

(i) If k
r r r k(u ) ,φ = − �  then k

rx  attains its upper bound and remains non-

basic. The change in the values of each basic variable t k kˆ(x ) , t I∈  and 

the objective functions i1 k i2 kZ (X ) and Z (X ) are given by the equations 

(6) and (7) respectively. 
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(ii)  If k k

k

s sk
r

rs

x
,

y

 −
φ =   

 

�
 for some sk ∈ Ik, then 

kr
x  becomes basic and 

ksx  

departs the basis and attains its lower bound. The change in the values of 

the basic variables t k kˆ(x ) , t I∈  and the objective functions 

i1 k i2 kZ (X ) and Z (X ) are given by the equations (6) and (7) 

respectively. 

(iii)  If k k

k

s sk
r

rs

u x
,

(y )

 −
φ =   − 

 for some k ks I∈ , then 
kr

x  becomes basic and 
ksx  

departs from the basis and attains its upper bound. The change in the 

values of the basic variables t k kˆ(x ) , t I∈  and the objective functions 

i1 k i2 kZ (X ) and Z (X ) are given by the equations (6) and (7) 

respectively. 

The change in the value of the objective function i kZ (X ) (i 1)≥  is given by 

0 0 k 1 0 k 2 0 0
i k i k i1 r r r r k i2 k r r r k i1 i2

ˆZ (X ) Z (X ) [Z (X ) (z c ) ][Z (X ) (z d ) ] Z (X )Z (X )− = − φ − − φ − −
 

k 0 i2 0 i1 k i1 iz
r i1 r r r k i2 k r r k r r r k r r k[Z (X )(z d ) Z (X )(z c ) (z c ) .(z d ) ]= −φ − + − −φ − −  

k
r ir k(L )= −φ           (9) 

where 0 i2 0 i1 i1 i2
ir k i1 k r r k i2 k r r k rk r r k r r k(L ) Z (X )(z d ) Z (X )(z c ) (z c ) (z d )= − + − −φ − − . 

Similarly, if variable 
k kr rx u=  undergoes a change, then the new solution 

k jk
ˆ ˆX (x )=  is defined as 

 

r

0 k k
t k t k t r k

k
r k rk r

0 1 2
jk jk k k k

ˆ(x ) (x ) y , t I

ˆ(x ) u

x̂ x , j N N \{r}

 = + φ ∀ ∈


= − φ


= ∀ ∈ ∪

   (10) 
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The objective function value corresponding to a new integer feasible solution 

kX̂  is given by  

0 k i1 0 k i2
i k i1 k r r r k i2 k r r r k

ˆZ (X ) [Z (X ) (z c ) ][Z (X ) (z d ) ]= + φ − + φ −   (11) 

The new solution is a feasible extreme point, provided 

t t

k k *
B Bt B Btk

r r r k tj k k tj k k
tj k tj k

x u x
Min (u ) , (y ) 0, t I , (y ) 0, t I

(y ) (y )

    − − 
φ = − < ∈ > ∀ ∈       −     

�
�  

Thus, depending on the values of k
rφ , the following possibilities may arise: 

(i) If k
r r r k(u ) ,φ = − � , then 

kr
x  attains its lower bound and remains non-

basic. The change in the values of each basic variable t k kˆ(x ) , t I∈  and 

the objective function i kZ (X )  are given by the equations (10) and (11) 

respectively. 

(ii)  If k k

k

s sk
r

rs

x
,

(y )

−
φ =

−

�
 for some sk ∈ Ik, then 

kr
x  becomes basic and 

ksx  

departs from the basis and attains its lower bound. The corresponding 

change in the values of the basic variables t k kˆ(x ) , t I∈  and the objective 

functions i kZ (X )  are given by the equations (10) and (11) respectively. 

(iii)  If k k

k

s sk
r

rs

u x
,

y

−
φ =  for some k ks I∈ , then 

kr
x  becomes basic and 

ksx  

departs from the basis and attains its upper bound. The corresponding 

change in the values of the basic variables t k kˆ(x ) , t I∈  and the objective 

functions i1 kZ (X )  is given by the equations (10) and (11) respectively. 

