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Abstract

In this paper we will explore the solutions of the diophantine equation
related the well known Erdős-Straus conjecture about unit fractions. For
each prime p, we are discussing the relationship between the values x, y,
and z ∈ N satisfying

4

p
=

1

x
+

1

y
+

1

z
, x ≤ y ≤ z.

We will separate these solutions into two classes. We show that the most
common relationship found is

x =

⌊
py

4y − p

⌋
+ 1.

Finally, we will make a few conjectures to motivate further research in
this area.

1. Introduction

The Erdős-Straus conjecture asserts that for every n ≥ 2, there there exist

natural numbers x, y, and z so that

(1.1)
4

n
=

1

x
+

1

y
+

1

z
.

Naturally, this claim reduces to be shown correct for prime numbers n. We may

assume that x ≤ y ≤ z, without loss of generality, since one of these values will be

the largest and one will be the smallest. The solutions to (1.1) need not be unique.
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For example, one can check that

(1.2)

4

17
=

1

5
+

1

34
+

1

170

=
1

5
+

1

30
+

1

510

=
1

6
+

1

15
+

1

510

=
1

6
+

1

17
+

1

102
.

The Erdős-Straus conjecture dates back to the 1940s and early 1950s [7, 16, 18].

There have been attempts to solve this problem in many different ways. For exam-

ple, some people used algebraic geometry techniques to bring a certain structure

to this problem (see [4]), or analytic number theory techniques to find asymptotic

results (see [5, 6, 11, 19, 20, 25, 26, 30]). Others looked into the study of related

fractions, such as k/n for k ≥ 2 (see [1, 5, 13, 17, 27, 28]) or using computational

methods (see [23]). Less elementary methods were used in [2, 6, 19, 20]). The

current authors have made attempts to make equivalent conjectures in different

number fields [3]. The best-known approach was developed by Rosati [18]. Mordell

[14] has a great description of this method and many attempts use the techniques

in his paper (see [9, 21, 24, 29]).

The purpose of this paper is to classify each solution based on its geometric

location. Figure 1 shows the geometric location of the solutions listed in (1.2)

as pink cells where the cells represent the standard xy integer lattice when both

x > 0 and y > 0. This image was made with a Microsoft excel worksheet by using

conditional formatting of the cell colors. The pink cells that border the yellow cells

in figure 1 will be of particular interest. In this case we see that all the pink cells

border the yellow cells. To define the border between the yellow and blue cells in

figure 1 we need to relate x and y. We let the cells be white if x > y or if y > z.

When p = 17 we will see that y > z if y > 34x/(4x− 17). We will let the cells be

yellow if z < 0. The cells will be yellow if y < 17x/(4x − 17) and the cells will be

blue or pink if 17x/(4x−17) ≤ y ≤ 34x/(4x−17). The cells are pink only if z is an

integer. Our main argument will be that a overwhelming majority of the solutions

fall along the boundary of all (x, y) values that give z > 0.

We will also see that for all primes p 6= 2 and p 6= 2521 there exists at least one

solution to (1.1) so that x = bpy/(4y − p)c+ 1, gcd (p, y) = 1 and z = p · lcm (x, y).

For p = 17 we see that there are two solutions with this pattern.

These solutions are
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Figure 1. For p = 17, the cells contain the z value in terms of x ∈
{1, 2, .., 12} and y ∈ {1, 2, ...47}. If x > y or y > z the cell color is white.
If z is negative the cell color is yellow. If z is a solution of (1.1), i.e.
z is a positive integer and x ≤ y ≤ z, the cell color is red (see (1.2)).
Otherwise the cell color is blue.

4

17
=

1

5
+

1

30
+

1

510

=
1

6
+

1

15
+

1

510
.

Finally we will see that for all primes p 6∈ {2, 3, 7, 47, 193, 2521} there exists

at least one solution to (1.1) so that y = bpx/(4x− p)c + 1, gcd(p, y) = 1 and

z = p · lcm (x, y). For p = 17 we see that there is only one solution with this

requirement. This solution is

4

17
=

1

6
+

1

15
+

1

510
.

The rest of the paper is organized as follows: in Section 2 we will describe the

main results without proof and in Section 3 we will fill in the necessary details.

2. Main Results

We would like to generalize the observations made in the introduction for 17,

to any prime p. Our first goal in this endeavor is to define the boundary between

the yellow cells and the blue or pink cells as in Figure 1 for a general prime p. We
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notice that if

y <
px

4x− p

then

(2.1)
4

p
<

1

x
+

1

y
.

To solve (1.1) when (2.1) holds, we necessarily need z be negative. Because this

cannot happen, this implies that

y ≥ px

4x− p
.

To solve (1.1), the equation 4xy − p(x + y) = 0 cannot hold because if it did

hold, then

4

p
=

1

x
+

1

y

and necessarily z cannot be an integer. This equation will, however, define the

boundary between the yellow cells and the blue or red cells mentioned from Figure 1

and it will apply to any prime p. To be on the correct side of this boundary we see

that

(2.2) 4xy − p(x + y) > 0.

