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An Adaptive Conic Cubic Overestimation Method for
Unconstrained Optimization

Lijuan Zhao

Abstract

In this paper, we propose an Adaptive Conic Cubic Overestimation (ACCO)
method for unconstrained optimization. ACCO model not only is an extension
of conic model which was first proposed by Davidon and Sorensen, but also
is a generalization of Adaptive Cubic Overestimation (ACO) model which was
initialed by Cartis, Gould and Toint. Global convergence to first order critical
point and local linear convergence are proved under some mild conditions. Fur-
thermore, the worst case global iteration complexity of the ACCO method is
analyzed in this paper.

Key words. adaptive conic cubic overestimation model, adaptive cubic overestima-
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1. Introduction

In this paper, we consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f(x) : Rn → R is a continuously differentiable function.
After the two kinds of globalization method: trust region method (see [1, 2, 3,

4, 5, 6, 7, 9, 10, 11, 17, 18]) and line search method (see [8, 12, 13, 14, 15, 16])
for problem (1.1). An Adaptive Cubic Overestimation (short for ACO) method
has been proposed in [19] as an alternative globalization method for problem (1.1).

Assume the HessianH(xk)
def
= ∇2f(xk) of the objective function is globally Lipschitz

continuous, the Lipschitz constant is L, then

f(xk + s) ≤ f(xk) + g(xk)
T s+

1

2
sTH(xk)s+

L

6
∥s∥3 def

= mc
k(s), ∀s ∈ Rn. (1.2)

In [20], Cartis et al don’t insist on the Lipschitz continuous condition of H(x),
they replaced the Hessian H(xk) by a symmetric approximation matrix Bk on each
iteration, instead of (1.2), they proposed a more general ACO model as follows

mk(s)
def
= f(xk) + g(xk)

T s+
1

2
sTBks+

σk
3
∥s∥3, (1.3)
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where σk is a dynamic positive parameter adjusted by trust region method. It can
be regarded as the reciprocal of the trust region radius. It also relaxes the need
of computing a global minimizer of cubic model and the availability of Lipschitz
constant. The cubic overestimation model is first introduced by Nesterov and Polyak
in [21] for Newton’s method with a provable better global complexity bound. ACO
method retains the excellent convergence properties and the worst-case iteration
complexity bound. Recently, many authors have done some work on this field, see
[29, 30, 31, 32, 33] etc.

Note that the first three items of (1.3) forms a quadratic model. It is well-
known that conic model which was first proposed by Davidon and Sorensen (see
[22, 23]) is an extension of quadratic model, and has some advantages compared
with quadratic model. Firstly, if the objective function has strong non-quadratic
behavior or it’s curvature changes severely, the quadratic model often produces a
poor prediction of the minimizer of the function. In this case, the conic model
approximates the objective function value better than the quadratic model, because
it has more freedom in the model. Secondly, the quadratic model does not take
into account the information concerning the function values and gradient values in
the previous iterations which is useful for algorithms. However, for unconstrained
optimization, the conic model possesses richer interpolation information and satisfies
four interpolation conditions of the function values and gradient values at the current
and the previous point. Using the conic model may improve the performance of the
algorithms. Thirdly, the initial and limited numerical results show that the conic
model method gives an improvement over the quadratic model method. Finally, the
conic model method has the similar global and local convergence properties as the
quadratic model. Since 1980s, a lot of scholars have been taking great interest in
conic model and extended it to constrained optimization, see [5, 24, 25, 26, 27, 28]
etc.

In this paper, we propose an Adaptive Conic Cubic Overestimation (short for
ACCO) model for unconstrained problem (1.1) as follows

ck(s)
def
= f(xk) +

g(xk)
T s

1 + hTk s
+

sTBks

2(1 + hTk s)
2
+

σk
3
∥s∥3, (1.4)

where hk ∈ Rn is a horizontal vector. When hk = 0, an ACCO model is an ACO
model; When hk = 0 and σk = 0, an ACCO model is a quadratic model. So we can
regard an ACCO model not only as an extension of an ACO model, but also is a
generalization of a quadratic model. Because an ACCO model incorporates more
information which is useful for algorithms, we believe an ACCO model outperforms
an ACO model and a quadratic model.

The paper is organized as follows. In Section 2, we give our ACCO method
and algorithm for unconstrained optimization. Section 3 discusses the optimality
conditions of the ACCO model. Section 4 shows the global convergence of ACCO
algorithm to first order critical point and local linear convergence under some mild
conditions. The global iteration complexity is given in Section 5. Section 6 con-
cludes.

Notation: ∥ · ∥ is Euclidean norm.