The change in the value of the objective function i kZ (X ) (i 1)≥  is given by 

0 k
i k i k r ir k

ˆZ (X ) Z (X ) (L )− = φ        (12) 
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where  0 i2 0 i1 k i1 i2
ir k i1 k r r k i2 k r r k r r r k r r k(L ) Z (X )(z d ) Z (X )(z c ) (z c ) (z d ) .= − + − −φ − −  

Thus, we conclude that the non-basic variable 
kr

x  enters the basis which gives 

maximum improvement in the value of the objective function. We are 

interested in finding on optimal solution of the problem (MIQPP) in iS . 

Define,  k 1
1 k ij kJ {j | j N and (L ) 0}= ∈ = . 

  
k 2
2 k ij kJ {j | j N and (L ) 0}.= ∈ =  

  
k 1

1 k ij kT {j | j N and (L ) 0}.= ∈ ≠  

  
k 2
2 k ij kT {j | j N and (L ) 0}.= ∈ ≠  

Any basic feasible solution to the problem Zi(Xk), i ≥ 1, (i = 1, 2, ..., p) such 

that (Lij)k ≤ 0 ∀ j ∈ Nk
1 and (Lij)k ≥ 0    ∀ j ∈ Nk

2 is a locally optimal solution. 

Since the objective function Zi(Xk) (i = 1, 2, ....,p) at each level is explicitly 

quasi-monotone and is maximised over a compact polyhedron, every locally 

optimal solution of Zi(Xk) (i ≥ 1) will also be a globally optimal solution. 

An optimal integer feasible solution for Zi(Xk) (i ≥ 1) can be obtained by 

repeated application of cut in [13] in the simplex table. This yields optimal 

feasible solution for the problem in S1
*. 

Theorem 2: Let Xk (k ≥ 1) be an integer feasible solution of (MIQPP). Then, 

all integer feasible solutions of the problem (MIQPP) in S1
* yielding value 

higher than Zi(Xk) (i ≥ 1) lies in the open half space,  

 
k k

1 2

i j j j
j T j T

(x ) (u x ) 1
∈ ∈

− − − ≤∑ ∑�       (I) 

Proof: Let kX , k 1≥  be an integer feasible solution of (MIQPP). Let Bk be the 

basis matrix corresponding to 
kBX . We have, 
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   AXk = b 

That is, 
k

k k
1 2

K B j j j j
j N j N

B X a x a x b
∈ ∈

+ + =∑ ∑     (13) 

Suppose that corresponding to the current optimal feasible solution, we have 

k k

k
j j k 1x , j N= ∈�  and 

k k

k
j j k 2x u , j N= ∈ . Therefore, from (13), we get 

 
k k k

1 2
k k

k k
K B j j j j

j N j N

B X a a u b
∈ ∈

+ + =∑ ∑�      (14) 

For some 
k r

k

k k
1 r t r k t k

t I

r T ,k 1, a y b , where I {t | a B }
∈

∈ ≥ = = ∈∑ . 

Choose a scalar kr 0,φ >  equation (14) becomes  

 
t k k k k k k

k k
k 1 2

k k k
t B j j j j r r r r

t I j N j N

b x a a u a a b
∈ ∈ ∈

+ + + φ −φ =∑ ∑ ∑�  

That is, 
t r k k k k k k

k k
k 1 k

k k k k
B r t t j j r r r j j

t I j N \{r} j N

[x y ]b a a ( ) a u b
∈ ∈ ∈

− φ + + + φ + =∑ ∑ ∑� �  (15) 

Equation (15) gives a new feasible solution of (MIQPP) given by 

 

t t r

k k

k k

k k

1 k k k
B B r t k

1 k k
r r r 11

k 1 1
j j k

1 2
j j k

x x y , t I

x , for r T
X

x , j N \{r}

x u , j N

 = −φ ∀ ∈


= + φ ∈
= 

= ∀ ∈


= ∀ ∈

�

�

 

