A Solution Approach for Multi-level Integer Indefinite Quadratic Programming Problems

Ritu Arora
Keshav Mahavidyalaya, Department of Mathematics, University of Delhi, Delhi
S.R. Arora
Ex-Principal, Hans Raj College, Department of Mathematics, University of Delhi, Delhi

Abstract

A multi-level programming problem is a hierarchical optimization problem where the constraint region of the first level is implicitly determined by the other optimization problems. In this paper, a multi-level integer programming problem (MIPP) with bounded variables is considered in which the objective functions are indefinite quadratic and the feasible region is a convex polyhedron. An algorithm is developed for ranking and scanning the set of feasible solutions. These ranked solutions are used to solve (MIPP). The algorithm is explained with the help of examples.

Keywords: Indefinite quadratic programming problem, integer programming, multi-level programming problem, bounded variables, quasi-concave function.

Primary : 90C20

Secondary : 90C10

Introduction

A Multi-Level Programming Problem (MLPP) deals with decentralized planning problems with multiple decision makers in a multi-level or
hierarchical organization where decisions have interacted with each other. In multi-level programming, the higher level decision makers make their decision in full view of the lower level decision makers. Each decision maker attempts to optimize its objective function and is affected by the actions of the other decision makers. The mathematical model of the K-level programming problem is as follows:
(MLPP): $\quad \operatorname{Max}_{\mathrm{X}_{1}} \mathrm{f}_{1}(\mathrm{X})=\mathrm{c}_{11} \mathrm{X}_{1}+\ldots+\mathrm{c}_{1 \mathrm{k}} \mathrm{X}_{\mathrm{K}}$

$$
\operatorname{Max}_{\mathrm{X}_{2}} \mathrm{f}_{2}(\mathrm{X})=\mathrm{c}_{21} \mathrm{X}_{1}+\ldots+\mathrm{c}_{2 \mathrm{k}} \mathrm{X}_{\mathrm{K}}
$$

$$
\operatorname{Max}_{\mathrm{X}_{\mathrm{K}}} \mathrm{f}_{\mathrm{K}}(\mathrm{X})=\mathrm{c}_{\mathrm{K} 1} \mathrm{X}_{1}+\ldots+\mathrm{c}_{\text {кК }} \mathrm{X}_{\mathrm{K}}
$$

subject to

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{i} 1} \mathrm{X}_{1}+\mathrm{A}_{\mathrm{i} 2} \mathrm{X}_{2}+\ldots .+\mathrm{A}_{\mathrm{ik}} \mathrm{X}_{\mathrm{k}}=\mathrm{b}_{\mathrm{i}}, \quad \mathrm{i}=1,2, \ldots, \mathrm{~m} \\
& \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{K}} \geq 0
\end{aligned}
$$

The above problem has one decision maker at each level, n decision variables and m constraints. $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right), n=n_{1}+n_{2}+\ldots+n_{k}$, where the decision vector $X_{K} \in \mathbb{R}^{\mathrm{n}_{\mathrm{k}}}, \mathrm{k}=1, \ldots, \mathrm{~K}$ is under the control of $\mathrm{k}^{\text {th }}$ level decision maker and has n_{k} number of decision variables.
(MLPP) can be found in many decision making situations. Candler and Norton [3] presented a version of this problem in an economic policy context. Another application of (MLPP) can be seen in a market of consumers being served by a distribution centre as well as its competitor. Both the players must set a price level for its products so that their profits are maximized. However, the consumers are at liberty to buy from either of the players depending on the
relative prices of this product. The customers' decision will be reached after taking into consideration economic criterion such as cost minimization.

Bard [2] formulated a normal non-linear programming problem by using the Kuhn-Tucker conditions for the problems of the third level and second level and proposes a cutting plane algorithm employing a vertex search procedure to solve a tri-level programming problem. P. Lasunon [8] in 2011 has proposed a new method for solving tri-level programming problem. T.I. Sultan et al.[16] in 2014 has given a decomposition algorithm for (TPP).

Faisca, Dua, Rustem, Saraiva and Pistikopoulas [14] in the year 2009 have discussed multi-parametric programming approach for multi-level hierarchical and decentralized optimization problems. Migdalas, Pardalos and Varbrand [12] in the year 1997 published a book on multi-level optimization, which is a series on Non-Convex optimization and its applications. Latest work on multilevel optimization can be found in $[4,5,6,10,15]$.

Quadratic Programming represents a special class of non-linear programming in which the objective function is quadratic and the constraints are linear. R. Baker [1] in 2008 has given an interior point solution for multilevel quadratic programming problems.

Extensive work has been done on integer programming problems. These problems are of particular importance in business and industry where quite often, the fractional solutions are unrealistic because units are not divisible. Many cutting plane algorithms like Dantzig cut, Gomory cut, edge truncating cut etc. are used to solve such problems when decision variables are not bounded. Huang, Quing [7], MaZhong Fan [11] and Xu Chang [17] have developed various programming problems with bounded variables. Lev and Soyster [9] have developed an algorithm for integer programming with bounded variables and the upper bounds on the variables are small.

Indefinite Quadratic Integer Programming Problem with Bounded Variables

Consider the indefinite quadratic integer programming probem with bounded variables, defined as
(IQIPP):

$$
\operatorname{Max} Z(X)=Z_{1}(X) \cdot Z_{2}(X)=\left(C^{T} X+\alpha\right)\left(D^{T} X+\beta\right)
$$

subject to $X \in S$,
where $S=\{X \mid A X=b, \ell \leq X \leq u, X$ is an integer vector $\}$.

Here, S is non-empty and bounded, $X \in \mathbb{R}^{\mathrm{n}}$ is a vector of variables; $\mathrm{b} \in \mathbb{R}^{\mathrm{m}} ; \mathrm{C}$, $\mathrm{D} \in \mathbb{R}^{\mathrm{n}} ; \alpha, \beta \in \mathbb{R}$ and $\mathrm{A} \in \mathbb{R}^{\mathrm{m} \times \mathrm{n}}$.

Both $\mathrm{Z}_{1}(\mathrm{X})$ and $\mathrm{Z}_{2}(\mathrm{X})$ are positive for all $\mathrm{X} \in \mathrm{S}$. Thus, the function $\mathrm{Z}(\mathrm{X})$ is both quasi-concave and quasi-convex on S . Hence, $\mathrm{Z}(\mathrm{X})$ is explicitly quasimonotone on S . Therefore, the optimal solution to the problems (IQIPP) occurs at an extensive point of S.

Optimality Criterion for (IQIPP)

Theorem 1 [13]: Let X_{B} be a non-degenerate basic feasible to the problem (IQIPP) and let \hat{X}_{B} be another basic feasible solution obtained by introducing a non-basic column vector a_{j} into the basis, for which $L_{j}=Z_{1}\left(z_{j}^{2}-d_{j}\right)+Z_{2}\left(z_{j}^{1}-c_{j}\right)-\theta_{j}\left(z_{j}^{2}-d_{j}\right)\left(z_{j}^{1}-c_{j}\right) \quad$ is negative. Then, \hat{X}_{B} is a basic feasible solution with an improved value of Z .

The optimality criterion for solving (IQIPP) with bounded variables is that $L_{j} \geq 0$ for upper bounded non-basic variables and $L_{j} \leq 0$ for lower bounded non-basic variables.

Mathematical Formulation of the Problem (MIQPP)

The Multi-level Integer Indefinite Quadratic Programming Problem with bounded variables is formulated as,
(MIQPP):

$$
\begin{aligned}
& \underset{X_{1}}{\operatorname{Max}} \mathrm{Z}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}}\right)=\mathrm{Z}_{11}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}}\right) \cdot \mathrm{Z}_{12}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}}\right) \\
& \operatorname{Max}_{\mathrm{X}_{2}} \mathrm{Z}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}}\right)=\mathrm{Z}_{21}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}}\right) \cdot \mathrm{Z}_{22}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}}\right), \\
& \text { for a given } \mathrm{X}_{1} \\
& \operatorname{Max}_{X_{p}} Z_{p}\left(X_{1}, X_{2}, \ldots, X_{p}\right)=Z_{p 1}\left(X_{1}, X_{2}, \ldots, X_{p}\right) . Z_{p 2}\left(X_{1}, X_{2}, \ldots, X_{p}\right) \\
& \text { for a given }\left(X_{1}, X_{2}, \ldots, X_{p-1}\right) \text {. }
\end{aligned}
$$

where $\left(X_{1}, X_{2}, \ldots, X_{p}\right) \in S^{*}$.

Here, $S^{*}=\{X \mid A X=b, L \leq X \leq U\}$ is non-empty and bounded.

Define, $\mathrm{S}_{1}^{*}=\{\mathrm{X} \mid \mathrm{AX}=\mathrm{b} ; \mathrm{L} \leq \mathrm{X} \leq \mathrm{U}, \mathrm{X}$ is an integer vector $\}$.

Clearly, $\mathrm{S}_{1}^{*} \subseteq \mathrm{~S}$. We are interested in finding the solution of the given problem in S_{1}^{*}.

Here, $Z_{i 1}\left(X_{1}, X_{2}, \ldots, X_{p}\right)=C_{i 1} X_{1}+C_{i 2} X_{2}+\ldots+C_{i p} X_{p}+\alpha_{i} ; i=1,2, \ldots ., p$

$$
Z_{i 2}\left(X_{1}, X_{2}, \ldots, X_{p}\right)=D_{i 1} X_{1}+D_{i 2} X_{2}+\ldots+D_{i p} X_{p}+\beta_{i} ; i=1,2, \ldots, p
$$

$\mathrm{X}_{1}=\left(\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{2}, \ldots ., \mathrm{x}_{\mathrm{n}_{1}}^{1}\right) \in \mathbb{R}^{\mathrm{n}_{1}} ; \mathrm{X}_{2}=\left(\mathrm{x}_{2}^{1}, \mathrm{x}_{2}^{2}, \ldots, \mathrm{x}_{\mathrm{n}_{2}}^{1}\right) \in \mathbb{R}^{\mathrm{n}_{2}} ; \ldots$
$X_{p}=\left(x_{1}^{p}, x_{2}^{p}, \ldots, x_{n_{p}}^{p}\right)=\mathbb{R}^{n_{p}}$
Here, $C_{i r}=\sum_{j=1}^{n_{r}} c_{i j}^{r} x_{j}^{r}, \quad i=1,2, \ldots, p$

$$
\begin{array}{ll}
D_{i r}=\sum_{j=1}^{n_{r}} d_{i \mathrm{ij}}^{\mathrm{r}} \mathrm{r}_{\mathrm{j}}^{\mathrm{r}}, & \mathrm{i}=1,2, \ldots, \mathrm{p} \\
\alpha_{\mathrm{i}}, \beta_{\mathrm{i}} \in \mathbb{R} ; & i=1,2, \ldots, p
\end{array}
$$

$A=\left(A_{1}, A_{2}, \ldots, A_{p}\right), \quad A_{i} \in \mathbb{R}^{m \times n_{i}} ; \quad i=1,2, \ldots ., p ; \quad b \in \mathbb{R}^{m \times 1}$
$\mathrm{L}=\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{\mathrm{p}}\right)^{\mathrm{T}}$, where $\mathrm{L}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{n}_{\mathrm{i}} \times 1} ; \quad \mathrm{i}=1,2, \ldots, \mathrm{p}$,
$\mathrm{U}=\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{p}}\right)^{\mathrm{T}}$, where $\mathrm{U}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{n}_{\mathrm{i}} \times 1} ; \quad \mathrm{i}=1,2, \ldots, \mathrm{p}$.