2. Adaptive Conic Cubic Overestimation Method and Algorithm

We consider the following adaptive conic cubic overestimation model of f(x)
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around xk+1

c(xk+1 + s) = f(xk+1) +
gTk+1s

1 + hTk+1s
+

sTBk+1s

2(1 + hTk+1s)
2
+

σk+1

3
∥s∥3, (2.1)

where gk+1
def
= ∇f(xk+1) is the gradient of the objective function at xk+1, Bk+1

is a n × n symmetric matrix, which is the Hessian of the objective function or it’s
approximation. The adaptive conic cubic overestimation model c(xk+1 + s) should
satisfy the following interpolation conditions

c(xk+1) = f(xk+1), ∇c(xk+1) = gk+1, (2.2)

c(xk) = f(xk), ∇c(xk) = gk. (2.3)

The gradient of c(xk+1 + s) about s is

∇c(xk+1 + s) =
1

1 + hTk+1s

(
I − hk+1s

T

1 + hTk+1s

)(
gk+1 +

Bk+1s

1 + hTk+1s

)
+ σk+1∥s∥s. (2.4)

Set sk = xk+1 − xk. The first interpolation condition in (2.3) leads to

f(xk) = f(xk+1)−
gTk+1sk

1− hTk+1sk
+

sTkBk+1sk
2(1− hTk+1sk)

2
+

σk+1

3
∥sk∥3. (2.5)

Set γk = 1− hTk+1sk, then we get

2[3(f(xk+1)− f(xk)) + σk+1∥sk∥3]γ2k − 6(gTk+1sk)γk + 3sTkBk+1sk = 0. (2.6)

The second interpolation condition in (2.3) leads to

1

1− hTk+1sk

(
I +

hk+1s
T
k

1− hTk+1sk

)(
gk+1 −

Bk+1sk
1− hTk+1sk

)
− σk+1∥sk∥sk = gk, (2.7)

thus we get that

Bk+1sk = γkgk+1 − γ2k

(
I +

hk+1s
T
k

γk

)−1
(gk + σk+1∥sk∥sk)

= γkgk+1 − γ2k(I − hk+1s
T
k )(gk + σk+1∥sk∥sk)

= γkgk+1 − γ2k(gk + σk+1∥sk∥sk − sTk gkhk+1 − σk+1∥sk∥3hk+1)
def
= yk (2.8)

where, usually, Bk+1 is usually updated by BFGS formula

Bk+1 = Bk +
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBksk
(2.9)

and yk = γkgk+1−γ2k(gk+σk+1∥sk∥sk−sTk gkhk+1−σk+1∥sk∥3hk+1). If B0 is positive
definite, the BFGS updating formula keeps the positive definiteness of Bk. From
(2.8), we obtain

sTkBk+1sk = γks
T
k gk+1 − γ2k(s

T
k gk + σk+1∥sk∥3 − sTk gks

T
k hk+1 − σk+1∥sk∥3sTk hk+1).

(2.10)
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Combining (2.6) and (2.10) yields that

3(σk+1∥sk∥3+sTk gk)γ
2
k−2[3(f(xk+1)−f(xk))+σk+1∥sk∥3]γk+3gTk+1sk = 0, (2.11)

which is a quadratic equation about γk. The equality (2.11) has real roots if and
only if

ρ = [3(f(xk+1)− f(xk)) + σk+1∥sk∥3]2 − 9(σk+1∥sk∥3 + sTk gk)g
T
k+1sk ≥ 0. (2.12)

Taking ρ :=
√
ρ gives

γk =
σk+1∥sk∥3 + 3(f(xk+1)− f(xk))− ρ

3(σk+1∥sk∥3 + sTk gk)
(2.13)

=
9(σk+1∥sk∥3 + sTk gk)g

T
k+1sk

σk+1∥sk∥3 + 3(f(xk+1)− f(xk)) + ρ
. (2.14)

Some special cases satisfying γk = 1− hTk+1sk are

hk+1 =
1− γk
gTk sk

gk, (2.15)

hk+1 =
1− γk
sTk sk

sk, (2.16)

hk+1 = (1− γk)
[ βgk
gTk sk

+
(1− β)sk

sTk sk

]
, ∀β ∈ R. (2.17)

Next, we formally state our Adaptive Conic Cubic Overestimation method (ab-
breviated as ACCO) as follows.

Algorithm 2.1 {ACCO}

Step 0. Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, σ0 > 0, ϵ > 0, B0 > 0. Set
k := 0, compute g0 = ∇f(x0), f(x0).

Step 1. If ∥gk∥ < ϵ, stop with approximate solution xk.

Step 2. Solve ck(s) inaccurately so that the step sk satisfies

ck(sk) ≤ ck(s
C
k ), (2.18)

where the Cauchy point

sCk = −αC
k gk, and αC

k = arg min
α∈R+

ck(−αgk). (2.19)

Step 3. Calculate ρk = f(xk)−f(xk+sk)
ck(0)−ck(sk)

. If ρk ≥ η1, then xk+1 = xk + sk.

Otherwise, set xk+1 = xk.