Here, 
k k

1
j jx = �  1

kj N \{r}∀ ∈  and 
k k

1 2
j j kx u ,   j N= ∀ ∈  are integers. Therefore, for 

1
kX  to be an integer solution, it is required that k

rφ  should be a positive integer, 

so that 
k k

1 k
r r rx = + φ� , k

1for r T∈  is also an integer. It is required that 
r

k k
r tyφ , 

kt I∀ ∈  is an integer, so that 
t t r

1 k k k
B B r t kx x y ,   t I= − φ ∀ ∈  is an integer. 
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Besides this 
t

1
Bx  and 

k

1
rx  should lie between the specified bounds, that is,  

 
t t t

1
B B B kx u t I≤ ≤ ∀ ∈�   and  

k k k

1 k
r r r 1x u r T .≤ ≤ ∀ ∈�  

This implies
k k

k
r r r rku≤ + φ ≤� � , then is, 

 
k k

k
r r ruφ ≤ − �   for k

1r T∈       (16) 

Again, we have 
t t t

1
B B B kx u t I , that is,≤ ≤ ∀ ∈�  t t r t

k k k
B B r t B kx y u t I .≤ − φ ≤ ∀ ∈�  

Three different cases arises depending on the value of 
r

k
ty . 

Case 1: If 
r

k
ty  = 0, then 

r

k k
r ty 0φ = . 

This implies 
t t t

k
B B B kx u t I .≤ ≤ ∀ ∈�  

The condition is satisfied. 

Case 2: If  
r

k
ty  < 0, then 

r

k k
r t( y ) 0−φ > . 

This implies 
t r

k k k
B r t(x y )− φ  is a positive integer which cannot exceed is upper 

bound, that is, 

 
t r t

k k k
B r t B kx y u t I .− φ ≤ ∀ ∈   

or t t

r

k
B Bk

r kk
t

u x
t I .

y

−
φ ≤ ∀ ∈

     
 (17) 

Case 3 : If 
r

k
ty  > 0, then − (

r

k k
r tyφ ) < 0. 

This implies that 
t r

k k k
B r t(x y )− φ  is a positive integer, which cannot be less than its 

lower bound, that is, 

 
t t r

k k k
B B r t kx y t I≤ − φ ∀ ∈�   
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or  t t

r

k
B Bk

r kk
t

x
t I .

y

−
φ ≤ ∀ ∈

�
     (18) 

Thus, from (16), (17) and (18), we get k
rφ  can assume any possible value given 

by 

t t t t

k k r r

r r

k k
B B B Bk k k

r r r t k t kk k
t t

x u x
Min (u ), : y 0, t I , : y 0, t I

y y

    − − 
φ = − > ∈ < ∈       −     

�
� . 

The objective function value corresponding to Xk is given by 

 
1 2i k i k i kZ (X ) Z (X ).Z (X )= .      (19) 

where 

 

1 1

1 k k k
1 2
k k

1 2

2 k k k
1 2
k k

i i1
i k B k j j k j j j k j i

j N j N

i i1
i k B k j j k j j j k j i

j N j N

Z (X ) C (B b) (z c ) (z c ) u

Z (X ) D (B b) (z d ) (z d ) u

−

∈ ∈

−

∈ ∈


= − − − − +α 




= − − − − +β 


∑ ∑

∑ ∑

�

�

 (20) 

The objective function value corresponding to a new integer feasible solution 

1
kX  is given by 

 
1 2

1 1 1
i k i k i kZ (X ) Z (X ).Z (X )= .      (21) 

Now,  

1 1

1 k k k k
1 2
k k

i i1 1 i1 k
i k B k j j k j r r k r r j j k j i

j N \{r} j N

Z (X ) C (B b) (z c ) (z c ) ( ) (z c ) u−

∈ ∈

= − − − − + φ − − +α∑ ∑� �

  

1 1

k k k k
1 2
k k

i i1 i1 i1 k
B k j j k j r r k r r r k r j j k j i

j N \{r} j N

(C )(B b) (z c ) (z c ) (z c ) (z c ) u−

∈ ∈

 
= − − + − − − φ − − +α 

  
∑ ∑� �

 