The objective functions defined for each $\mathrm{Z}_{\mathrm{i}}(\mathrm{X}) ; \mathrm{i}=1,2, \ldots, \mathrm{p}$ is the product of two positive valued affine functions, hence it is quasi-concave.

The polyhedron S^{*} defined by the constraint region of the problem (MIQPP) is assumed to be non-empty and compact.

Constraint region for the problem $\mathrm{Z}_{\mathrm{p}}(\mathrm{X})$ for some fixed value of $\left(X_{1}, X_{2}, \ldots, X_{p-1}\right)$ is given by

$$
S^{*}=\left(X_{1}, X_{2}, \ldots ., X_{p-1}\right)=\left\{X_{p} \mid A_{p} X_{p} \leq A_{1} X_{1}+A_{2} X_{2}+\ldots+A_{p-1} X_{p-1}, L_{p} \leq X_{p} \leq U_{p},\right.
$$

X_{p} is an integer vector $\}$

The rational reaction set for the follower's problem $\mathrm{Z}_{\mathrm{p}}(\mathrm{X})$, for fixed value of $\left(X_{1}, X_{2}, \ldots, X_{p-1}\right)$ is given by
$\mathrm{M}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}-1}\right)=\left\{\mathrm{X}_{\mathrm{p}} \mid \mathrm{X}_{\mathrm{p}} \in \arg \max \mathrm{Z}_{\mathrm{p}}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{p}-1}, \mathrm{X}_{\mathrm{p}}\right) ;\right.$

$$
\left.X_{p} \in S^{*}\left(X_{1}, X_{2}, \ldots, X_{p-1}\right)\right\}
$$

The inducible region of (MIQPP) is given by

$$
\operatorname{IR}=\left\{\left(X_{1}, X_{2}, \ldots, X_{p}\right) \mid\left(X_{1}, X_{2}, \ldots, X_{p}\right) \in S_{1}^{*}, X_{p} \in M\left(X_{1}, X_{2}, \ldots ., X_{p-1}\right)\right\}
$$

Technique to solve the problem (MIQPP) in $\mathrm{S}_{1}{ }^{*}$.

Firstly, consider the problem (MIQPP) in S^{*}. For $i \geq 1$ and $k \geq 1$, let B_{k} be the basis matrix corresponding to the basic feasible solution $X_{B_{K}}$. Suppose that the non-basic matrix is decomposed into $\mathrm{N}_{\mathrm{k}}^{1}$ and $\mathrm{N}_{\mathrm{k}}^{2}$, where,
$N_{k}^{1}=\left\{j \mid a_{j}^{k} \notin B_{k}\right.$ and x_{j}^{k} is at its lower bound $\}$,
$N_{k}^{2}=\left\{j \mid a_{k}^{k} \notin B_{k}\right.$ and x_{j}^{k} is at its upper bound $\}$.
$I_{k}=\left\{t \mid a_{t} \in B_{k}\right\}$.

Further, $\quad A_{N_{k}^{1}}=\left\{a_{j}^{k} \in A \mid j \in N_{k}^{1}\right\}, \quad A_{N_{k}^{2}}=\left\{a_{j}^{k} \in A \mid j \in N_{k}^{2}\right\}$.

Let $X_{N_{k}^{1}}=\left\{\mathrm{x}_{\mathrm{j}}^{\mathrm{k}} \mid \mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{1}\right\}$ be a vector of non-basic variable at their lower bounds and $X_{N_{k}^{2}}=\left\{\mathrm{X}_{\mathrm{j}}^{\mathrm{k}} \mid \mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{2}\right\}$ be a vector of non-basic variables at their upper bounds respectively.

For $k \geq 1$, we have $B_{k} X_{B_{k}}+N_{k}^{1} X_{N_{k}^{1}}+N_{k}^{2} X_{N_{k}^{2}}=b$.

This implies $\mathrm{X}_{\mathrm{B}_{\mathrm{k}}}+\left(\mathrm{B}_{\mathrm{k}}^{-1} \mathrm{~N}_{\mathrm{k}}^{1}\right) \mathrm{X}_{\mathrm{N}_{\mathrm{k}}^{1}}+\left(\mathrm{B}_{\mathrm{k}}^{-1} \mathrm{~N}_{\mathrm{k}}^{2}\right) \mathrm{X}_{\mathrm{N}_{\mathrm{k}}^{2}}=\mathrm{B}_{\mathrm{k}}^{-1} \mathrm{~b}$

This implies $X_{B_{k}}+\sum_{j \in N_{k}^{1}} y_{k_{j}} x_{j}^{k}+\sum_{j \in N_{k}^{2}} y_{k_{j}} x_{j}^{k}=B_{k}^{-1} b$.

For $\mathrm{i} \geq 1$ and $\mathrm{k} \geq 1$, the objective function value corresponding to the basis B_{k} is given by

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i} 1} & =\left(\mathrm{C}_{\mathrm{B}_{\mathrm{k}}}\right)_{\mathrm{i}} X_{\mathrm{B}_{\mathrm{k}}}+\left(\mathrm{C}_{\mathrm{N}_{k}^{1}}\right)_{\mathrm{i}} X_{\mathrm{N}_{\mathrm{k}}^{1}}+\left(\mathrm{C}_{\mathrm{N}_{k}^{2}}\right)_{\mathrm{i}} X_{\mathrm{N}_{\mathrm{k}}^{2}}+\alpha_{\mathrm{i}} \\
& =\left(\mathrm{C}_{\mathrm{B}_{\mathrm{k}}}\right)_{\mathrm{i}}\left[\mathrm{~B}_{\mathrm{k}}^{-1} \mathrm{~b}-\left(\mathrm{B}_{\mathrm{k}}^{-1} \mathrm{~N}_{\mathrm{k}}^{1}\right) \mathrm{X}_{\mathrm{N}_{\mathrm{k}}^{1}}-\left(\mathrm{B}_{\mathrm{k}}^{-1} \mathrm{~N}_{\mathrm{k}}^{2}\right) \mathrm{X}_{\mathrm{N}_{k}^{2}}\right]+\left(\mathrm{C}_{\mathrm{N}_{k}^{1}}\right)_{\mathrm{i}} X_{\mathrm{N}_{\mathrm{k}}^{1}}+\left(\mathrm{C}_{\mathrm{N}_{k}^{2}}\right)_{\mathrm{i}} X_{\mathrm{N}_{k}^{2}}+\alpha_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{align*}
& \left.\quad=\left(C_{B_{k}}\right)_{i} B_{k}^{-1} b+\left[\left(C_{N_{k}^{\prime}}\right)_{i}-\left(C_{B_{k}}\right)_{i} B_{k}^{-1} N_{k}^{1}\right] X_{N_{k}^{\prime}}+\left[\left(C_{N_{k}^{2}}\right)_{i}-\left(C_{B_{k}}\right)_{i} B_{k}^{-1} N_{k}^{2}\right)\right] X_{N_{k}^{2}}+\alpha_{i} \\
& \therefore \tag{3}\\
& Z_{i 1}=\left(C_{B_{k}}\right)_{i} B_{k}^{-1} b-\sum_{j \in N_{k}^{1}}\left(z_{j}^{i 1}-c_{j}\right)_{k} x_{j}^{k}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 1}-c_{j}\right)_{k} x_{j}^{k}+\alpha_{i}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
Z_{i 2}=\left(D_{B_{k}}\right)_{i} B_{k}^{-1} b-\sum_{j \in N_{k}^{\prime}}\left(z_{j}^{i 1}-d_{j}\right)_{k} x_{j}^{k}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 1}-d_{j}\right)_{k} x_{j}^{k}+\beta_{i} \tag{4}
\end{equation*}
$$

Suppose that we have a current basic feasible solution, $X_{B_{k}}^{0}=\left(x_{j k}^{0}\right)$, where $\mathrm{x}_{\mathrm{jk}}^{0}=\ell_{\mathrm{jk}}, \mathrm{j}_{\mathrm{k}} \in \mathrm{N}_{\mathrm{k}}^{1}$ and $\mathrm{x}_{\mathrm{jk}}^{0}=\mathrm{u}_{\mathrm{jk}}, \mathrm{j}_{\mathrm{k}} \in \mathrm{N}_{\mathrm{k}}^{2}$.

Therefore, improved objective function values are given by

$$
\left.\begin{array}{l}
Z_{i 1}\left(X_{B_{k}}^{0}\right)=\left(C_{B_{k}}\right)_{i} B_{k}^{-1} b-\sum_{j \in N_{k}^{k}}\left(z_{j}^{i 1}-c_{j}\right)_{k} l_{k}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 1}-c_{j}\right)_{k} u_{j k}+\alpha_{i} \tag{5}\\
Z_{i 2}\left(X_{B_{k}}^{0}\right)=\left(D_{B_{k}}\right)_{i} B_{k}^{-1} b-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 2}-d_{j}\right)_{k} \ell_{j k}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 2}-d_{j}\right)_{k} u_{j k}+\beta_{i}
\end{array}\right]
$$

Also, $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{B}_{\mathrm{k}}}^{0}\right)=\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{B}_{\mathrm{k}}}^{0}\right) . \mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{B}_{\mathrm{k}}}^{0}\right), \mathrm{i}=1,2, \ldots, \mathrm{p}$.