Step 4. Set

σk+1 ∈


(0, σk] if ρk > η2; [very successful iteration]
[σk, γ1σk] if η1 ≤ ρk ≤ η2; [successful iteration]
[γ1σk, γ2σk] otherwise. [unsuccessful iteration]
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Step 5. Compute f(xk+1) and gk+1. Set

ρk = [3(f(xk+1)− f(xk)) + σk+1∥sk∥3]2 − 9(σk+1∥sk∥3

+sTk gk)g
T
k+1sk. (2.20)

γk =
σk+1∥sk∥3 + 3(f(xk+1)− f(xk))−

√
ρk

3(σk+1∥sk∥3 + sTk gk)
(2.21)

=
9(σk+1∥sk∥3 + sTk gk)g

T
k+1sk

σk+1∥sk∥3 + 3(f(xk+1)− f(xk)) +
√
ρk

. (2.22)

yk = γkgk+1 − γ2k(gk + σk+1∥sk∥sk − sTk gkhk+1 − σk+1∥sk∥3hk+1).
(2.23)

hk+1 = (1− γk)
[ βgk
gTk sk

+
(1− β)sk

sTk sk

]
, ∀β ∈ R. (2.24)

Update Bk to obtain Bk+1 by BFGS formula, or symmetric-Broyden
formula, or symmetric rank-one formula. Set k := k+1, go to Step
1.

Remark:

(1). In Algorithm 2.1, σk is a dynamic positive parameter that may be regarded
as the reciprocal of the trust region radius. It relaxes the need of computing
a global minimizer of cubic model and the availability of Lipschitz constant.

(2). For the global convergence and iteration complexity analysis, we assume that
there exist two positive constants 0 < c1 <

1
2 and c2 > 1 such that

c1 ≤ 1 + hTk s ≤ c2, ∀s ∈ Rn. (2.25)

The constants c1 has two purposes: the first one is to prevent the denominator
1+hTk s from being too small such that the model function might be unbounded.
The second one is the need of the global convergence analysis and iteration
complexity analysis. Perhaps there are some constants c2 satisfying 0 < c2 < 1,
for the convenience of analysis, we choose a larger c2 such that c2 > 1.

(3). For the complexity analysis, we require that there exists a constant hmax > 0
such that

∥hk∥ ≤ hmax, ∀k. (2.26)

3. Optimality conditions for the Adaptive Conic Cubic Overestima-
tion Method

Define the adaptive conic cubic overestimation model as follows

c(s) = f +
gT s

1 + hT s
+

sTBs

2(1 + hT s)2
+

σ

3
∥s∥3. (3.1)

The following lemma gives the optimality conditions of adaptive conic cubic
overestimation model, which is an extension of Lemma 1 in [24] and theorem 3.1 in
[19]. For simplicity, we drop the subscript.
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Lemma 3.1 The gradient of the function expressed by (3.1) is

∇c(s) =
1

ν2
(I + hsT )−1(νg +Bs) + λs (3.2)

=
1

ν

(
I − hsT

ν

)(
g +

Bs

ν

)
+ λs (3.3)

=
1

ν3
(νI − hsT )(νg +Bs) + λs, (3.4)

where ν = 1+hT s, λ = σ∥s∥. This gradient vanishes at s∗, i.e., s∗ is a critical point
of c(s), if and only if

(B + ν2∗λ∗I + ghT + ν2∗λ∗hs
T
∗ )s∗ = −g. (3.5)

The value of c(s) is the same at all critical points s∗ and equals

c(s∗) = f +
gT s∗ − ν2∗λ∗∥s∗∥2

2ν∗
+

σ

3
∥s∗∥3 (3.6)

= f − sT∗ Bs∗ + 2ν3∗λ∗∥s∗∥2

2ν2∗
+

σ

3
∥s∗∥3, (3.7)

where ν∗ = 1 + hT s∗, λ∗ = σ∥s∗∥. The Hessian of c(s) at s∗ is

1

ν2∗
(B + hgT + ghT + 2(f − c(s∗))hh

T ) + λ∗I + λ∗
( s∗
∥s∗∥

)( s∗
∥s∗∥

)T
=

1

ν2∗
(I + hsT∗ )

−1B(I + s∗h
T )−1 + λ∗I + λ∗

( s∗
∥s∗∥

)( s∗
∥s∗∥

)T
=

1

ν4∗
(ν∗I − hsT∗ )B(ν∗I − s∗h

T ) + λ∗I + λ∗
( s∗
∥s∗∥

)( s∗
∥s∗∥

)T
.

A critical point is a global minimizer if and only if B ≥ 0 (positive semidefinite), it
is unique if and only if B > 0 (positive definite).

4. Convergence analysis

In this section, we will discuss the convergence properties of Algorithm 2.1. The
following assumptions are required.
Assumption 4.1

A1. f(x) : Rn → R is twice continuously differentiable and bounded below by flow.