1 1

k k k
1 2
k k

i i1 k i1
B k j j k j j j k j i r r r k

j N j N

C (B b) (z c ) (z c ) u (z c )−

∈ ∈

 
= − − − − +α −φ − 

  
∑ ∑�  
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1 k i1
i1 k i1 k r r r kZ (X ) Z (X ) (z c )∴ = −φ −  (Using (20)) 

Similarly, k i2
i2 ik i2 k r r r kZ (X ) Z (X ) (z d )= −φ −  

Substituting these values in (21), we have 

 1 k i1 k i2
i k i1 k r r r k i2 k r r r kZ (X ) [Z (X ) (z c ) ].[Z (X ) (z d ) ]= −φ − −φ −   (22) 

Subtracting (19) from (22), we have 

1 k i1 k i2
i k i k i1 k r r r k i2 k r r r k i1 k i2 kZ (X ) Z (X ) [Z (X ) (z c ) ][Z (X ) (z d ) ] Z (X )Z (X )− = −φ − −φ − −  

 k i2 k i1 k i1 i2
r i1 k r r k i2 k r r r k r r r k r r k[Z (X )(z d ) Z (X ) (z c ) (z c ) (z d ) ]= −φ − + φ − −φ − −  

 k
r ir k(L )= −φ  

Since k 1
ir k 1 i k i k(L ) 0, r T Z (X ) Z (X ) 0.≤ ∈ ∴ − ≥  

This implies 1
i k i kZ (X ) Z (X )≥ . 

Thus, we get that 1
kX  is an integer feasible solution of the problem (MIQPP) 

with objective function value higher than the value corresponding to Xk. 

We have  
k

1 2
j jk k jk jk kx j N \{r} and x u j N= ∀ ∈ = ∀ ∈�  

∴ 
k

1 2
j jk k jk jk k(x ) 0 j N \{r} and (x u ) 0, j N− = ∀ ∈ − = ∀ ∈�  

∴ 
1 2
k k

jk jk jk jk
j N \{r} j N

(x ) (x u ) 1
∈ ∈

− + − <∑ ∑�  

Hence, the integer feasible solution 1
kX  lies in the open half space 

 
1 2
k k

jk jk jk jk
j N \{r} j N

(x ) (x u ) 1
∈ ∈

− + − <∑ ∑� . 

As k
rφ  assumes all possible integral values, we will obtain all integer feasible 

solutions with values higher than Xk, and all these integer solutions will lie in 

the open half space 
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1 2
k k

jk jk jk jk
j N \{r} j N

(x ) (x u ) 1
∈ ∈

− + − <∑ ∑� . 

Definition 1: Edge: An edge k
rE  for some {r} ∈ Nk

1 incident at an integer 

feasible solution Xk is defined as 

 

k

k k

k

k

k
t t r tr k k

k 1
t t r kk

r 1
j jk k

2
j jk k

x x (y ) , t I

x ( ) , {r} N
E :

x , j N \{r}

x u , j N

 = −φ ∈


= + φ ∈


= ∈


= ∈

�

�

  

 (23) 

where 

t t t t

k k j j

j j

k k k k
B B B Bk

r r r t k k t k k
t k t k

x u x
0 Min (u ), : (y ) 0, t I , : (y ) 0, t I ,

(y ) (y )

    − −    ≤ φ ≤ − > ∈ < ∈    −     

�
�

          (24) 

Definition 2: An edge k
rE , for some {r} ∈ Nk

2 incident at an integer feasible 

solution Xk is defined as  

 

k j

k
t t r t k k

k 2
rk rk r kk

r 1
jk jk k

2
jk jk k

x x (y ) , : t I

x u , : {r} N
E :

x , : j N

x u , : j N \{r}

 = + φ ∈

 = −φ ∈


= ∈
 = ∈

�

   

 (25) 

where 

t t t t

k k j j

j j

k k k k
B B B Bk

r r r t k k t k k
t k t k

x u x
0 Min (u ), : (y ) 0, t I , : (y ) 0, t I

(y ) (y )