In order to find a new feasible solution, consider a non-basic variable $\mathrm{x}_{\mathrm{r}_{\mathrm{k}}}$ at its lower bound which undergoes a change $\phi_{\mathrm{r}}^{\mathrm{k}}$. Using reference [13], the new solution is given by $\hat{X}_{\mathrm{k}}=\left(\hat{\mathrm{X}}_{\mathrm{jk}}\right)$, where

$$
\left[\begin{array}{l}
\left(\hat{x}_{t}\right)_{k}=\left(x_{t}^{0}\right)_{k}-y_{\mathrm{t}}^{\mathrm{k}} \phi_{\mathrm{r}}^{\mathrm{k}}, \quad \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} \tag{6}\\
\left(\hat{\mathrm{x}}_{\mathrm{r}}\right)_{\mathrm{k}}=\left(\ell_{\mathrm{r}}\right)_{\mathrm{k}}+\phi_{\mathrm{r}}^{\mathrm{k}} \\
\hat{\mathrm{x}}_{\mathrm{jk}}=\mathrm{x}_{\mathrm{jk}}^{0},
\end{array} \quad \mathrm{j}_{\mathrm{k}} \in \mathrm{~N}_{\mathrm{k}}^{1} \cup \mathrm{~N}_{\mathrm{k}}^{2} \backslash\{\mathrm{r}\},\right.
$$

The objective function value corresponding to a new feasible solution \hat{X}_{k} is given by

$$
\begin{align*}
& Z_{i 1}\left(\hat{X}_{k}\right)=C_{B_{k}}\left(B_{k}^{-1} b\right)-\sum_{j \in N_{k}^{\prime}|r|}\left(z_{j}^{i 1}-c_{j}\right)_{k} \ell_{j_{k}}-\left(z_{r}^{i 1}-c_{r}\right)_{k}\left(\ell_{r k}+\phi_{r}^{k}\right)-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 1}-c_{j}\right)_{k} u_{j k}+\alpha_{i} \\
& =C_{B_{k}}\left(B_{k}^{-1} b\right)-\left[\sum_{\left.j \in N_{k}^{l} \backslash r\right\}}\left(z_{j}^{i 1}-c_{j}\right)_{k} \ell_{j_{k}}+\left(z_{r}^{i 1}-c_{r}\right)_{k} \ell_{r k}\right]-\phi_{r}^{k}\left(z_{r}^{i 1}-c_{r}\right)_{k}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 1}-c_{j}\right)_{k} u_{j k}+\alpha_{i} \\
& =\left[C_{B_{k}}\left(B_{k}^{-1} b\right)-\sum_{j \in N_{k}^{1} \backslash(r\}}\left(z_{j}^{i 1}-c_{j}\right)_{k} \ell_{j_{k}}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i 1}-c_{j}\right)_{k} u_{j k}+\alpha_{i}\right]-\phi_{r}^{k}\left(z_{r}^{i 1}-c_{r}\right)_{k} \\
& =Z_{i 1}\left(X^{0}\right)-\phi_{r}^{k}\left(z_{r}^{i 1}-c_{r}\right)_{k} \cdot \\
& \therefore \tag{7}\\
& \text { similarly, } \left.\quad Z_{i 2}\left(\hat{X}_{k}\right)=Z_{i 1}\left(X_{k}^{0}\right)=Z_{i 2}\left(X_{k}^{0}\right)-\phi_{r}^{k}\left(z_{r}^{\mathrm{i} 2}-d_{r}\right)_{k}\right] \\
& \left.\therefore \quad Z_{i}\left(\hat{X}_{k}\right)=Z_{i 1} \hat{X}_{k}\right) \cdot Z_{i 2}\left(\hat{X}_{k}\right) \tag{8}
\end{align*}
$$

The new solution is a feasible extreme point, provided

$$
\phi_{\mathrm{r}}^{\mathrm{k}}=\operatorname{Min}\left\{\left(\mathrm{u}_{\mathrm{r}}-\ell_{\mathrm{r}}\right)_{\mathrm{k}},\left(\left.\frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\ell_{\mathrm{Bt}}}{\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}} \right\rvert\,\left(\mathrm{y}_{\mathrm{tj}_{\mathrm{t}}}\right)_{\mathrm{k}}>0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right)\left(\left.\frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\mathrm{x}_{\mathrm{Bt}}^{\mathrm{k}}}{\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}} \right\rvert\,\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}<0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right)\right\} .
$$

The following possibilities may arise depending on the value of $\phi_{\mathrm{r}}^{\mathrm{k}}$:
(i) If $\phi_{\mathrm{r}}^{\mathrm{k}}=\left(\mathrm{u}_{\mathrm{r}}-\ell_{\mathrm{r}}\right)_{\mathrm{k}}$, then $\mathrm{x}_{\mathrm{r}}^{\mathrm{k}}$ attains its upper bound and remains nonbasic. The change in the values of each basic variable $\left(\hat{\mathrm{x}}_{\mathrm{t}}\right)_{\mathrm{k}}, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$ and the objective functions $\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)$ and $\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right)$ are given by the equations (6) and (7) respectively.
(ii) If $\phi_{r}^{k}=\left(\frac{\mathrm{x}_{s_{k}}-\ell_{s_{k}}}{y_{\mathrm{rs}_{k}}}\right)$, for some $s_{k} \in I_{k}$, then $x_{r_{k}}$ becomes basic and $x_{s_{k}}$ departs the basis and attains its lower bound. The change in the values of the basic variables $\left(\hat{\mathrm{x}}_{\mathrm{t}}\right)_{\mathrm{k}}, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$ and the objective functions $\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)$ and $\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right)$ are given by the equations (6) and respectively.
(iii) If $\phi_{r}^{k}=\left(\frac{u_{s_{k}}-x_{s_{k}}}{-\left(y_{r_{s_{k}}}\right)}\right)$, for some $s_{k} \in I_{k}$, then $x_{r_{k}}$ becomes basic and $x_{s_{k}}$ departs from the basis and attains its upper bound. The change in the values of the basic variables $\left(\hat{\mathrm{x}}_{\mathrm{t}}\right)_{\mathrm{k}}, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$ and the objective functions $\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)$ and $\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right)$ are given by the equations (6) and respectively.

The change in the value of the objective function $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)(\mathrm{i} \geq 1)$ is given by
$\mathrm{Z}_{\mathrm{i}}\left(\hat{X}_{\mathrm{k}}\right)-\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)=\left[\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{r}}^{0}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\right]\left[\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}\right]-\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}^{0}\right) \mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}^{0}\right)$
$=-\phi_{r}^{k}\left[Z_{i 1}\left(X_{r}^{0}\right)\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}+\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}} \cdot\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} z}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}\right]$
$=-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{L}_{\mathrm{ir}}\right)_{\mathrm{k}}$
where $\quad\left(L_{i r}\right)_{k}=Z_{i 1}\left(X_{k}^{0}\right)\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}+\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}-\phi_{\mathrm{rk}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}$.
Similarly, if variable $X_{r_{k}}=u_{r_{k}}$ undergoes a change, then the new solution $\hat{X}_{\mathrm{k}}=\left(\hat{\mathrm{x}}_{\mathrm{jk}}\right)$ is defined as

$$
\left[\begin{array}{l}
\left(\hat{\mathrm{x}}_{\mathrm{t}}\right)_{\mathrm{k}}=\left(\mathrm{x}_{\mathrm{t}}^{0}\right)_{\mathrm{k}}+\mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}} \phi_{\mathrm{r}}^{\mathrm{k}}, \tag{10}\\
\left(\hat{\mathrm{x}}_{\mathrm{r}}\right)_{\mathrm{k}}=\mathrm{u}_{\mathrm{rk}}-\phi_{\mathrm{r}}^{\mathrm{k}} \\
\hat{\mathrm{x}}_{\mathrm{jk}}=\mathrm{x}_{\mathrm{jk}}^{0}, \quad \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} \\
, \quad \forall \mathrm{j}_{\mathrm{k}} \in \mathrm{~N}_{\mathrm{k}}^{1} \cup \mathrm{~N}_{\mathrm{k}}^{2} \backslash\{\mathrm{r}\}
\end{array}\right.
$$

The objective function value corresponding to a new integer feasible solution \hat{X}_{k} is given by

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}\left(\hat{X}_{\mathrm{k}}\right)=\left[\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)+\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\right]\left[\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)+\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}\right] \tag{11}
\end{equation*}
$$

The new solution is a feasible extreme point, provided

$$
\phi_{\mathrm{r}}^{\mathrm{k}}=\operatorname{Min}\left\{\left(\mathrm{u}_{\mathrm{r}}-\ell_{\mathrm{r}}\right)_{\mathrm{k}},\left(\left.\frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\ell_{\mathrm{Bt}}}{-\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}} \right\rvert\,\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}<0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right),\left(\left.\frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\mathrm{x}_{\mathrm{Bt}}^{*}}{\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}} \right\rvert\,\left(\mathrm{y}_{\mathrm{tj}}\right)_{\mathrm{k}}>0, \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right)\right\}
$$

Thus, depending on the values of $\phi_{\mathrm{r}}^{\mathrm{k}}$, the following possibilities may arise:
(i) If $\phi_{\mathrm{r}}^{\mathrm{k}}=\left(\mathrm{u}_{\mathrm{r}}-\ell_{\mathrm{r}}\right)_{\mathrm{k}}$, , then $\mathrm{x}_{\mathrm{r}_{\mathrm{k}}}$ attains its lower bound and remains nonbasic. The change in the values of each basic variable $\left(\hat{x}_{t}\right)_{k}, t \in I_{k}$ and the objective function $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)$ are given by the equations (10) and (11) respectively.
(ii) If $\phi_{r}^{k}=\frac{x_{s_{k}}-\ell_{s_{k}}}{-\left(y_{\mathrm{rs}_{k}}\right)}$, for some $s_{k} \in I_{k}$, then $X_{r_{k}}$ becomes basic and $x_{s_{k}}$ departs from the basis and attains its lower bound. The corresponding change in the values of the basic variables $\left(\hat{\mathrm{x}}_{\mathrm{t}}\right)_{\mathrm{k}}, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$ and the objective functions $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)$ are given by the equations (10) and (11) respectively.
(iii) If $\phi_{r}^{k}=\frac{u_{s_{k}}-x_{s_{k}}}{y_{\mathrm{s}_{k}}}$, for some $s_{k} \in I_{k}$, then $X_{r_{k}}$ becomes basic and $x_{s_{k}}$ departs from the basis and attains its upper bound. The corresponding change in the values of the basic variables $\left(\hat{x}_{t}\right)_{k}, t \in I_{k}$ and the objective functions $\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)$ is given by the equations (10) and (11) respectively.