To be along the boundary, yet satisfy (2.2), we need to select the integer values

of x and y so that the left hand side of the inequality (2.2) is the smallest possible

positive value. The following definition will describe two ways that a solution to

(1.1) can be along this boundary.

Definition 2.1. A solution to (1.1) is a type I(a) solution if

(2.3) y =

⌊
px

4x− p

⌋
+ 1.

A solution to (1.1) is a type I(b) solution if

(2.4) x =

⌊
py

4y − p

⌋
+ 1.

A solution is called a type I solution if it is a type I(a) solution, a type I(b) solution

or both.

If we relate this to Figure 1, then type I solutions are given by the red cells that

border a yellow cell from the bottom or from the right. In particular, a type I(a)

solution is given by a red cell that borders a yellow cell from the bottom and a

type I(b) solution is given by a pink cell that borders a yellow cell from the right.
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We quickly find a relationship between type I(a) solutions and type I(b) solutions,

which we outline in the following proposition.

Proposition 2.2. If a solution is a type I(a) solution then it is a type I(b) solution.

This means that if a solution to (1.1) is of type I, then it is of type I(b). We

can use the two terms interchangeably. There is computational evidence to suggest

that the only prime p where there is no solution of type I(a) is when p = 193.

This computation evidence is through all primes less that 108. We summarize this

conclusion in the following conjecture.

Conjecture 2.3. The only prime p where there is no solution of type I(a) is p =

193.

Because all type I(a) solutions are type I(b) solutions, we can make a stronger

statement about type I(b) solutions. Because

4

193
=

1

50
+

1

1930
+

1

4825

is a type I(b) solution, there is computational evidence to suggest that every prime

p has a solution of type I(b). This computational evidence is through all primes

less that 108. We summarize this conclusion in the following conjecture.

Conjecture 2.4. Every prime p has a solution of type I(b).

The fact that every prime has at least one solution of type I(b) gives the authors

of this paper the impression that the proof of the Erdős-Straus conjecture reduces

to finding a solution of type I(b) for every prime p. This may not be true, but it

leads us to ask the natural question: “for which primes p, we can prove that there

exists at least one decomposition of type I(b)?” In this direction, first we recall a

theorem from [9].

Theorem 2.5. (Ionascu-Wilson) Equation (1.1) has at least one solution for ev-

ery prime number p, except possible for those primes of the form p ≡ r( mod 9240)

where r is one of the 34 entries in the table:

1 169 289 361 529 841
961 1369 1681 1849 2041 2209
2521 2641 2689 2809 3361 3481
3529 3721 4321 4489 5041 5161
5329 5569 6169 6241 6889 7561
7681 7921 8089 8761
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The decompositions created to prove Theorem 2.5 were given in [9] and can be

tested to determine whether or not they were of type I(b). The following theorem

tells us that every solution provided is of type I(b).

Theorem 2.6. Every prime p that is guaranteed a solution by Theorem 2.5 has at

least one solution of type I(b).

Although we believe, every prime has at least one solution of type I(b), we were

curious to know whether or not every solution was of type I(b). We can see for

p = 17 that every solution was of type I(b), however, for other primes there exist

solutions that are not of type I. For example, we have that

4

71
=

1

20
+

1

284
+

1

355

where we see that

x =

⌊
71 · 284

4 · 284− 71

⌋
+ 2 = 20.

To account for the remaining solutions, we make the following definition.

Definition 2.7. A solution to (1.1) that is not a type I solution is a type II solution.

It is natural to ask if there is a pattern within the class of type II solutions.

Although there is most likely no upper bound to the number of type II solutions

that exist for a given prime, it appears that as the number of type II solutions

grow, the number of type I solutions grow as well. They do not, however, appear

to grow at a uniform rate. Figure 2 shows the proportion of type II solutions for

each prime less than 4000. There is no prime less than 4000 that has less than 80%

of its solutions of type I, but this proportion seems sporadic.

We can see from Figure 2 that most primes have no type II solutions at all, so

our next goal was to make an empirical distribution for the solutions to (1.1) based

on the proximity of the solution to the boundary. For example, there are 38434

solutions to (1.1) for primes p ≤ 4000. We will separate the number of solutions to

(1.1) for prime numbers p into categories based on whether the solutions satisfy

x =

⌊
py

4y − p

⌋
+ i

for 1 ≤ i ≤ 5. Table 1 and Figure 3 summarize what we have found for primes

p ≤ 4000.
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Figure 2. This graph shows the proportion of type II solutions
for each prime p.

This distribution shows our point very well. If we are to describe a pattern for

solutions to (1.1) for a general prime p, it appears that it is a safe assumption to

let

x =

⌊
py

4y − p

⌋
+ 1.

Next we turn our attention to another pattern one can easily identify for solu-

tions of (1.1). As mentioned in the introduction, we can see that for all primes p

such that p 6= 2 and p 6= 2521 there exists a solution so that x = bpy/(4y − p)c+ 1,

gcd (p, y) = 1 and z = p · lcm (x, y). This has been checked computationally for all

primes less than 108. Instead of trying to explain why the two primes p = 2 and

p = 2521 do not follow this pattern, we argue that it suffices to find a prime p∗

large enough so that every prime larger than p∗ has the pattern we describe above.