    − −    ≤ φ ≤ − < ∈ > ∈    −     

�
�  

          (26) 

Theorem 3 [13]: Edge Truncating cut: An integer feasible solution of 

(MIQPP) not lying on an edge k 1
r kE , {r} T∈  of the truncated region, through an 

integer point, say, Xk, lies in the closed half space 
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1 2
k k

j j j j
j N \{r} j N

(x ) (u x ) 1
∈ ∈

− + − ≥∑ ∑�      (27) 

Proposition 1: For i ≥ 1, k ≥ 1, all integer feasible solutions alternate to Xk, at 

each level depends on whether k k
r r1 or 1φ < φ ≥ . 

Proof: Consider the objective function Zi(Xk), i ≥ 1, at the i-th level. Let Xk(k ≥ 1) 

be its k-th best integer feasible solution. 

Let k
jA  denote the set of integer feasible solutions alternate to Xk on an edge 

EJ
k. The alternate solution to Xk if it exists is obtained by moving along the 

edge k
jE  for some k k

1 2j J J∈ ∪ .  

Suppose that for some k k
1 2j J J∈ ∪ , k ≥ 1, k

r 1φ < . Then, there are no eligible 

directions incident at the integer feasible solution Xk. Hence, there is no integer 

feasible solution on the edge kjE . This edge k
jE  is truncated by applying ETC. 

Let k
r 1φ ≥  for some k k

1 2j J J∈ ∪ . Since k
rφ  and 

r

k k
r tyφ  are integers for all t ∈ Ik, 

therefore, by moving on an edge kjE , an alternate solution to Xk is obtained. 

After obtaining all integer feasible solutions on the edge k
jE , this edge is 

truncated using ETC. 

Thus, an optimal feasible solution for Zi(Xk) (i ≥ 1, k ≥ 1) is obtained over the 

truncated region. It is either an integer feasible solution alternate to Xk or the 

next best integer solution Xk+1 or a non-integer point. Therefore, by repeated 

application of ETC and the cut [13] whole feasible region for the integer 

solution at each level is scanned. 

If after applying ETC's the solution at any level is infeasible, the problem 

(MIQPP) is infeasible. Thus, the process terminates. 
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Since the procedure for finding the integer solution moves from one extreme point 

to another which are finite in number, therefore, the procedure for finding the 

optimal solution to the problem (MIQPP) terminates in a fintie number of steps. 

Algorithm for finding an optimal solution for Multi-level Integer 

Indefinite Quadratic Programming Problem with Bounded Variables 

Consider the problem (MIQPP). 

Step 1  :   Set i = 1, k = 1 and r = 1. 

Step 2 : Solve Zi(Xk). Let its optimal solution be r
k i(X ) , where 

k

r k k k
k i 1 2 n(X ) (x , x ,...., x )= . If r

k i(X )  is an integer solution, go to step 3. 

  Otherwise, apply the cut [13] to find the integer solution for Zi(Xk)  

Step 3  :  Solve Zi+1(Xk). Let its optimal integer solution be r
k i 1(X ) +
� , where 

k

r k k k
k i 1 1 2 n(X ) (x , x ,...., x )+ =� � � � .  

  If 
k k

k k k k k k
1 2 n 1 2 n(x , x ,...., x ) (x , x ,...., x )= � � � , go to step 5, or to step 8. 

  Otherwise, set k k k
1,r i 2,r iJ (J ) (J )= ∪ . Go to step 4. 

Step 4  : If Jk =φ, introduce the cut (I) into the optimal table of r
k i(X ) . Go to 

step 7. If kJ ≠ φ , choose j ∈ Jk for which k
j 1φ ≥  and determine all 

the integer solutions along the edge k
jE . Formulate the set k r

j i(A ) . 

Go to step 5. 

  If k k
j 1, for j Jφ < ∈ , choose any {j} and go to step 6. 