The change in the value of the objective function $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)(\mathrm{i} \geq 1)$ is given by

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}\left(\hat{\mathrm{X}}_{\mathrm{k}}\right)-\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)=\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{~L}_{\mathrm{ir}}\right)_{\mathrm{k}} \tag{12}
\end{equation*}
$$

where

$$
\left(L_{i r}\right)_{k}=Z_{i 1}\left(X_{k}^{0}\right)\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}+\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}^{0}\right)\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}
$$

Thus, we conclude that the non-basic variable $\mathrm{x}_{\mathrm{r}_{\mathrm{k}}}$ enters the basis which gives maximum improvement in the value of the objective function. We are interested in finding on optimal solution of the problem (MIQPP) in S_{i}.

Define,

$$
\begin{aligned}
& J_{1}^{k}=\left\{j \mid j \in N_{k}^{1} \text { and }\left(L_{i j}\right)_{k}=0\right\} \\
& J_{2}^{k}=\left\{j \mid j \in N_{k}^{2} \text { and }\left(L_{i j}\right)_{k}=0\right\} \\
& T_{1}^{k}=\left\{j \mid j \in N_{k}^{1} \text { and }\left(L_{i j}\right)_{k} \neq 0\right\} . \\
& T_{2}^{k}=\left\{j \mid j \in N_{k}^{2} \text { and }\left(L_{i j}\right)_{k} \neq 0\right\} .
\end{aligned}
$$

Any basic feasible solution to the problem $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right), \mathrm{i} \geq 1$, $(\mathrm{i}=1,2, \ldots, \mathrm{p})$ such that $\left(\mathrm{L}_{\mathrm{ij}}\right)_{\mathrm{k}} \leq 0 \forall \mathrm{j} \in \mathrm{N}_{\mathrm{k}}{ }^{1}$ and $\left(\mathrm{L}_{\mathrm{ij}}\right)_{\mathrm{k}} \geq 0 \quad \forall \mathrm{j} \in \mathrm{N}_{\mathrm{k}}{ }^{2}$ is a locally optimal solution. Since the objective function $Z_{i}\left(X_{k}\right)(i=1,2, \ldots ., p)$ at each level is explicitly quasi-monotone and is maximised over a compact polyhedron, every locally optimal solution of $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)(\mathrm{i} \geq 1)$ will also be a globally optimal solution.

An optimal integer feasible solution for $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)$ ($\mathrm{i} \geq 1$) can be obtained by repeated application of cut in [13] in the simplex table. This yields optimal feasible solution for the problem in $\mathrm{S}_{1}{ }^{*}$.

Theorem 2: Let $X_{k}(k \geq 1)$ be an integer feasible solution of (MIQPP). Then, all integer feasible solutions of the problem (MIQPP) in $\mathrm{S}_{1}{ }^{*}$ yielding value higher than $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)(\mathrm{i} \geq 1)$ lies in the open half space,

$$
\begin{equation*}
\sum_{\mathrm{j} \in \mathrm{~T}_{\mathrm{i}}^{k}}\left(\mathrm{x}_{\mathrm{i}}-\ell_{\mathrm{j}}\right)-\sum_{\mathrm{j} \in \mathrm{~T}_{2}^{\mathrm{k}}}\left(\mathrm{u}_{\mathrm{j}}-\mathrm{x}_{\mathrm{j}}\right) \leq 1 \tag{I}
\end{equation*}
$$

Proof: Let $X_{k}, k \geq 1$ be an integer feasible solution of (MIQPP). Let B_{k} be the basis matrix corresponding to $X_{B_{k}}$. We have,

$$
\mathrm{AX}_{\mathrm{k}}=\mathrm{b}
$$

That is,

$$
\begin{equation*}
\mathrm{B}_{\mathrm{K}} \mathrm{X}_{\mathrm{B}_{\mathrm{k}}}+\sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{i}}^{k}} \mathrm{a}_{\mathrm{j}} \mathrm{X}_{\mathrm{j}}+\sum_{\mathrm{j} \in \mathrm{~N}_{2}^{k}} \mathrm{a}_{\mathrm{j}} \mathrm{X}_{\mathrm{j}}=\mathrm{b} \tag{13}
\end{equation*}
$$

Suppose that corresponding to the current optimal feasible solution, we have $\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}=\ell_{\mathrm{j}_{\mathrm{k}}}, \mathrm{j}_{\mathrm{k}} \in \mathrm{N}_{1}^{\mathrm{k}}$ and $\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}=\mathrm{u}_{\mathrm{j}_{\mathrm{k}}}, \mathrm{j}_{\mathrm{k}} \in \mathrm{N}_{2}^{\mathrm{k}}$. Therefore, from (13), we get

$$
\begin{equation*}
B_{K} X_{B_{k}}+\sum_{j \in N_{k}^{\prime}} a_{j}^{k} \ell_{j_{k}}+\sum_{j \in N_{k}^{2}} a_{j}^{k} u_{j_{k}}=b \tag{14}
\end{equation*}
$$

For some $r \in T_{1}^{k}, k \geq 1, \quad a_{r_{k}}=\sum_{t \in \mathrm{I}_{k}} y_{t_{r}}^{k} b_{r}$, where $I_{k}=\left\{t \mid a_{t} \in B_{k}\right\}$.

Choose a scalar $\phi_{\mathrm{r}}^{\mathrm{k}}>0$, equation (14) becomes

$$
\sum_{t \in I_{k}} b_{t} x_{B_{t}}^{k}+\sum_{j \in N_{i}^{k}} a_{j_{k}} \ell_{j_{k}}+\sum_{j \in N_{2}^{k}} a_{j_{k}} u_{j_{k}}+\phi_{r}^{k} a_{\mathrm{r}_{k}}-\phi_{\mathrm{r}}^{k} a_{\mathrm{t}_{\mathrm{k}}}=b
$$

That is, $\sum_{t \in I_{k}}\left[x_{B_{\mathrm{t}}}^{k}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}}\right] \mathrm{b}_{\mathrm{t}}+\sum_{\left.\mathrm{j} \in \mathrm{N}_{\mathrm{l}}^{\mathrm{k}} \backslash \mathrm{r}\right\}} \mathrm{a}_{\mathrm{j}_{\mathrm{k}}} \ell_{\mathrm{j}_{\mathrm{k}}}+\mathrm{a}_{\mathrm{r}_{\mathrm{k}}}\left(\ell_{\mathrm{r}_{\mathrm{k}}}+\phi_{\mathrm{r}}^{\mathrm{k}}\right)+\sum_{\mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{k}} \mathrm{a}_{\mathrm{j}_{\mathrm{k}}} \mathrm{u}_{\mathrm{j}_{\mathrm{k}}}=\mathrm{b}$

Equation (15) gives a new feasible solution of (MIQPP) given by

$$
X_{k}^{1}= \begin{cases}\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{1}=\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{t}}}^{\mathrm{k}}, & \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} \\ \mathrm{x}_{\mathrm{r}_{\mathrm{k}}}^{1}=\ell_{\mathrm{r}_{\mathrm{k}}}+\phi_{\mathrm{r}}^{\mathrm{k}}, & \text { for } \mathrm{r} \in \mathrm{~T}_{1}^{\mathrm{k}} \\ \mathrm{x}_{\mathrm{j}_{\mathrm{k}}}=\ell_{\mathrm{j}_{\mathrm{k}}}, & \forall \mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \backslash\{\mathrm{r}\} \\ \mathrm{x}_{\mathrm{j}_{\mathrm{k}}}^{1}=\mathrm{u}_{\mathrm{j}_{\mathrm{k}}}, & \forall \mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2}\end{cases}
$$

Here, $\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}^{1}=\ell_{\mathrm{j}_{\mathrm{k}}} \forall \mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{1} \backslash\{\mathrm{r}\}$ and $\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}^{1}=\mathrm{u}_{\mathrm{j}_{\mathrm{k}}}, \forall \mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{2}$ are integers. Therefore, for X_{k}^{1} to be an integer solution, it is required that $\phi_{\mathrm{r}}^{\mathrm{k}}$ should be a positive integer, so that $x_{r_{k}}^{1}=\ell_{r_{k}}+\phi_{r}^{k}$, for $r \in T_{1}^{k}$ is also an integer. It is required that $\phi_{r_{r}}^{k} y_{t_{r}}^{k}$, $\forall t \in I_{k}$ is an integer, so that $\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{1}=\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}}, \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$ is an integer.

Besides this $x_{B_{t}}^{1}$ and $x_{\mathrm{r}_{k}}^{1}$ should lie between the specified bounds, that is,

$$
\ell_{\mathrm{B}_{\mathrm{t}}} \leq \mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{1} \leq \mathrm{u}_{\mathrm{B}_{\mathrm{t}}} \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} \quad \text { and } \quad \ell_{\mathrm{r}_{\mathrm{k}}} \leq \mathrm{x}_{\mathrm{r}_{\mathrm{k}}}^{1} \leq \mathrm{u}_{\mathrm{r}_{\mathrm{k}}} \quad \forall \mathrm{r} \in \mathrm{~T}_{1}^{\mathrm{k}} .
$$

This implies $\ell_{\mathrm{r}_{\mathrm{k}}} \leq \ell_{\mathrm{r}_{\mathrm{k}}}+\phi_{\mathrm{r}}^{\mathrm{k}} \leq \mathrm{u}_{\mathrm{rk}}$, then is,

$$
\begin{equation*}
\phi_{\mathrm{r}}^{\mathrm{k}} \leq \mathrm{u}_{\mathrm{r}_{\mathrm{k}}}-\ell_{\mathrm{r}_{\mathrm{k}}} \quad \text { for } \mathrm{r} \in \mathrm{~T}_{1}^{\mathrm{k}} \tag{16}
\end{equation*}
$$

Again, we have $\ell_{\mathrm{B}_{\mathrm{t}}} \leq \mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{1} \leq \mathrm{u}_{\mathrm{B}_{\mathrm{t}}} \quad \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$, that is, $\ell_{\mathrm{B}_{\mathrm{t}}} \leq \mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{t}}}^{\mathrm{k}} \leq \mathrm{u}_{\mathrm{B}_{\mathrm{t}}} \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$.

Three different cases arises depending on the value of $y_{t_{r}}^{k}$.