A2. There exists a positive constant kB such that ∥Bk∥ ≤ kB.

A3. g(x) is Lipschitz continuous, i.e.,

∥g(x)− g(y)∥ ≤ kH∥x− y∥, ∀x, y ∈ Rn, and some kH ≥ 1.
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Assumption A1 implies that there exists a constant c3 > 0 such that

∥g(x)∥ ≤ c3. (4.1)

The next lemma shows that the adaptive conic cubic overestimation model ck(s)
descends sufficiently, and gives a lower bound of the decrease of the model function
ck(s).

Lemma 4.1 Suppose that sk satisfies the conditions (2.18)–(2.19). Then for all
k ≥ 0, we have that

ck(0)− ck(sk) ≥ ck(0)− ck(s
C
k ) ≥

∥gk∥
3(
√
2 + 1)c22

min
{c21∥gk∥

∥Bk∥
,
1

2

√
c2∥gk∥
σk

}
. (4.2)

Proof. From (2.25), we know

c1 ≤ 1− αhTk gk ≤ c2, ∀α > 0. (4.3)

Then

ck(s
C
k )− ck(0) ≤ ck(−αgk)− ck(0)

=
−α∥gk∥2

1− αhTk gk
+

α2gTk Bkgk
2(1− αhTk gk)

2
+

α3σk
3

∥gk∥3

≤ α∥gk∥2
(
− 1

1− αhTk gk
+

α∥Bk∥
2(1− αhTk gk)

2
+

α2σk
3

∥gk∥
)

≤ α∥gk∥2
(
− 1

c2
+

α∥Bk∥
2c21

+
α2σk
3

∥gk∥
)
. (4.4)

So ck(s
C
k ) ≤ ck(0) if and only if

− 1

c2
+

α∥Bk∥
2c21

+
α2σk
3

∥gk∥ ≤ 0 and α > 0. (4.5)

So α ∈ [0, αk], where αk = 3
2σk∥gk∥

(
− ∥Bk∥

2c21
+

√
∥Bk∥2
4c41

+ 4σk∥gk∥
3c2

)
. By rationalizing

the numerators of αk, we have

αk =
2

c2

(∥Bk∥
2c21

+

√
∥Bk∥2
4c41

+
4σk∥gk∥

3c2

)−1
.

Define θk =
[

c2√
2−1

max
{
∥Bk∥
c21

,
2
√

σk∥gk∥√
c2

}]−1
, it follows that

√
∥Bk∥2
4c41

+
4σk∥gk∥

3c2
≤ ∥Bk∥

2c21
+

2
√
σk∥gk∥√
3c2

≤ 2max
{∥Bk∥

2c21
,
2
√
σk∥gk∥√
3c2

}
≤

√
2max

{∥Bk∥
c21

,
2
√
σk∥gk∥√
c2

}
(4.6)
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by using of
√
a+ b ≤

√
a+

√
b (a, b > 0). Noticing

∥Bk∥
2c21

≤ max
{∥Bk∥

c21
,
2
√
σk∥gk∥√
c2

}
. (4.7)

Combining (4.6) and (4.7) yields that

(∥Bk∥
2c21

+

√
∥Bk∥2
4c41

+
4σk∥gk∥

3c2

)−1
≥ 1√

2 + 1

(
max

{∥Bk∥
c21

,
2
√
σk∥gk∥√
c2

})−1
,

so we can easily get that αk ≥ θk ≥ 0. From (4.4), we obtain

ck(s
C
k )− ck(0) ≤ θk∥gk∥2

(
− 1

c2
+

θk∥Bk∥
2c21

+
θ2kσk∥gk∥

3

)
. (4.8)

In view of

θk∥Bk∥ =
(
√
2− 1)∥Bk∥

c2max
{
∥Bk∥
c21

,
2
√

σk∥gk∥√
c2

} ≤ c21
c2
, (4.9)

θ2kσk∥gk∥ =
σk∥gk∥

( c2√
2−1

)2
[
max

{
∥Bk∥
c21

,
2
√

σk∥gk∥√
c2

}]2
≤ σk∥gk∥

c22
2 max

{
∥Bk∥2
c41

, 4σk∥gk∥
c2

}
≤ 1

2c2
. (4.10)

So ck(s
C
k )− ck(0) ≤ − 1

3c2
θk∥gk∥2, thus

ck(0)− ck(s
C
k ) ≥

∥gk∥
3(
√
2 + 1)c22

min
{c21∥gk∥

∥Bk∥
,
1

2

√
c2∥gk∥
σk

}
.

From (2.18), we know that

ck(0)− ck(sk) ≥ ck(0)− ck(s
C
k ) ≥

∥gk∥
3(
√
2 + 1)c22

min
{c21∥gk∥

∥Bk∥
,
1

2

√
c2∥gk∥
σk

}
. (4.11)

2

The following lemma gives an upper bound of the norm of step sk, which is an
extension of Lemma 2.2 in [19].