Step 5  :  Formulate the set k r
j i 1(A ) + If k r k r

j i j i 1(A ) (A ) +∩ ≠ φ , that is for some j, 

k r k r
j i j i 1(X ) (X ) += , go to step 8. Otherwise, go to step 6.  

  If k r k r
j i j i 1(A ) (A ) +∩ = φ , go to step 8. 
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Step 6  :  Truncate the edge kjE  by applying the cut 

       
1 2
k k

1
j j j j k

j N j N

(x ) (u x ) 1 {j} T
∈ ∈

− + − ≥ ∈∑ ∑�  

  or   
1 2
k k

2
j j j j k

j N j N \{r}

(x ) (u x ) 1 {j} T
∈ ∈

− + − ≥ ∈∑ ∑� . 

If the resulting problem is infeasible, go to step9.  Otherwise, find an optimal 

feasible solution of this problem. Ser r = r + 1. Go to step 2. 

Step 7  : If the problem so obtained is infeasible, go to step 9. Otherwise, set 

r = r + 1. Go to step 2. 

Step 8  :  Set i = i + 1.  Go to step 2. 

  r
k i(X )  is an optimal solution for the problem (MIQPP). 

Step 9  :  (MIQPP) is infeasible. 

Example : Consider the indefinite quadratic integer multi-level programming  

problem with bounded variables. 

(TIQPP) :  
1

1 1 2 3 4 1 2 1 2
x

Max Z (x , x , x , x ) ( x x 5)(x 2x 8)= − + + + +  

  
2 3

2 1 2 3 4 1 2 2 3 4
x ,x
Max Z (x , x , x , x ) (x x 4)(x 2x x 5)= + + − + +  

  
4

3 1 2 3 4 1 3 2 4
x

Max Z (x , x , x , x ) (x x 9)(2x 2x 9)= − + + +  

  Subject to 

   
1 2 4

1 2 3 4

2 3

3x 2x x 12

x x x x 14

2x 5x 15

− + ≤

+ + + ≤

+ ≤

 

  where 1 ≤ x1 ≤ 5,  0 ≤ x2 ≤ 3,  1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 1  

  x1, x2, x3, x4 are integers. 
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Solution: Consider the upper level problem w.r.t. the constraints  

  
1

1 1 2 3 4 1 2 1 2
x

Max Z (x , x , x , x ) ( x x 5)(x 2x 8)= − + + + +  

  subject to  

  
1 2 4 5

1 2 3 4 6

2 3 7

3x 2x x x 12

x x x x      x 14

2x 5x                         x 15

− + + =

+ + + + =

+ + =

 

  where 1 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3,  1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 1 

  0 ≤ x5 ≤ ∞, 0 ≤ x6 ≤ ∞, 0 ≤ x7 ≤ ∞. 

At lower bound, we have x5 = 9, x6 = 12, x7 = 10. 

    � � � �    

   cj→ 1 −1 0 0 0 0 0 

   dj→ 1   2 0 0 0 0 0 

CB DB VB
 XB x1 x2 x3 x4 x5 x6 x7 

0 0 x5 9 3 −2 0 1 1 0 0 

0 0 x6 12 1 1 1 1 0 1 0 

0 0 x7= 10 0 2 5 0 0 0 1 

Z11 = −4 11
j jz c− →  −1 1 0 0 0 0 0 

Z12 = 9 12
j jz d− →  −1 −2 0 0 0 0 0 

 L1j → −8 27 0 0 0 0 0 

 

 Here, 1 2

9 12 12 10
min , 3, min , 5

3 1 1 2
   θ = = θ = =   
   

. 

  Entering variable :  x2 

  Departing criterion : ∆2 = Min (γ1, γ2, u2 − �2). 
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  Here, u2 − �2 = 3 − 0 = 3. 

  
t t

r

r

B B
1 t

t

x 12 10
Min : y 0 Min , 5.

y 1 2

 −  γ = > = =       

�
 

  t t

r

r

B B
2 t

t

u x
Min : y 0 Min( ) .

y

 −
γ = < = ∞ = ∞  − 

. 

  ∴ ∆2 = Min (5, ∞, 3) = 3. 