Case 1: If $y_{t_{\mathrm{r}}}^{k}=0$, then $\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}}=0$.

This implies $\ell_{\mathrm{B}_{\mathrm{t}}} \leq \mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}} \leq \mathrm{u}_{\mathrm{B}_{\mathrm{t}}} \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}}$.

The condition is satisfied.

Case 2: If $y_{t_{r}}^{k}<0$, then $\left(-\phi_{r}^{k} y_{t_{r}}^{k}\right)>0$.

This implies $\left(\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{k}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{k}\right)$ is a positive integer which cannot exceed is upper bound, that is,

$$
\begin{array}{ll}
& \mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}} \leq \mathrm{u}_{\mathrm{B}_{\mathrm{t}}} \quad \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} . \\
\text { or } \quad & \phi_{\mathrm{r}}^{\mathrm{k}} \leq \frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}-\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}}{\mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}}} \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} . \tag{17}
\end{array}
$$

Case 3: If $y_{t_{r}}^{k}>0$, then $-\left(\phi_{\mathrm{r}}^{k} y_{t_{\mathrm{r}}}^{k}\right)<0$.

This implies that $\left(\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{k}-\phi_{\mathrm{r}}^{k} y_{t_{\mathrm{r}}}^{k}\right)$ is a positive integer, which cannot be less than its lower bound, that is,

$$
\ell_{\mathrm{B}_{\mathrm{t}}} \leq \mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}} \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}} \quad \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}}
$$

or

$$
\begin{equation*}
\phi_{\mathrm{r}}^{\mathrm{k}} \leq \frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\ell_{\mathrm{B}_{\mathrm{t}}}}{\mathrm{y}_{\mathrm{t}_{\mathrm{r}}}^{\mathrm{k}}} \forall \mathrm{t} \in \mathrm{I}_{\mathrm{k}} . \tag{18}
\end{equation*}
$$

Thus, from (16), (17) and (18), we get $\phi_{\mathrm{r}}^{\mathrm{k}}$ can assume any possible value given by

$$
\phi_{\mathrm{r}}^{k}=\operatorname{Min}\left\{\left(u_{\mathrm{r}_{\mathrm{k}}}-\ell_{\mathrm{r}_{\mathrm{k}}}\right),\left(\frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{k}-\ell_{\mathrm{B}_{\mathrm{t}}}}{y_{t_{\mathrm{r}}}^{k}}: y_{\mathrm{t}_{\mathrm{r}}}^{k}>0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right),\left(\frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}-x_{B_{\mathrm{B}_{\mathrm{t}}}}^{k}}{-y_{t_{\mathrm{r}}}^{k}}: y_{\mathrm{t}_{\mathrm{r}}}^{k}<0, t \in I_{k}\right)\right\} .
$$

The objective function value corresponding to X_{k} is given by

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)=\mathrm{Z}_{\mathrm{i}_{1}}\left(\mathrm{X}_{\mathrm{k}}\right) \cdot \mathrm{Z}_{\mathrm{i}_{2}}\left(\mathrm{X}_{\mathrm{k}}\right) . \tag{19}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
Z_{i_{1}}\left(X_{k}\right)=C_{B_{k}}\left(B_{k}^{-1} b\right)-\sum_{j \in N_{k}^{\prime}}\left(z_{j}^{i_{j}}-c_{j}\right)_{k} \ell_{j_{k}}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i_{j}}-c_{j}\right)_{k} u_{j_{k}}+\alpha_{i} \tag{20}\\
Z_{i_{2}}\left(X_{k}\right)=D_{B_{k}}\left(B_{k}^{-1} b\right)-\sum_{j \in N_{k}^{1}}\left(z_{j}^{i_{1}}-d_{j}\right)_{k} \ell_{j_{k}}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i_{2}}-d_{j}\right)_{k} u_{j_{k}}+\beta_{i}
\end{array}\right]
$$

The objective function value corresponding to a new integer feasible solution X_{k}^{1} is given by

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right)=\mathrm{Z}_{\mathrm{i}_{1}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right) \cdot \mathrm{Z}_{\mathrm{i}_{2}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right) . \tag{21}
\end{equation*}
$$

Now,
$Z_{i_{1}}\left(X_{k}^{1}\right)=C_{B_{k}}\left(B_{k}^{-1} b\right)-\sum_{j \in N_{k}^{1} \backslash|r|}\left(z_{j}^{i_{j}}-c_{j}\right)_{k} \ell_{j_{k}}-\left(z_{r}^{i 1}-c_{r}\right)_{k}\left(\ell_{r_{k}}+\phi_{r}^{k}\right)-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i_{1}}-c_{j}\right)_{k} u_{j_{k}}+\alpha_{i}$
$=\left(C_{B_{k}}\right)\left(B_{k}^{-1} b\right)-\left[\sum_{j \in N_{k}^{i}|r| r \mid}\left(z_{j}^{i_{1}}-c_{j}\right)_{k} \ell_{j_{k}}+\left(z_{r}^{i 1}-c_{r}\right)_{k} \ell_{r_{k}}\right]-\left(z_{r}^{i 1}-c_{r}\right)_{k} \phi_{r}^{k}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i_{1}}-c_{j}\right)_{k} u_{j_{k}}+\alpha_{i}$
$=\left[C_{B_{k}}\left(B_{k}^{-1} b\right)-\sum_{j \in N_{k}^{1}}\left(z_{j}^{i_{1}}-c_{j}\right)_{k} \ell_{j_{k}}-\sum_{j \in N_{k}^{2}}\left(z_{j}^{i_{1}}-c_{j}\right)_{k} u_{j_{k}}+\alpha_{i}\right]-\phi_{r}^{k}\left(z_{r}^{i 1}-c_{r}\right)_{k}$
$\therefore \quad \mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}^{1}\right)=\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{\mathrm{il}}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}} \quad(\operatorname{Using}(20))$
Similarly, $\quad \mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{ik}}\right)=\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}$

Substituting these values in (21), we have

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right)=\left[\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i1}}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\right] \cdot\left[\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}\right] \tag{22}
\end{equation*}
$$

Subtracting (19) from (22), we have

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right) & -\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)=\left[\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\right]\left[\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right)-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}\right]-\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right) \mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right) \\
& =-\phi_{\mathrm{r}}^{\mathrm{k}}\left[\mathrm{Z}_{\mathrm{i} 1}\left(\mathrm{X}_{\mathrm{k}}\right)\left(\mathrm{i}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}+\mathrm{Z}_{\mathrm{i} 2}\left(\mathrm{X}_{\mathrm{k}}\right) \phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}-\phi_{\mathrm{r}}^{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{\mathrm{i} 1}-\mathrm{c}_{\mathrm{r}}\right)_{\mathrm{k}}\left(\mathrm{Z}_{\mathrm{r}}^{\mathrm{i} 2}-\mathrm{d}_{\mathrm{r}}\right)_{\mathrm{k}}\right] \\
& =-\phi_{\mathrm{i}}^{\mathrm{k}}\left(\mathrm{~L}_{\mathrm{i}}\right)_{\mathrm{k}}
\end{aligned}
$$

Since $\left(\mathrm{L}_{\mathrm{ir}}\right)_{\mathrm{k}} \leq 0, \mathrm{r} \in \mathrm{T}_{1}^{\mathrm{k}} \quad \therefore \mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right)-\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right) \geq 0$.

This implies $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}^{1}\right) \geq \mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)$.

Thus, we get that X_{k}^{1} is an integer feasible solution of the problem (MIQPP) with objective function value higher than the value corresponding to X_{k}.

We have $\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}=\ell_{\mathrm{jk}} \forall \mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{1} \backslash\{\mathrm{r}\}$ and $\mathrm{x}_{\mathrm{jk}}=\mathrm{u}_{\mathrm{jk}} \forall \mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{2}$

$$
\begin{aligned}
& \therefore \quad\left(\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}-\ell_{\mathrm{jk}}\right)=0 \quad \forall \mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \backslash\{\mathrm{r}\} \text { and }\left(\mathrm{x}_{\mathrm{jk}}-\mathrm{u}_{\mathrm{jk}}\right)=0, \quad \forall \mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2} \\
& \therefore \quad \sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \backslash(\mathrm{r}\}}\left(\mathrm{x}_{\mathrm{jk}}-\ell_{\mathrm{jk}}\right)+\sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2}}\left(\mathrm{x}_{\mathrm{jk}}-\mathrm{u}_{\mathrm{jk}}\right)<1
\end{aligned}
$$

Hence, the integer feasible solution X_{k}^{1} lies in the open half space

$$
\sum_{\left.\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \mathrm{~V} \mid \mathrm{r}\right\}}\left(\mathrm{x}_{\mathrm{jk}}-\ell_{\mathrm{jk}}\right)+\sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2}}\left(\mathrm{x}_{\mathrm{jk}}-\mathrm{u}_{\mathrm{jk}}\right)<1 .
$$

As $\phi_{\mathrm{r}}^{\mathrm{k}}$ assumes all possible integral values, we will obtain all integer feasible solutions with values higher than X_{k}, and all these integer solutions will lie in the open half space

$$
\sum_{\left.\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \backslash \mid \mathrm{r}\right\}}\left(\mathrm{x}_{\mathrm{jk}}-\ell_{\mathrm{jk}}\right)+\sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2}}\left(\mathrm{x}_{\mathrm{jk}}-\mathrm{u}_{\mathrm{jk}}\right)<1 .
$$

Definition 1: Edge: An edge E_{r}^{k} for some $\{r\} \in N_{k}{ }^{1}$ incident at an integer feasible solution X_{k} is defined as

$$
E_{r}^{k}: \begin{cases}x_{t}=x_{t_{k}}-\phi_{r}^{k}\left(y_{t r}\right)_{k}, & t \in I_{k} \tag{23}\\ x_{t_{k}}=\left(\ell_{t_{k}}\right)+\phi_{r}^{k}, & \{r\} \in N_{k}^{1} \\ x_{j_{k}}=\ell_{j k}, & j \in N_{k}^{1} \backslash\{r\} \\ x_{j_{k}}=u_{j k}, & j \in N_{k}^{2}\end{cases}
$$

where
$0 \leq \phi_{\mathrm{r}}^{\mathrm{k}} \leq \operatorname{Min}\left\{\left(\mathrm{u}_{\mathrm{r}_{\mathrm{k}}}-\ell_{\mathrm{r}_{\mathrm{k}}}\right),\left(\frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\ell_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}}{\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}}:\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}>0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right),\left(\frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\mathrm{x}_{\mathrm{B}_{\mathrm{t}_{\mathrm{t}}}}^{\mathrm{k}}}{-\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}}:\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}<0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right),\right\}$

