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Abstract 

In this paper, we employ the functional variable method to find the exact solutions of 
generalized reaction Duffing model and the shallow water waves along with its 
perturbation terms that are modeled by Boussinesq equation. The traveling wave 
solutions obtained via this method are expressed by hyperbolic functions and the 
trigonometric functions. We believe that this approach can also be used to solve other 
nonlinear partial differential equations. 
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1. Introduction 

Searching for exact solutions of nonlinear partial differential equations (NPDEs) has 
become a more attractive topic in physical science and nonlinear science. The investigation 
of the travelling wave solutions for NPDEs plays an important role in the study of nonlinear 
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physical phenomena. Nonlinear wave phenomena appear in various scientific and 
engineering fields, such as chemistry, physics and the engineering disciplines. Recently, 
many kinds of powerful methods have been proposed to find exact solutions of NPDEs, for 
example, Variational iteration method[1], Algebraic method [2], Jacobi elliptic function 
expansion method [3], F-expansion method [4], Auxiliary equation method [5], Tanh 
method [6] and Generalized hyperbolic function [7]. 
In the pioneering work, Zerarka et al introduced the so-called functional variable method to 
find the exact solutions for a wide class of linear and nonlinear wave equations [8-9]. This 
method was further developed by many authors [10-12]. The advantage of this method is 
that one treats nonlinear problems by essentially linear methods, based on which it is easy 
to construct in full the exact solutions such as soliton-like waves, compacton and 
noncompacton solutions, trigonometric function solutions, pattern soliton solutions, black 
solitons or kink solutions, and so on. 
In this paper, we applied the functional variable method to obtain the exact solutions of the 
generalized reaction Duffing model in the form 

 2 3 0,tt xxu pu qu ru su+ + + + = (1)

where , ,p q r and s are all constants [13].  
Eq. (1) reductions many well-known nonlinear wave equations such as 
(i) Klein-Gordon equation 

 3 0.tt xxu u u uα β− + + = (2)

(ii) Landau-Ginzburg-Higgs equation 

 2 2 3 0.tt xxu pu m u g u− − + = (3)

(iii) 4ϕ equation 

 3 0.tt xxu u u u− + =− (4)

(iv) Duffing equation 

 3 0.ttu u cub+ + = (5)

(v) Sine-Gordon equation 
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3 0.
1
6tt xxu u u u− + =− (6)

We also consider perturbed Boussinesq equation (BE) in the form 

 2 2( ) ,n
tt xx xx xxxx xx xxxxu k u a u bu u uβ ρ+ + = +− (7)

where u represents the wave profile while the independent variables x and t represent 
the spatial and temporal coordinates respectively. , , ,a b k β and ρ are all constants. If the 
right hand side of Eq. (7) is zero, it represents the Boussinesq equation. For the 
perturbation terms in Eq. (7), the coefficient of β is the dissipative term and ρ provides 
higher term [14]. On the left side of Eq. (7), a represents the coefficient of nonlinear term 
while the exponent n represents power law nonlinearity factor. Typically, n dictates the 
strength of nonlinearity. 
The rest of this paper is organized as follows: in Section 2, we present the summary of the 
functional variable method. In Section 3, the applications of our method to the generalized 
reaction Duffing model and the perturbed BE are illustrated. Lastly, conclusions are given in 
Section 4. 

2. The functional variable method 

In this Section we describe the main steps of the functional variable method for finding 
exact solutions of NPDEs. 
Consider a general nonlinear partial differential equation in the form 

( , , , , , , ) 0,t x tt xx xtP u u u u u u =… (8)

where ( , )u u x t= is the solution of nonlinear partial differential equation Eq. (8), the 
subscript denotes partial derivative.
Zerarka et al, in [8] has summarized the functional variable method in the following. 
Using a wave transformation  

 ( , ) ( ),u x t U ξ= x ctξ = − , (9)

where c is constant to be determined later. This enables us to use the following changes: 
2 2

2 2(.) (.), (.) (.), (.) (.), .
d d d
c

t d x d x dξ ξ ξ
∂ ∂ ∂

= − = =
∂ ∂ ∂

…
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Using Eq. (9), the nonlinear partial differential equation Eq. (8) can be converted to a 
nonlinear ordinary differential equation like 

( , , , , ) 0.G U U U Uξ ξξ ξξξ … = (10)

Then we make a transformation in which the unknown function U is considered as a 
functional variable in the form 

 ( ),U F Uξ = (11)

and some successive derivatives of U are 

 
21

( ) ,
2

U Fξξ ′=

2 21
( ) ,
2

U F Fξξξ ′′= (12)

2 2 2 21
[( ) ( ) ( ) ],
2

U F F F Fξξξξ ′′′ ′′ ′= +  

.