Lemma 4.2 Suppose that sk satisfies the conditions (2.18)–(2.19). Then

∥sk∥ ≤ 3

σk
max

{∥Bk∥
c22

,

√
σk∥gk∥

c2

}
. (4.12)
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Proof. From (2.25) and Cauchy-Schwarz inequality, we obtain

ck(sk)− ck(0) =
gTk sk

1 + hTk sk
+

sTkBksk
2(1 + hTk sk)

2
+

σk
3
∥sk∥3

≥ −∥sk∥∥gk∥
c2

− ∥Bk∥∥sk∥2

2c22
+

σk
3
∥sk∥3

≥
(2
9
σk∥sk∥3 −

∥Bk∥∥sk∥2

2c22

)
+

(1
9
σk∥sk∥3 −

∥sk∥∥gk∥
c2

)
When ∥sk∥ ≥ 3

σk
max

{
∥Bk∥
c22

,
√

σk∥gk∥
c2

}
, we have

2

9
σk∥sk∥3 −

∥Bk∥∥sk∥2

2c22
≥ 0,

1

9
σk∥sk∥3 −

∥sk∥∥gk∥
c2

≥ 0.

So ck(sk) ≥ ck(0). However, from Lemma 4.1, we obtain ck(sk) ≤ ck(0), so

∥sk∥ ≤ 3

σk
max

{∥Bk∥
c22

,

√
σk∥gk∥

c2

}
.

We complete the proof. 2

The next lemma shows that under some conditions, the iterate becomes very
successful, which is an extension of Lemma 2.3 in [19].

Lemma 4.3 Suppose that Assumptions A2 and A3 hold, and that there exists a

constant ϵ > 0 such that ∥gk∥ ≥ ϵ, and lim
k→∞

√
∥gk∥
σk

= 0. Then for sufficiently large

k, the k-th iteration is very successful, i.e., ρk > η2, σk+1 ≤ σk.

Proof.
√

σk∥gk∥
c2

= ∥gk∥
√

σk
c2∥gk∥ ≥ ϵ√

c2

√
σk
∥gk∥ → ∞, so Lemma 4.2 yields that

∥sk∥ ≤ 3
√

∥gk∥
c2σk

, thus ∥sk∥ → 0 (k → ∞). In order to show that the k-th iteration

is very successful, i.e., ρk ≥ η2, we need to prove f(xk)−f(xk+sk)
ck(0)−ck(sk)

> η2. From Lemma

4.1, we have ck(0) > ck(sk). That is to say, we need to show f(xk + sk)− ck(sk) +
(1−η2)(ck(sk)−ck(0)) < 0. Define rk = f(xk+sk)−ck(sk)+(1−η2)(ck(sk)−ck(0)).
Next, we prove that rk < 0. From Lemma 4.2, we have

f(xk + sk)− ck(sk) = g(ξk)
T sk −

gTk sk
1 + hTk sk

− sTkBksk
2(1 + hTk sk)

2
− σk

3
∥sk∥3

≤ 1

c1

(
∥g(ξk)− gk∥∥sk∥+ ∥g(ξk)∥∥sk∥|hTk sk|+

kB∥sk∥2

2c1

)
≤ 3

c1

[
∥g(ξk)− gk∥+ c3max{|c1 − 1|, |c2 − 1|}

+
3kB
2c1

√
∥gk∥
c2σk

]√∥gk∥
c2σk

, (4.13)

where ξk lies on the segment [xk, xk + sk]. Lemma 4.1 and lim
k→∞

√
∥gk∥
σk

= 0 yields

that

ck(0)− ck(sk) ≥ ϵ

3(
√
2 + 1)c22

min
{c21ϵ
kB

,

√
c2
2

√
∥gk∥
σk

}
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≥ ϵ

6(
√
2 + 1)c

3
2
2

√
∥gk∥
σk

. (4.14)

Combining (4.13) and (4.14) results in

rk ≤ 3

c1

[
∥g(ξk)−gk∥+c3max{|c1−1|, |c2−1|}+ 3kB

2c1

√
∥gk∥
c2σk

− (1− η2)ϵ

6(
√
2 + 1)c2

]√∥gk∥
c2σk

.

Because g(x) is Lipschitz continuous and ∥sk∥ → 0 (k → ∞), so ∥g(ξk) − gk∥ →
0 (k → ∞), thus

rk < 0, when k is sufficiently large.

So ρk > η2, i.e., the k-th iteration is successful, so σk+1 ≤ σk. 2

The following lemma shows that Algorithm 2.1 is well-definied, i.e., the inner
iteration can’t cycle infinitely.