   2 2 2x 0 3 3.→ +∆ = + =� . 

 Corresponding change in the value of xi's is given by B 2 2X b y= − ∆  

  
5

6

7

x 9 2 15

x 12 3   1 9 .

10   2 4x

−       
       = − =       
             

 

The optimal table for the upper level problem Z1(X) is given by 

    � u � �    

   cj→ 1 −1 0 0 0 0 0 

   dj→ 1 2 0 0 0 0 0 

CB DB VB
 XB x1 x2 x3 x4 x5 x6 x7 

0 0 x5 15 3 −2 0 1 1 0 0 

0 0 x6 9 1 1 1 1 0 1 0 

0 0 x7 4 0 2 5 0 0 0 1 

Z11 = −7 11
j jz c− →  −1 1 0 0 0 0 0 

Z12 = 15 12
j jz d− →  −1 −2 0 0 0 0 0 

 L1j → −13 33 0 0 0 0 0 

Table (1) 
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Here, L1j ≤ 0 for lower bounded non-basic variables and L1j ≥ 0 for upper 

bounded non-basic variables. 

∴ optimal solution for Z1(X) is 1
1 1(X ) (1,3,1,0).=  

Put 1
1x 1=  in the lower level problem 

 
2 3

2 1 2 2 3 4
x ,x
Max Z (X) (x x 4)(x 2x x 5)= + + − + +  

 subject to the constraints (28). 

The problem reduces to 

 
2 3

2 2 2 3 4
x ,x
Max Z (X) (x 5)(x 2x x 5)= + − + +  

 subject to  

 
2 4

2 3 4

2 3

2x x 9

x x x 13

2x 5x 15

− + ≤

+ + ≤

+ ≤

      (29) 

where 0 ≤ x2 ≤ 3, 1 ≤ x3 ≤ 3,  0 ≤ x4 ≤ 1, x2, x3, x4 are integers. 

Solving by the method, as explained above, the optimal table for Z2(X) is given by 

    u � u    

   cj→ −1 0 0 0 0 0 

   dj→ 1 −2 1 0 0 0 

CB DB VB
 XB x2 x3 x4 s1 s2 s3 

0 0 s1 14 −2 0 1 1 0 0 

0 0 s2 8 1 1 1 0 1 0 

0 0 s3 4 2 5 0 0 0 1 

Z21 = −8 21
j jz c− →  1 0 0 0 0 0 

Z22 = 7 22
j jz d− →  −1 2 −1 0 0 0 

 L2j → 17 −16 8 0 0 0 

Table 2 
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The optimal solution for Z2(X) is 1
1 2(X ) (1,3,1,1).=  We have 1 1

1 1 1 2(X ) (X )≠ . 

Consider  1 1 1
1,1 1 2,1J (J ) (J )= ∪ ., where 

 1 1
1,1 1 k ij 1(J ) {j : j N : (L ) 0} {3,4}= ∈ = =  

 1 2
2,1 2 k ij 1(J ) {j : j N : (L ) 0}= ∈ = = φ  

∴ J1 = {3, 4} ≠ φ. 

Therefore, an alternate feasible solution exists corresponding to 1
1 1(X ) . 

Take j = 3. 

Using (24), we have 1
3

9 4
0 Min 2, ,

1 5
 ≤ φ ≤  
 

. 

∴ 1
3

4
0 1

5
≤ φ ≤ < . 

Since 1
3φ  has to be an integer, ∴ no alternate integer solution exists on this 

edge, i.e., 1 r
j 1(A ) = φ . 

Apply the cut (I) 
k k k k

1 2
k k

j j j j
j N \{r} j N

(x ) (u x ) 1
∈ ∈

− + − ≥∑ ∑�  

⇒ (x1 − 1) + (x4 − 0) + (3 − x2) ≥ 1 

or −x1 + x2 − x4 ≤ 1. 