Definition 2: An edge E_{r}^{k}, for some $\{r\} \in N_{k}{ }^{2}$ incident at an integer feasible solution X_{k} is defined as

$$
E_{r}^{k}: \begin{cases}x_{t}=x_{t_{k}}+\phi_{r}^{k}\left(y_{t_{\mathrm{t}}}\right)_{\mathrm{k}}, & : t \in \mathrm{I}_{\mathrm{k}} \tag{25}\\ \mathrm{x}_{\mathrm{rk}}=\mathrm{u}_{\mathrm{rk}}-\phi_{\mathrm{r}}^{\mathrm{k}}, & :\{\mathrm{r}\} \in \mathrm{N}_{\mathrm{k}}^{2} \\ \mathrm{x}_{\mathrm{jk}}=\ell_{\mathrm{jk}}, & : \mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \\ \mathrm{x}_{\mathrm{jk}}=\mathrm{u}_{\mathrm{jk}}, & : \mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2} \backslash\{\mathrm{r}\}\end{cases}
$$

where

$$
\begin{equation*}
0 \leq \phi_{\mathrm{r}}^{\mathrm{k}} \leq \operatorname{Min}\left\{\left(\mathrm{u}_{\mathrm{r}_{\mathrm{k}}}-\ell_{\mathrm{r}_{\mathrm{k}}}\right),\left(\frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\ell_{\mathrm{B}_{\mathrm{t}}}^{k}}{-\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}}:\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}<0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right),\left(\frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}-\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}^{\mathrm{k}}}{\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}}:\left(\mathrm{y}_{\mathrm{t}_{\mathrm{j}}}\right)_{\mathrm{k}}>0, \mathrm{t} \in \mathrm{I}_{\mathrm{k}}\right)\right\} \tag{26}
\end{equation*}
$$

Theorem 3 [13]: Edge Truncating cut: An integer feasible solution of (MIQPP) not lying on an edge $E_{r}^{k},\{r\} \in T_{k}^{1}$ of the truncated region, through an integer point, say, X_{k}, lies in the closed half space

$$
\begin{equation*}
\sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{1} \backslash\{\mathrm{r}\}}\left(\mathrm{x}_{\mathrm{j}}-\ell_{\mathrm{j}}\right)+\sum_{\mathrm{j} \in \mathrm{~N}_{\mathrm{k}}^{2}}\left(\mathrm{u}_{\mathrm{j}}-\mathrm{x}_{\mathrm{j}}\right) \geq 1 \tag{27}
\end{equation*}
$$

Proposition 1: For $i \geq 1, k \geq 1$, all integer feasible solutions alternate to X_{k}, at each level depends on whether $\phi_{\mathrm{r}}^{\mathrm{k}}<1$ or $\phi_{\mathrm{r}}^{\mathrm{k}} \geq 1$.

Proof: Consider the objective function $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right), \mathrm{i} \geq 1$, at the i-th level. Let $\mathrm{X}_{\mathrm{k}}(\mathrm{k} \geq 1)$ be its k-th best integer feasible solution.

Let A_{j}^{k} denote the set of integer feasible solutions alternate to X_{k} on an edge $E_{J}{ }^{k}$. The alternate solution to X_{k} if it exists is obtained by moving along the edge E_{j}^{k} for some $j \in J_{1}^{k} \cup J_{2}^{k}$.

Suppose that for some $\mathrm{j} \in \mathrm{J}_{1}^{\mathrm{k}} \cup \mathrm{J}_{2}^{\mathrm{k}}, \mathrm{k} \geq 1, \phi_{\mathrm{r}}^{\mathrm{k}}<1$. Then, there are no eligible directions incident at the integer feasible solution X_{k}. Hence, there is no integer feasible solution on the edge E_{j}^{k}. This edge E_{j}^{k} is truncated by applying ETC. Let $\phi_{r}^{k} \geq 1$ for some $j \in J_{1}^{k} \cup J_{2}^{k}$. Since ϕ_{r}^{k} and $\phi_{r}^{k} y_{t_{r}}^{k}$ are integers for all $t \in I_{k}$, therefore, by moving on an edge $\mathrm{E}_{\mathrm{j}}^{\mathrm{k}}$, an alternate solution to X_{k} is obtained. After obtaining all integer feasible solutions on the edge E_{j}^{k}, this edge is truncated using ETC.

Thus, an optimal feasible solution for $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)(\mathrm{i} \geq 1, \mathrm{k} \geq 1)$ is obtained over the truncated region. It is either an integer feasible solution alternate to X_{k} or the next best integer solution X_{k+1} or a non-integer point. Therefore, by repeated application of ETC and the cut [13] whole feasible region for the integer solution at each level is scanned.

If after applying ETC's the solution at any level is infeasible, the problem (MIQPP) is infeasible. Thus, the process terminates.

Since the procedure for finding the integer solution moves from one extreme point to another which are finite in number, therefore, the procedure for finding the optimal solution to the problem (MIQPP) terminates in a fintie number of steps.

Algorithm for finding an optimal solution for Multi-level Integer Indefinite Quadratic Programming Problem with Bounded Variables

Consider the problem (MIQPP).

Step 1 : Set $\mathrm{i}=1, \mathrm{k}=1$ and $\mathrm{r}=1$.

Step 2 : Solve $Z_{i}\left(X_{k}\right)$. Let its optimal solution be $\left(X_{k}\right)_{i}^{r}$, where $\left(X_{k}\right)_{i}^{r}=\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n_{k}}^{k}\right)$. If $\left(X_{k}\right)_{i}^{r}$ is an integer solution, go to step 3 . Otherwise, apply the cut [13] to find the integer solution for $\mathrm{Z}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{k}}\right)$

Step 3 : Solve $Z_{i+1}\left(X_{k}\right)$. Let its optimal integer solution be $\left(\tilde{X}_{k}\right)_{i+1}^{r}$, where $\left(\tilde{X}_{k}\right)_{i+1}^{\mathrm{r}}=\left(\tilde{\mathrm{x}}_{1}^{\mathrm{k}}, \tilde{\mathrm{X}}_{2}^{\mathrm{k}}, \ldots ., \tilde{\mathrm{X}}_{\mathrm{n}_{\mathrm{k}}}^{\mathrm{k}}\right)$.

If $\left(x_{1}^{k}, x_{2}^{k}, \ldots ., x_{n_{k}}^{k}\right)=\left(\tilde{x}_{1}^{k}, \tilde{x}_{2}^{k}, \ldots ., \tilde{x}_{n_{k}}^{k}\right)$, go to step 5, or to step 8.

Otherwise, set $\mathrm{J}^{\mathrm{k}}=\left(\mathrm{J}_{1, \mathrm{r}}^{\mathrm{k}}\right)_{\mathrm{i}} \cup\left(\mathrm{J}_{2, \mathrm{r}}^{\mathrm{k}}\right)_{\mathrm{i}}$. Go to step 4.

Step 4 : If $J^{k}=\phi$, introduce the cut (I) into the optimal table of $\left(X_{k}\right)_{i}^{r}$. Go to step 7. If $\mathrm{J}^{\mathrm{k}} \neq \phi$, choose $\mathrm{j} \in \mathrm{J}^{\mathrm{k}}$ for which $\phi_{\mathrm{j}}^{\mathrm{k}} \geq 1$ and determine all the integer solutions along the edge E_{j}^{k}. Formulate the set $\left(A_{j}^{k}\right)_{i}^{r}$. Go to step 5.

If $\phi_{\mathrm{j}}^{\mathrm{k}}<1$, for $\mathrm{j} \in \mathrm{J}^{\mathrm{k}}$, choose any $\{\mathrm{j}\}$ and go to step 6.
Step 5 : Formulate the set $\left(A_{j}^{k}\right)_{i+1}^{r}$ If $\left(A_{j}^{k}\right)_{i}^{r} \cap\left(A_{j}^{k}\right)_{i+1}^{r} \neq \phi$, that is for some j, $\left(X_{j}^{k}\right)_{i}^{r}=\left(X_{j}^{k}\right)_{i+1}^{r}$, go to step 8. Otherwise, go to step 6. If $\left(A_{j}^{k}\right)_{i}^{r} \cap\left(A_{j}^{k}\right)_{i+1}^{r}=\phi$, go to step 8 .

Ritu Arora and S.R. Arora

Step 6 : Truncate the edge E_{j}^{k} by applying the cut

$$
\begin{aligned}
& \sum_{j \in N_{k}^{\prime}}\left(x_{j}-\ell_{j}\right)+\sum_{j \in N_{k}^{2}}\left(u_{j}-x_{j}\right) \geq 1 \\
& \text { or } \quad \sum_{j \in N_{k}^{\prime}}\left(x_{j}-\ell_{j}\right)+\sum_{j \in N_{k}^{2} \backslash(r)}\left(u_{j}-x_{j}\right) \geq 1 \quad\{j\} \in T_{k}^{1} \\
& \hline
\end{aligned}
$$

If the resulting problem is infeasible, go to step9. Otherwise, find an optimal feasible solution of this problem. Ser r $=r+1$. Go to step 2 .

Step 7 : If the problem so obtained is infeasible, go to step 9. Otherwise, set $r=r+1$. Go to step 2.

Step $8: \quad$ Set $\mathrm{i}=\mathrm{i}+1$. Go to step 2.
$\left(\mathrm{X}_{\mathrm{k}}\right)_{\mathrm{i}}^{\mathrm{r}}$ is an optimal solution for the problem (MIQPP).

Step 9 : (MIQPP) is infeasible.

Example : Consider the indefinite quadratic integer multi-level programming problem with bounded variables.
(TIQPP): $\quad \operatorname{Max}_{\mathrm{x}_{1}} \mathrm{Z}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\left(-\mathrm{x}_{1}+\mathrm{x}_{2}+5\right)\left(\mathrm{x}_{1}+2 \mathrm{x}_{2}+8\right)$

$$
\begin{aligned}
& \operatorname{Max}_{x_{2}, x_{3}} Z_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}+4\right)\left(x_{2}-2 x_{3}+x_{4}+5\right) \\
& \operatorname{Max}_{x_{4}} Z_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{3}+9\right)\left(2 x_{2}+2 x_{4}+9\right)
\end{aligned}
$$

Subject to

$$
\begin{aligned}
3 \mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{4} & \leq 12 \\
\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4} & \leq 14 \\
2 \mathrm{x}_{2}+5 \mathrm{x}_{3} & \leq 15
\end{aligned}
$$

where $1 \leq \mathrm{x}_{1} \leq 5,0 \leq \mathrm{x}_{2} \leq 3,1 \leq \mathrm{x}_{3} \leq 3,0 \leq \mathrm{x}_{4} \leq 1$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ are integers.