�

where ‘‘´ ” stands for d
dU

.

The ODE (10) can be reduced in terms of U ,F and its derivatives upon using the 
expressions of Eq. (12) into Eq. (10) gives 

 ( , , , , , ) 0.G U F F F F′ ′′ ′′′ =… (13)

The key idea of this particular form Eq. (13) is of special interest because it admits 
analytical solutions for a large class of nonlinear wave type equations. After integration, Eq. 
(13) provides the expression of ,F and this, together with Eq. (11), give appropriate 
solutions to the original problem. 

 
3. Applications 

In this Section, we demonstrate the application of functional variable method for finding the 
exact travelling wave solutions of the generalized reaction Duffing model and the perturbed 
BE. 
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3.1. Generalized reaction Duffing model. Assume that Eq. (1) has an exact solution in the 
form of a travelling wave 

( , ) ( ),u x t U ξ= ,x ctξ = − (14)

where c is wave velocity. Substituting (14) into (1), we get the following nonlinear ODE: 
2 2 3 0,pU qU rU sUc Uξξ ξξ+ + + + = (15)

or 

 2 3
2 [ ].
1

U qU rU sU
pcξξ = − + +

+
(16)

Substituting Eq. (12) into Eq. (16) we obtain 

 
2 2 3

2 [ ]
2

( ( ) ) ,qU rU sU
p

F U
c
− + +′ =
+

(17)

where the prime denotes differentiation with respect to ξ . Integrating Eq. (17) with respect 
to U and after the mathematical manipulations, we have 

 
2

2
21

( ) ,
3 2
r s

q U U
p

F U U
c

+ += −
+

(18)

or 

 
2

2
2 2

2
( )

)

2 4
( ) .

3 92(
q

U
p

s r s
F U U

s sc r
+ + −= −

+
(19)

From Eq. (11) and Eq. (19) we deduce that 

 
22 2 )

,
2(( ) p

dU s
cU U N M

ξ= −
+− −∫ (20)

where 2
3
r

N
s

= − , 22q
M N

s
= − + . After integrating Eq. (20), with zero constant of 

integration, we have following exact solutions: 
if 2 0

q
c p

<
+

, we have the hyperbolic solutions: 

 

2
2

1
2

2

1
( ) ( )

2
( , ) ,

1
1 ( ) ( )

2

q
M N x ct

c pu x t
M N q

x ct
M N c p

 
+ − − 

+  =
 +

+ − − 
− +  

sech

tanh
 

(21)
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2
2

2
2

2

1
( ) ( )

2
( , ) .

1
1 ( ) ( )

2

q
M N x ct

c pu x t
M N q

x ct
M N c p

 
− − − 

+  =
 −

+ − − 
+ +  

csch

coth
 

(22)

If 2 0
q

c p
>

+
, we have the periodic solutions: 

 

2
2

3
2

2

1
( ) ( )

2
( , ) ,

1
1 ( ) ( )

2

q
M N x ct

c pu x t
M N q

x ct
M N c p

 
+ − 

+  =
 +

− − 
− +  

sec

tan
 

(23)

2
2

4
2

2

1
( ) ( )

2
( , ) .

1
1 ( ) ( )

2

q
M N x ct

c pu x t
M N q

x ct
M N c p

 
− − − 

+  =
 −

− − 
+ +  

csc

cot
 (24)

In Figure 1, 1( , )u x t shows one of exact solutions of Eq. (1) for 
1, 0.2, 1, 2p q r s= = − = − = and 2c = .