Lemma 4.4 Suppose that Assumptions A2 and A3 hold. Then Algorithm 2.1 is
well-definied, i.e., the iteration between Step 1 and Step 5 of Algorithm 2.1 can not
cycle infinitely.

Proof. Suppose Algorithm 2.1 doesn’t stop at xk, i.e., there exists a constant
ϵ > 0 such that ∥gk∥ ≥ ϵ. Suppose the iterations produced by Algorithm 2.1 cycle
infinitely between Step 1 and Step 5. i.e.,

xk+i = xk, ∥gk+i∥ = ∥gk∥ ≥ ϵ, σk+i ∈ [γ1σk+i−1, γ2σk+i−1], i = 0, 1, · · ·

thus
ρk+i < η1, σk+i ≥ γi1σk (γ1 > 1), i = 0, 1, · · ·

So

√
∥gk+i∥
σk+i

≤
√

∥gk∥
γi
1σk

→ 0, i → ∞, where γ1 > 1. From Lemma 4.3, we know that

the (k + i)-th iteration is successful, so ρk+i > η2, which is a contradiction. We
complete the proof. 2

Next, we show that provided that there are only finitely many successful itera-
tions, the subsequent iterations are first order critical points. The detailed proof see
Lemma 2.4 in [19].

Theorem 4.5 Suppose that Assumptions A1, A2, and A3 hold, and that there are
only finitely many successful iterations. Then for sufficiently large k, xk = x∗ and
g(x∗) = 0.

The following lemma shows that if the objective function is bounded below, then
at least an accumulate point is a first order point. The detailed proof see theorem
2.5 in [19].

Theorem 4.6 Suppose that Assumptions A1, A2, and A3 hold. Then

lim inf
k→∞

∥gk∥ = 0. (4.15)

The following lemma shows that under some strengthen conditions, all the ac-
cumulate points are first order points. The detailed proof see theorem 2.6 in [19].
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Theorem 4.7 Suppose that Assumptions A1, A2, and A3 hold. Then

lim
k→∞

∥gk∥ = 0. (4.16)

To conclude this section, we discuss the local convergence rate of Algorithm 2.1.

Theorem 4.8 Suppose that the iterate sequence {xk} generated by Algorithm 2.1
converges to x∗, g(x∗) = 0, and H(x∗) is Lipschitz continuous in a neighborhood of
x∗. If

lim
k→∞

∥(Bk −Hk)(xk − x∗)∥
∥xk − x∗∥

= 0, (4.17)

then the iterate sequence {xk} converges to x∗ linearly.

Proof. Due to xk → x∗ (k → ∞), so ∥sk∥ → 0 (k → ∞). From ∥gk∥ ≤ c3, ∥hk∥ ≤
hmax, ∥Bk∥ ≤ kB, σk ≤ σmax (which will be proved in Lemma 5.2 later), we know
that when k → ∞ there exist two constants c4, c5 > 0 such that

∥(Bk + ν2kλkI + gkh
T
k + ν2kλkhks

T
k )

−1∥ ≤ c4.

∥ν2kλkI + gkh
T
k + ν2kλkhks

T
k ∥ ≤ c5.

From (5.11), we have

∥xk + sk − x∗∥ = ∥xk − x∗ − (Bk + ν2kλkI + gkh
T
k + ν2kλkhks

T
k )

−1gk∥
≤ c4∥gk − g(x∗)−Bk(xk − x∗)

−(ν2kλkI + gkh
T
k + ν2kλkhks

T
k )(xk − x∗)∥

≤ c4[∥gk − g(x∗)−Bk(xk − x∗)∥
+∥(ν2kλkI + gkh

T
k + ν2kλkhks

T
k )(xk − x∗)∥]

≤ c4
[ ∫ 1

0
(H(xk + θ(xk − x∗))−Hk)(xk − x∗)dθ

+(Hk −Bk)(xk − x∗) + c5∥xk − x∗∥
]

≤ c4[L1θ∥xk − x∗∥2 + o(∥xk − x∗∥) + c5∥xk − x∗∥]
= c6∥xk − x∗∥.

So the iterate sequence {xk} converges to x∗ linearly. 2

5. Complexity analysis

The most advantage of ACCO method is that the corresponding algorithm can
enjoy a better complexity bound. As mentioned before, ACCO model is an extension
of ACO model. Whether the ACCO model still keeps the property of complexity
bound? In this section, we will discuss the complexity of ACCO model for uncon-
strained optimization.

Denote

Sj
def
= {k ≤ j : iteration k is successful},

Uj
def
= {i ≤ j : iteration i is unsuccessful}.
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Let |Sj | and |Uj | be the respective cardinalities.
Define

Sϵ
g = {k ∈ S : ∥gk∥ ≥ ϵ}.

U ϵ
g = {k ∈ U : ∥gk∥ ≥ ϵ}.