Solution: Consider the upper level problem w.r.t. the constraints

$$
\operatorname{Max}_{x_{1}} Z_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{1}+x_{2}+5\right)\left(x_{1}+2 x_{2}+8\right)
$$

subject to

$$
\begin{array}{ll}
3 x_{1}-2 x_{2}+x_{4}+x_{5} & =12 \\
x_{1}+x_{2}+x_{3}+x_{4}+x_{6} & =14 \\
2 x_{2}+5 x_{3}+x_{7} & =15
\end{array}
$$

where $1 \leq \mathrm{x}_{1} \leq 5,0 \leq \mathrm{x}_{2} \leq 3,1 \leq \mathrm{x}_{3} \leq 3,0 \leq \mathrm{x}_{4} \leq 1$
$0 \leq \mathrm{x}_{5} \leq \infty, 0 \leq \mathrm{x}_{6} \leq \infty, 0 \leq \mathrm{x}_{7} \leq \infty$.

At lower bound, we have $\mathrm{x}_{5}=9, \mathrm{x}_{6}=12, \mathrm{x}_{7}=10$.

				ℓ	ℓ	ℓ	ℓ			
			$\mathrm{c}_{\mathrm{j}} \rightarrow$	1	-1	0	0	0	0	0
			$\mathrm{d}_{\mathrm{j} \rightarrow}$	1	2	0	0	0	0	0
C_{B}	$\mathrm{D}_{\text {B }}$	V_{B}	X_{B}	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
0	0	x_{5}	9	3	-2	0	1	1	0	0
0	0	X_{6}	12	1	1	1	1	0	1	0
0	0	$\mathrm{x}_{7}=$	10	0	2	5	0	0	0	1
$\mathrm{Z}_{11}=-4$		$\mathrm{z}_{\mathrm{j}}^{11}-\mathrm{c}_{\mathrm{j}} \rightarrow$		-1	1	0	0	0	0	0
$\mathrm{Z}_{12}=9$		$\mathrm{z}_{\mathrm{j}}^{12}-\mathrm{d}_{\mathrm{j}} \rightarrow$		-1	-2	0	0	0	0	0
		$\mathrm{L}_{1 \mathrm{j}} \rightarrow$		-8	27	0	0	0	0	0

Here, $\theta_{1}=\min \left(\frac{9}{3}, \frac{12}{1}\right)=3, \theta_{2}=\min \left(\frac{12}{1}, \frac{10}{2}\right)=5$.

Entering variable : x_{2}

Departing criterion : $\Delta_{2}=\operatorname{Min}\left(\gamma_{1}, \gamma_{2}, \mathrm{u}_{2}-\ell_{2}\right)$.

Here, $\mathrm{u}_{2}-\ell_{2}=3-0=3$.

$$
\begin{aligned}
& \gamma_{1}=\operatorname{Min}\left(\frac{\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}-\ell_{\mathrm{B}_{\mathrm{t}}}}{y_{\mathrm{t}_{\mathrm{r}}}}: \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}>0\right)=\operatorname{Min}\left(\frac{12}{1}, \frac{10}{2}\right)=5 . \\
& \gamma_{2}=\operatorname{Min}\left(\frac{\mathrm{u}_{\mathrm{B}_{\mathrm{t}}}-\mathrm{x}_{\mathrm{B}_{\mathrm{t}}}}{-y_{\mathrm{t}_{\mathrm{r}}}}: \mathrm{y}_{\mathrm{t}_{\mathrm{r}}}<0\right)=\operatorname{Min}(\infty)=\infty . . \\
& \therefore \Delta_{2}=\operatorname{Min}(5, \infty, 3)=3 . \\
& \mathrm{x}_{2} \rightarrow \ell_{2}+\Delta_{2}=0+3=3 . .
\end{aligned}
$$

Corresponding change in the value of x_{i} 's is given by $X_{B}=b-y_{2} \Delta_{2}$

$$
\left[\begin{array}{l}
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
9 \\
12 \\
10
\end{array}\right]-3\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
15 \\
9 \\
4
\end{array}\right] .
$$

The optimal table for the upper level problem $\mathrm{Z}_{1}(\mathrm{X})$ is given by

				ℓ	u	ℓ	ℓ			
			$\mathrm{c}_{\mathrm{j}} \rightarrow$	1	-1	0	0	0	0	0
			$\mathrm{d}_{\mathrm{j} \rightarrow}$	1	2	0	0	0	0	0
$\mathrm{C}_{\text {B }}$	$\mathrm{D}_{\text {B }}$	$\mathrm{V}_{\text {B }}$	X_{B}	x_{1}	x_{2}	x_{3}	X_{4}	x_{5}	x_{6}	x_{7}
0	0	X_{5}	15	3	-2	0	1	1	0	0
0	0	X_{6}	9	1	1	1	1	0	1	0
0	0	x_{7}	4	0	2	5	0	0	0	1
$\mathrm{Z}_{11}=-7$		$\mathrm{z}_{\mathrm{j}}^{11}-\mathrm{c}_{\mathrm{j}} \rightarrow$		-1	1	0	0	0	0	0
$\mathrm{Z}_{12}=15$		$\mathrm{z}_{\mathrm{j}}^{12}-\mathrm{d}_{\mathrm{j}} \rightarrow$		-1	-2	0	0	0	0	0
		$\mathrm{L}_{1 \mathrm{j}} \rightarrow$		-13	33	0	0	0	0	0

Table (1)

Here, $\mathrm{L}_{1 \mathrm{j}} \leq 0$ for lower bounded non-basic variables and $\mathrm{L}_{1 \mathrm{j}} \geq 0$ for upper bounded non-basic variables.
\therefore optimal solution for $\mathrm{Z}_{1}(\mathrm{X})$ is $\left(\mathrm{X}_{1}\right)_{1}^{1}=(1,3,1,0)$.

Put $x_{1}^{1}=1$ in the lower level problem

$$
\operatorname{Max}_{x_{2}, x_{3}} Z_{2}(X)=\left(x_{1}+x_{2}+4\right)\left(x_{2}-2 x_{3}+x_{4}+5\right)
$$

subject to the constraints (28).
The problem reduces to

$$
\operatorname{Max}_{x_{2}, x_{3}} Z_{2}(X)=\left(x_{2}+5\right)\left(x_{2}-2 x_{3}+x_{4}+5\right)
$$

subject to

$$
\begin{align*}
-2 \mathrm{x}_{2}+\mathrm{x}_{4} & \leq 9 \\
\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4} & \leq 13 \tag{29}\\
2 \mathrm{x}_{2}+5 \mathrm{x}_{3} & \leq 15
\end{align*}
$$

where $0 \leq x_{2} \leq 3,1 \leq x_{3} \leq 3,0 \leq x_{4} \leq 1, x_{2}, x_{3}, x_{4}$ are integers.
Solving by the method, as explained above, the optimal table for $\mathrm{Z}_{2}(\mathrm{X})$ is given by

				u	ℓ	u			
			$\mathrm{c}_{\mathrm{j}} \rightarrow$	-1	0	0	0	0	0
			$\mathrm{d}_{\mathrm{j} \rightarrow}$	1	-2	1	0	0	0
C_{B}	$\mathrm{D}_{\text {B }}$	V_{B}	X_{B}	x_{2}	x_{3}	X_{4}	s_{1}	s_{2}	s_{3}
0	0	s_{1}	14	-2	0	1	1	0	0
0	0	S_{2}	8	1	1	1	0	1	0
0	0	S_{3}	4	2	5	0	0	0	1
$\mathrm{Z}_{21}=-8$		$\mathrm{z}_{\mathrm{j}}^{21}-\mathrm{c}_{\mathrm{j}} \rightarrow$		1	0	0	0	0	0
$\mathrm{Z}_{22}=7$		$\mathrm{z}_{\mathrm{j}}^{22}-\mathrm{d}_{\mathrm{j}} \rightarrow$		-1	2	-1	0	0	0
		$L_{2 j} \rightarrow$		17	-16	8	0	0	0

Table 2

The optimal solution for $Z_{2}(X)$ is $\left(X_{1}\right)_{2}^{1}=(1,3,1,1)$. We have $\left(X_{1}\right)_{1}^{1} \neq\left(X_{1}\right)_{2}^{1}$.

Consider $\mathbf{J}^{1}=\left(\mathbf{J}_{1,1}^{1}\right)_{1} \cup\left(\mathbf{J}_{2,1}^{1}\right)$., where

$$
\begin{aligned}
& \left(J_{1,1}^{1}\right)_{1}=\left\{j: j \in N_{k}^{1}:\left(L_{i j}\right)_{1}=0\right\}=\{3,4\} \\
& \left(J_{2,1}^{1}\right)_{2}=\left\{j: j \in N_{k}^{2}:\left(L_{i j}\right)_{1}=0\right\}=\phi \\
\therefore \quad & J^{1}=\{3,4\} \neq \phi .
\end{aligned}
$$

Therefore, an alternate feasible solution exists corresponding to $\left(\mathrm{X}_{1}\right)_{1}^{1}$.

Take $\mathbf{j}=3$.
Using (24), we have $0 \leq \phi_{3}^{1} \leq \operatorname{Min}\left(2, \frac{9}{1}, \frac{4}{5}\right)$.

$$
\therefore 0 \leq \phi_{3}^{1} \leq \frac{4}{5}<1 .
$$

Since ϕ_{3}^{1} has to be an integer, \therefore no alternate integer solution exists on this edge, i.e., $\left(\mathrm{A}_{\mathrm{j}}^{1}\right)_{1}^{\mathrm{r}}=\phi$.

Apply the cut (I) $\sum_{j \in N_{k}^{N} \backslash(\mathrm{r})}\left(\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}-\ell_{\mathrm{j}_{\mathrm{k}}}\right)+\sum_{\mathrm{j} \in \mathrm{N}_{\mathrm{k}}^{2}}\left(\mathrm{u}_{\mathrm{j}_{\mathrm{k}}}-\mathrm{x}_{\mathrm{j}_{\mathrm{k}}}\right) \geq 1$
$\Rightarrow \quad\left(\mathrm{x}_{1}-1\right)+\left(\mathrm{x}_{4}-0\right)+\left(3-\mathrm{x}_{2}\right) \geq 1$
or $\quad-\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{4} \leq 1$.