Fig. 1. Hyperbolic function solution (21) of the Generalized reaction 
Duffing model (1), for 1, 0.2, 1, 2p q r s= = − = − = and 2c = .
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3.2. Perturbed Boussinesq equation. Assume that Eq. (7) has an exact solution in the form 
of a travelling wave 

( , ) ( ),u x t U ξ= .x ctξ = − (14)

Substituting Eq. (14) into (7), we get the following nonlinear ODE: 
2 2 2( ) .na Uc U k U bU U Uξξ ξξ ξξ ξξξξ ξξ ξξξξβ ρ+ + = +− (15)

Integrating Eq. (15) twice with respect to ξ and setting the constants of integration to be 
zero we get 

 2 2 2 ,naUc U k U bU U Uξξ ξξβ ρ+ + = +− (16)

or 

 
2 2

2( ) .n
a
U

c k
U U

b bξξ
β

ρ ρ
+

− −
=

− −
(17)

Then we use the transformations 
 ( ),U F Uξ = (18)

and (12) to convert Eq. (17) to 

 
2 2

2 21
( ( )) ( ) ,
2

na
U

c k
F U U

b b
β

ρ ρ
+

− −′ =
− −

(19)

where the prime denotes differentiation with respect to ξ . According to Eq. (12), we get 
from Eq. (19) the expressions of the function ( )F U as

 
2 2

2 1
2 21

( ) 2
( ) .

(2 1)( )
nU

b
c k a

F U U
n c k

β
ρ β

−+
− −

=
− + − −

(20)

After changing the variables 

 

2 1
2 2
2

,
(2 1)( )

nU
a

Z
n c k β

−= −
+ − −

(21)

and using the relation (11), the solution of Eq. (15) is in the following form: 

 

1
2 2 2 2 2 1

2(2 1)( ) (2 1)
( ) ( ) .

2 2

nn k c n c k
U

a b
β β

ξ ξ
ρ

−  + + − − − −  =   −  
sech

 

(22)

We can easily obtain the following hyperbolic solutions: 
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1
2 2 2 2 2 1

2
1

(2 1)( ) (2 1) ( )
( , ) ( ) ,

2 2

nn k c n c k
u x t x ct

a b
β β

ρ

−  + + − − − −  = −  −  
sech (23)

and 

 
1

2 2 2 2 2 1
2

2
(2 1)( ) (2 1)

( , ) ( ) .
2 2

nn k c n c k
u x t x ct

a b
β β

ρ

−  + + − − − −  = − −  −  
csch (24)

For 
2 2

0
c k

b
β

ρ
− −

<
−

, it is easy to see that solutions (23) and (24) can reduce to periodic 

solutions as follow 

 
1

2 2 2 2 2 1
2

3
(2 1)( ) (2 1)

( , ) ( ) ,
2 2

nn k c n c k
u x t x ct

a b
β β

ρ

−  + + − − − −  = − −  −  
sec

 

(25)

and 

 

1
2 2 2 2 2 1

2
4

(2 1)( ) (2 1)
( , ) ( ) .

2 2

nn k c n c k
u x t x ct

a b
β β

ρ

−  + + − − − −  = − −  −  
csc  (26)

In Figure 2, 3( , )u x t shows one of exact solutions of Eq. (7) for 
1, 1, 1, 1, 1.5a k b β ρ= = = = = and 0.75c = .

Fig. 2. Solitons solution (25) of the Perturbed Boussinesq equation,
(7), for 1, 1, 1, 1, 1.5a k b β ρ= = = = = and 0.75c = .
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4 Conclusions 

The functional variable method has been successfully used to obtain two traveling wave 
solutions of the Generalized reaction Duffing model and the perturbed Boussinesq equation. 
The main merits of the functional variable method over the other methods are as follows. 
(i) There is no need to apply the initial and boundary conditions at the outset. The method 
yields a general solution with free parameters which can be identified by the above 
conditions. 
(ii) The general solution obtained by functional variable method is without approximation. 
(iii) The performance of this method is reliable and effective and gives the exact solitary 
wave solutions and periodic wave solutions.  
(iv) The solution procedure can be easily implemented in Mathematica or Maple. 
Moreover, we conclude that the functional variable method is significant and important for 
finding the exact traveling wave solutions of nonlinear evolution equations which can be 
converted to a second-order ODE through the travelling wave transformation. The 
proposed method can be applied to many other nonlinear evolution equations in 
mathematical physics. 
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