Introduce the cut in Table (1) and the solve as above, the optimal table is given 

by 
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    � u �     � 

   cj→ 1 −1 0 0 0 0 0 0 

   dj→ 1 2 0 0 0 0 0 0 

CB DB VB
 XB x1 x2 x3 x4 x5 x6 x7 x8 

0 0 x5 14 2 −1 0 0 1 0 0 1 

0 0 x6 8 0 2 1 0 0 1 0 1 

0 0 x7 4 0 2 5 0 0 0 1 0 

0 0 x4 1 −1 0 1 0 0 0 0 −1 

Z11 = −7 11
j jz c− →  −1 1 0 0 0 0 0 0 

Z12 = 15 12
j jz d− →  −1 2 0 0 0 0 0 0 

 L1j → −13 33 0 0 0 0 0 0 

Table 3 

 We have 2
1 1(X ) (1,3,1,1).=  

Proceeding, we get corresponding to 2
1 1(X ) , 2

1 2(X ) (1,3,1,1).=  and 

1
1 3(X ) (1,3,1,1).= .  

Now, take j = 4. 

Using (24), we have 1
4

15 9
0 min 1, ,

1 1
 ≤ φ ≤  
 

  

∴ 1
40 1≤ φ ≤  

Since 1
4φ  has to be an integer ∴ 1

4φ  = 1. 

Using (23), the solution so obtained is 

 

5 6 7

42
2 1

1 3

2

x 14, x 8, x 4

x 1
(X )

x 1, x 1

x 3

= = =
 =

= 
= =

 =
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That is, 2
2 1(X )  = (1, 3, 1, 11). 

Put 1
2x 1=  in Z2(X), the solution is 2

2 2(X )  = (1, 3, 1,1). 

∴ we have 2 2
2 1 2 2(X ) (X )= . 

Put 1 2
2 2x 1 and x 3= =  in Z3(X) = (x1 − x3 + 9)(2x2 + 2x4 + 9) subject to the 

constraints (28). 

The optimal solution for Z3(X) is 2
1 3(X ) (1,3,1,1)= . 

The observations for the above example have been summarized in Table 4. 

r
k 1(X )  r

k 2(X )  r
k 3(X )  Z1(Xk) Z2(Xk) Z3(Xk) (TIQPP) 

1
1 1(X ) (1,3,1,0)=  

1
1 2(X ) (1,3,1,1)=  1

1 3(X ) (1,3,1,1)=  105 56 153 

1
1 1(X ) (1,3,1,0) IR= ∉  

1
2 2(X ) (1,0,1,0)=  1

2 3(X ) (1,0,1,1)=  105 15 99 

1
3 2(X ) (1,0,0,0)=  1

3 3(X ) (1,0,0,1)=  105 25 110 

1
4 2(X ) (1,3,1,0)=  1

4 2(X ) (1,3,1,1)=  105 48 153 

2
1 1(X ) (1,3,1,1)=  2

1 2(X ) (1,3,1,1)=  1
1 3(X ) (1,3,1,1)=  105 56 153 2

1 1(X ) (1,3,1,1) IR= ∈  

3
2 1(X ) (5,3,1,0)=  3

2 2(X ) (5,0,1,3)=  cannot proceed since x4 = 3 is not 
possible. 

3
2 1(X ) (5,3,1,0) IR= ∉  

4
3 1(X ) (1,0,1,0)=  4

3 2(X ) (1,3,1,1)=  4
3 3(X ) (1,3,1,1)=  36 56 153 4

3 1(X ) (1,0,1,0) IR= ∉  

2
2 1(X ) (1,3,1,1)=  2

2 2(X ) (1,3,1,1)=  2
3 3(X ) (1,3,1,1)=  105 56 153 2

2 1(X ) (1,3,1,1) IR= ∈  

Table 4 

From above table, we conclude that the optimal solution for the problem 

(TIQPP) is (1, 3, 1, 1). 

Conclusions: The proposed algorithm scans the feasible region for the integral 

points. This is done using Gomory like cut and the edge truncating cut. The 
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edge truncating cut removes the larger portion of the feasible region which 

contains no integer feasible solution. The algorithm scans the edges in such a 

manner that the edges once removed cannot reappear. 
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