Introduce the cut in Table (1) and the solve as above, the optimal table is given by

				ℓ	u	ℓ					ℓ
			$\mathrm{c}_{\mathrm{j}} \rightarrow$	1	-1	0	0	0	0	0	0
			$\mathrm{d}_{\mathrm{j} \rightarrow}$	1	2	0	0	0	0	0	0
C_{B}	D_{B}	$\mathrm{V}_{\text {B }}$	X_{B}	x_{1}	X_{2}	x_{3}	X_{4}	x_{5}	x_{6}	x_{7}	x_{8}
0	0	X_{5}	14	2	-1	0	0	1	0	0	1
0	0	x_{6}	8	0	2	1	0	0	1	0	1
0	0	x_{7}	4	0	2	5	0	0	0	1	0
0	0	X_{4}	1	-1	0	1	0	0	0	0	-1
$\mathrm{Z}_{11}=-7$		$\mathrm{z}_{\mathrm{j}}^{11}-\mathrm{c}_{\mathrm{j}} \rightarrow$		-1	1	0	0	0	0	0	0
$\mathrm{Z}_{12}=15$		$\mathrm{z}_{\mathrm{j}}^{12}-\mathrm{d}_{\mathrm{j}} \rightarrow$		-1	2	0	0	0	0	0	0
		$\mathrm{L}_{\mathrm{lj}} \rightarrow$		-13	33	0	0	0	0	0	0

Table 3

We have $\left(X_{1}\right)_{1}^{2}=(1,3,1,1)$.

Proceeding, we get corresponding to $\left(\mathrm{X}_{1}\right)_{1}^{2}, \quad\left(\mathrm{X}_{1}\right)_{2}^{2}=(1,3,1,1)$. and $\left(X_{1}\right)_{3}^{1}=(1,3,1,1)$.

Now, take $\mathbf{j}=4$.
Using (24), we have $0 \leq \phi_{4}^{1} \leq \min \left(1, \frac{15}{1}, \frac{9}{1}\right)$
$\therefore 0 \leq \phi_{4}^{1} \leq 1$

Since ϕ_{4}^{1} has to be an integer $\therefore \phi_{4}^{1}=1$.

Using (23), the solution so obtained is

$$
\left(X_{2}\right)_{1}^{2}=\left\{\begin{array}{l}
x_{5}=14, x_{6}=8, x_{7}=4 \\
x_{4}=1 \\
x_{1}=1, x_{3}=1 \\
x_{2}=3
\end{array}\right.
$$

That is, $\left(X_{2}\right)_{1}^{2}=(1,3,1,11)$.

Put $\mathrm{x}_{2}^{1}=1$ in $\mathrm{Z}_{2}(\mathrm{X})$, the solution is $\left(\mathrm{X}_{2}\right)_{2}^{2}=(1,3,1,1)$.
\therefore we have $\left(\mathrm{X}_{2}\right)_{1}^{2}=\left(\mathrm{X}_{2}\right)_{2}^{2}$.

Put $x_{2}^{1}=1$ and $x_{2}^{2}=3$ in $Z_{3}(X)=\left(x_{1}-x_{3}+9\right)\left(2 x_{2}+2 x_{4}+9\right)$ subject to the constraints (28).

The optimal solution for $Z_{3}(X)$ is $\left(X_{1}\right)_{3}^{2}=(1,3,1,1)$.

The observations for the above example have been summarized in Table 4.

$\left(\mathrm{X}_{\mathrm{k}}\right)_{1}^{\text {r }}$	$\left(\mathrm{X}_{\mathrm{k}}\right)_{2}^{\text {r }}$	$\left(\mathrm{X}_{\mathrm{k}}\right)_{3}^{\text {r }}$	$\mathrm{Z}_{1}\left(\mathrm{X}_{\mathrm{k}}\right)$	$\mathrm{Z}_{2}\left(\mathrm{X}_{\mathrm{k}}\right)$	$\mathrm{Z}_{3}\left(\mathrm{X}_{\mathrm{k}}\right)$	(TIQPP)
$\left(\mathrm{X}_{1}\right)_{1}^{1}=(1,3,1,0)$	$\left(\mathrm{X}_{1}\right)_{2}^{1}=(1,3,1,1)$	$\left(\mathrm{X}_{1}\right)_{3}^{1}=(1,3,1,1)$	105	56	153	$\left(\mathrm{X}_{1}\right)_{1}^{1}=(1,3,1,0) \notin \mathbb{R}$
	$\left(\mathrm{X}_{2}\right)_{2}^{1}=(1,0,1,0)$	$\left(X_{2}\right)_{3}^{1}=(1,0,1,1)$	105	15	99	
	$\left(X_{3}\right)_{2}^{1}=(1,0,0,0)$	$\left(\mathrm{X}_{3}\right)_{3}^{1}=(1,0,0,1)$	105	25	110	
	$\left(\mathrm{X}_{4}\right)_{2}^{1}=(1,3,1,0)$	$\left(\mathrm{X}_{4}\right)_{2}^{1}=(1,3,1,1)$	105	48	153	
$\left(\mathrm{X}_{1}\right)_{1}^{2}=(1,3,1,1)$	$\left(\mathrm{X}_{1}\right)_{2}^{2}=(1,3,1,1)$	$\left(\mathrm{X}_{1}\right)_{3}^{1}=(1,3,1,1)$	105	56	153	$\left(\mathrm{X}_{1}\right)_{1}^{2}=(1,3,1,1) \in \mathbb{R}$
$\left(\mathrm{X}_{2}\right)_{1}^{3}=(5,3,1,0)$	$\left(\mathrm{X}_{2}\right)_{2}^{3}=(5,0,1,3)$	cannot proceed since $\mathrm{x}_{4}=3$ is not possible.				$\left(\mathrm{X}_{2}\right)_{1}^{3}=(5,3,1,0) \notin \mathrm{R}$
$\left(X_{3}\right)_{1}^{4}=(1,0,1,0)$	$\left(X_{3}\right)_{2}^{4}=(1,3,1,1)$	$\left(X_{3}\right)_{3}^{4}=(1,3,1,1)$	36	56	153	$\left(\mathrm{X}_{3}\right)_{1}^{4}=(1,0,1,0) \notin \mathbb{R}$
$\left(\mathrm{X}_{2}\right)_{1}^{2}=(1,3,1,1)$	$\left(\mathrm{X}_{2}\right)_{2}^{2}=(1,3,1,1)$	$\left(X_{3}\right)_{3}^{2}=(1,3,1,1)$	105	56	153	$\left(\mathrm{X}_{2}\right)_{1}^{2}=(1,3,1,1) \in \mathrm{IR}$

Table 4

From above table, we conclude that the optimal solution for the problem (TIQPP) is $(1,3,1,1)$.

Conclusions: The proposed algorithm scans the feasible region for the integral points. This is done using Gomory like cut and the edge truncating cut. The
edge truncating cut removes the larger portion of the feasible region which contains no integer feasible solution. The algorithm scans the edges in such a manner that the edges once removed cannot reappear.

References

1. Baker, R. And Swartz, C.L.E (2008)," Interior point solution of multilevel quadratic programming problems in constrained model predictive control applications", Industrial and Engineering Chemistry Research, 47(1), 81-91.
2. Bard, J.F. (1984), "An investigation of the Linear Three- Level Programming Problem", IEEE Trans. Systems Man and Cybernatics, 14(5), 711-717.
3. Candler, W. And Norton, R. (1977), "Multilevel Programming", Technical report 20, World Bank and Development Research Centre, Washington, D.C.
4. Chen, Jieqiu and Burer, Samuel (2012), "Globally solving non-convex quadratic programming problems via completely positive programming", Math. Prog. Comp. 4, 33-52.
5. Emam, O.E. ; Araby, M.El and Belal, M.A. (2015), "On rough multilevel linear programming problem", Information Science Letters, An International Journal 4, No. 1, 41-49.
6. Emam, O.E., Abdo, A. And Ibrahim, N.H. (2014), " Solving a multilevel large scale fractional programming problem under uncertainty", International Journal of Mathematical Archive, Vol. 5, No. 2.
7. Huang, Quing Dao; L, Xian Rui and Wang, Guo Ming (2002), "A dual simplex method for linear programming with bounded variables", J. Jilin Uiv. Sci. 40, No.1, 40-47.
8. Lasunon, P. And Remsungnen, T. (2011), "A new method for solving Tri-level Linear Programming Problems", International Journal of Pure and Applied Sciences and Technology, 7(2), 149-157.
9. Lev, B. And Soyster, A.L. (1978), "Integer programming with bounded variables via canonical separation", J. Oper. Res. Soc. 29, No.5, 477488.
10. Liu, Baoding and Yao, Kai (2014), "Uncertain multilevel programming: Algorithm and Applications", Computers and Industrial Engineering, online.
11. Ma, Zhong Fan(1982), "A modified dual simplex method for linear programming with bounded variables", Act, Math. Appl. Sinica, 5, No. 1, 106-112.
12. Migdalas, A., Pardalos, M. Panos and Varbrand, Peter (1997), "Multilevel optimization: Algorithms and Applications", Non- convex optimization and its Applications.
13. Narang, Ritu and Arora, S.R.(2009), "Indefinite quadratic integer bilevel programming problem with bounded variables", Opsearch, 46, 428-448.
14. P.Faisca, Nuno; Dua, Vivek; Rustem, Berc; M. Saraiva, Pedro; N. Pistikopoulos, Efstratios(2009), "A multi- parametric programming approach for multilevel hierarchical and decentralised optimization problems", Computational Management Science, Vol. 6, No. 4, 377397.
15. Przybylski, Anthony; Gandibleux, Xavier and Ehrgott, Matthias (2010), "A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives", Discrete Optimization, Vol. 7, Issue 3, 149-165.
16. Sultan, T.I., Emam, O.E. and Abohany, A.A. (2014), "A decomposition algorithm for solving a Three Level large scale linear programming problem", Applied Mathematics and Information Sciences, An International Journal, 8, No. 5, 2217-2223.
17. Xu Chang(1998), "A linear fractional programming problem with bounded variables", J. Qingdao, Univ. New Sci. Ed. 11, No.2, 6-10.