Next, we will give an upper bound of |Sϵ
g|, i.e., the estimation of the times of the

successful iterations to satisfy ∥gk∥ ≤ ϵ, and |Sϵ
g| + |U ϵ

g |, i.e., the estimation of the
times of the successful and unsuccessful iterations to satisfy ∥gk∥ ≤ ϵ.

First, we give some technical lemmas.

Lemma 5.1 Suppose that Assumptions A2 and A3 hold, ∥gk∥ ̸= 0 and

√
σk∥gk∥ ≥

27(
√
2 + 1)

√
c2(kH + kB + c3hmax)

(1− η2)c21

def
= kHB. (5.1)

Then the k-th iteration is successful, i.e., ρk > η2, σk+1 ≤ σk.

Proof. Due to ∥gk∥ ̸= 0, from Lemma 4.1, we know ck(0) > ck(sk). So

ρk > η2 ⇐⇒ rk = f(xk + sk)− ck(sk) + (1− η2)(ck(sk)− ck(0)) < 0.

Next, we prove rk < 0. Combining (2.25) and (5.1) yields that√
σk∥gk∥

c2
≥ 27(

√
2 + 1)(kH + kB + c3hmax)

(1− η2)c21

≥ 27(
√
2 + 1)(kH + kB + c3hmax)

(1− η2)c22

≥ ∥Bk∥
c22

.

From Lemma 4.2, we have

∥sk∥ ≤ 3

√
∥gk∥
c2σk

. (5.2)

From Taylor’s expansion, (2.25) and (5.2), we obtain

f(xk + sk)− ck(sk) = g(ξk)
T sk −

gTk sk
1 + hTk sk

− sTkBksk
2(1 + hTk sk)

2
− σk∥sk∥3

3

≤ ∥g(ξk)− g(xk)∥∥sk∥+ ∥g(ξk)∥∥hk∥∥sk∥2

c1
+

kB∥sk∥2

2c21

≤ kH + kB + c3hmax

2c21
∥sk∥2

≤ 9(kH + kB + c3hmax)∥gk∥
2c21c2σk

.
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Combining (5.1), kH ≥ 1 and η1 ∈ (0, 1) yields that

2

√
σk∥gk∥

c2
≥ 54(

√
2 + 1)(kH + kB + c3hmax)

(1− η2)c21

≥ kB
c21

≥ ∥Bk∥
c21

,

so
c21∥gk∥
∥Bk∥

≥ 1

2

√
c2∥gk∥
σk

. (5.3)

Lemma 4.1 and (5.3) results in

ck(sk)− ck(0) ≤ − ∥gk∥
3
2

6(
√
2 + 1)c

3
2
2
√
σk

. (5.4)

Then

rk ≤ 9(kH + kB + c3hmax)∥gk∥
2c21c2σk

− (1− η2)∥gk∥
3
2

6(
√
2 + 1)c

3
2
2
√
σk

≤ ∥gk∥
σk

[9(kH + kB + c3hmax)

2c21c2
− (1− η2)

√
σk∥gk∥

6(
√
2 + 1)c

3
2
2

]
.

From (5.1), we know rk ≤ 0, so ρk ≥ η2, σk+1 ≥ σk. We complete the proof. 2

The above lemma is an extension of Lemma 3.2 in [20]. However, our result is
weaker than Cartis et al’s, because our lower bound on

√
σk∥gk∥ is smaller than

theirs.

Lemma 5.2 Suppose that Assumptions A1, A2, and A3 hold, and there exists a
constant ϵ > 0 such that ∥gk∥ ≥ ϵ. Then

σk ≤ max
(
σ0,

γ2
ϵ
k2HB

)
def
= σmax. (5.5)

Proof. From Lemma 5.1, we know

σk >
k2HB

ϵ
=⇒ ρk > η2, σk+1 ≤ σk, (5.6)

so there must exist k
′
such that σk′ ≤

k2HB
ϵ . From Step 4 of Algorithm 2.1, we get

σk+1 ≤ γ2σk (γ2 > 1) whenever the k-th iteration is successful or not. So

σk′+i ≤ γ2
k2HB

ϵ
, i = 0, 1, · · · (5.7)

Thus, if σ0 ≤
k2HB
ϵ , from (5.7), we know σk ≤ γ2

k2HB
ϵ . On the contrary, if σ0 ≥

k2HB
ϵ ,

σk (k = 1, 2, · · ·) will keep on decreasing until there exists k
′
such that σk′ ≤

k2HB
ϵ .

We choose k > k
′
then σk ≤ γ2

k2HB
ϵ . We complete the proof. 2
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Lemma 5.3 Suppose that for each very successful iteration, there exists a constant
γ3 ∈ (0, 1) such that γ3σk < σk+1 ≤ σk. Let σ > 0 such that σk ≤ σ for all k ≤ j.
Then

|Uj | ≤
⌈
− log γ3

log γ1
|Sj |+

1

log γ1
log(

σ

σ0
)
⌉
. (5.8)

Proof. The proof see Lemma 2.1 in [20]. 2

Theorem 5.4 Suppose that Assumptions A1, A2, and A3 hold. Then for all k ∈ Sϵ
g,

|Sϵ
g| ≤ ⌈c7ϵ−2⌉, (5.9)

where c7 =
(f(x0)−flow)6(

√
2+1)c

3
2
2

η1
max{kHB

√
γ2,

√
σ0}.

If σ0 in Algorithm 2.1 is chosen such that σ0ϵ ≥ γ2k
2
HB. Then

|Sϵ
g| ≤ ⌈c8ϵ−

3
2 ⌉, (5.10)

where c8 =
(f(x0)−flow)6(

√
2+1)c

3
2
2

√
σ0

η1
.

Additionally, assume that on each very successful iteration k, σk+1 ≥ γ3σk, γ3 ∈
(0, 1]. Then

|Sϵ
g|+ |U ϵ

g | ≤ ⌈c9ϵ−2⌉, (5.11)

where c9 = (1− log γ3
log γ1

)c7 +
max{1,γ2k2HB}

log γ1
.

Proof. From the definition of kHB, Lemma 4.1 and Lemma 5.2, we have

ck(0)− ck(sk) ≥ ∥gk∥
3(
√
2 + 1)c22

min
{c21∥gk∥

∥Bk∥
,
1

2

√
c2∥gk∥
σk

}
≥ min

{ c21ϵ
2

3(
√
2 + 1)c22kB

,

√
c2ϵ

3
2

6(
√
2 + 1)c22

√
σk

}
≥ min

{ c21ϵ
2

3(
√
2 + 1)c22kB

,
ϵ2

6(
√
2 + 1)c

3
2
2 max{√σ0ϵ, kHB

√
γ2}

}

= min
{ ϵ2

6(
√
2 + 1)c

3
2
2

√
σ0ϵ

,
ϵ2

6(
√
2 + 1)c

3
2
2 kHB

√
γ2

}
(5.12)

case a: If
√
σ0ϵ < kHB

√
γ2, from (5.12), we have

ck(0)− ck(sk) ≥
ϵ2

6(
√
2 + 1)c

3
2
2 kHB

√
γ2

,

so for all k ∈ Sϵ
g,

f(xk)− f(xk + sk) ≥ η1(ck(0)− ck(sk)) ≥
η1ϵ

2

6(
√
2 + 1)c

3
2
2 kHB

√
γ2

.
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Summing up all the very successful iterations satisfying ∥gk∥ ≥ ϵ yields that

|Sϵ
g|η1ϵ2

6(
√
2 + 1)c

3
2
2 kHB

√
γ2

≤
∑
k∈Sϵ

g

[f(xk)− f(xk+1)]

≤
j∑

k=0

[f(xk)− f(xk+1)]

≤ f(x0)− flow.

So

|Sϵ
g| ≤

(f(x0)− flow)6(
√
2 + 1)c

3
2
2 kHB

√
γ2

η1
ϵ−2. (5.13)

case b: If
√
σ0ϵ ≥ kHB

√
γ2, from (5.12), we have

ck(0)− ck(sk) ≥
ϵ
3
2

6(
√
2 + 1)c

3
2
2

√
σ0

so for all k ∈ Sϵ
g,

f(xk)− f(xk + sk) ≥ η1(ck(0)− ck(sk)) ≥
η1ϵ

3
2

6(
√
2 + 1)c

3
2
2

√
σ0

.

Summing up all the very successful iterations satisfying ∥gk∥ ≥ ϵ yields that

|Sϵ
g|η1ϵ

3
2

6(
√
2 + 1)c

3
2
2

√
σ0

≤
∑
k∈Sϵ

g

[f(xk)− f(xk+1)]

≤
j∑

k=0

[f(xk)− f(xk+1)]

≤ f(x0)− flow.

So

|Sϵ
g| ≤

(f(x0)− flow)6(
√
2 + 1)c

3
2
2

√
σ0

η1
ϵ−

3
2 . (5.14)

From Lemma 5.2, we know

σk ≤ max{σ0,
γ2
ϵ
k2HB} ≤ max{σ0, γ2k2HB}

ϵ

def
= σ.

From Lemma 5.3, we get

|Sϵ
g|+ |U ϵ

g | ≤
[
(1− log γ3

log γ1
)c7 +

max{1, γ2k2HB}
log γ1

]
ϵ−2 (5.15)

2
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6. Conclusions

In this paper, we propose an adaptive conic cubic overestimation model method
for unconstrained optimization problem. It incorporates an adaptive cubic overes-
timation model and a quadratic model as special cases. Global convergence to first
order critical point and local linear convergence are guaranteed under some mild
conditions. The algorithm and theory presented in this paper can be extended to
constrained nonlinear optimization problem, which will be our next work.
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