This brings up two conjectures. We believe that these conjectures govern at least

one way to find a general pattern for the solutions of (1.1).
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i # solutions proportion

1 37612 0.9786
2 517 0.0135
3 170 0.0044
4 64 0.0017
5 71 0.0018

Table 1. This table shows the empirical probability distribution
function of the solutions to (1.1) based on their proximity to the
boundary values that make z positive. The solutions are accumu-
lated for primes less than 4000 and separated into categories based
on whether the solutions satisfy x = bpy/(4y − p)c+ i.

First we mention that for any prime p 6= 2 and y ∈ N that satisfy (1.1) we have

that bpy/(4y − p)c + 1 = dpy/(4y − p)e. Similarly for any prime p 6= 2 and x ∈ N

that satisfy (1.1) we have thatbpx/(4x− p)c + 1 = dpx/(4x− p)e. This will help

simplify how we express our work. We now state our conjecture and provide a

corollary to show the nature of our solution.

Conjecture 2.8. Consider a prime p∗ ≥ 2521. Given any prime p > p∗ there

exists y ∈ N so that dp/2e ≤ y ≤ bp(p + 3)/6c, gcd (p, y) = 1 and

y

(4y − p)−m
∈ N

where m ≡ py mod (4y − p).

Corollary 2.9. Consider a prime p∗ ≥ 2521. Given any prime p > p∗ there exists

y ∈ N so that dp/2e ≤ y ≤ bp(p + 3)/6c, gcd (p, y) = 1 and

4

p
=

1⌈
py

4y−p

⌉ +
1

y
+

1

p · lcm
(⌈

py
4y−p

⌉
, y
) .

There are some scenarios for the prime p that are guaranteed a solution of this

type. We outline the cases that have are guaranteed a solution in the following

tables. These results are incomplete and rather difficult to show in general.

p y
3 mod 4 (p(p + 1)/4) + 1
5 mod 8 (3p + 1)/4

17 mod 24 (7p + 1)/4
97 mod 120 (7p + 1)/8
73 mod 840 (23p + 1)/8

p y
241 mod 840 (23p + 1)/8
409 mod 840 (23p + 1)/8
433 mod 840 (15p + 1)/4
601 mod 840 (15p + 1)/4
769 mod 840 (15p + 1)/4

We next make an analogue to conjecture 2.8 when the solutions are of type I(a).

This is much more enlightening for programming reasons. We only need to check

that the following conjecture holds for values of x ∈ N so that dp/4e ≤ x ≤ bp/2c.
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Figure 3. This graph draws the probability distribution function
defined from table 1. The points in the pdf are connected with
lines.

The first conjecture will require us to search for a solution to (1.1) for values of y on

the boundary locations. As p gets large, the number of boundary locations grow at

an asymptotic rate of O(p2). For this next conjecture, when considering type I(a)

solutions, as p gets large, the number of boundary locations grow at an asymptotic

rate of O(p). This suggests that the result in [23] showing that every prime less

than 1014 has a solution can be improved by searching for type I(a) solutions with

z = p · lcm(x, y).

Here we see that for all primes p 6∈ {2, 3, 7, 47, 193, 2521} there exists a solution

so that y = dpx/(4x− p)e, gcd (p, y) = 1 and z = p · lcm (x, y). We provide the

foundation of this in the following conjecture.

Conjecture 2.10. Consider a prime p∗ ≥ 2521. Given any prime p > p∗ there

exists x ∈ N so that dp/4e ≤ x ≤ bp/2c, gcd (p, dpx/(4x− p)e) = 1 and

x

(4x− p)−m
∈ N
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where m ≡ px mod (4x− p).

Much like conjecture 2.8, this conjecture will lead to a solution of (1.1). Now we

will have the denominators of our unit fractions x, dpx/(4x− p)e and p·lcm(x, dpx/(4x− p)e).

We conclude our paper with proofs for some of our main points.

3. Detailed analysis

3.1. Proposition 2.2.

Proof. Suppose that for a prime p there exist values x, y, z ∈ N that make a solution

to (1.1). Further suppose that this solution is of type I(a).

This will imply that

y =

⌊
px

4x− p

⌋
+ 1.

We can clearly see that being a solution will imply that

4

p
≥ 1

x
+

1

y

but to begin we will prove is that

4

p
≤ 1

x− 1
+

1

y
.

Proving this claim will lead us to show that it is a type I(b) solution.

First notice that for any prime p and any x ∈ N such that (p/4) + 1 < x ≤ (p/2)

we have that

p(x− 1)

4(x− 1)− p
− px

4x− p
=

p2

(4(x− 1)− p)(4x− p))

≥ p2

(4x− p)2

≥ 1.

This tells us that

p(x− 1)

4(x− 1)− p
≥ px

4x− p
+ 1

≥
⌊

px

4x− p

⌋
+ 1.

This will imply that

4

p
≤ 1

x− 1
+

1⌊
px

4x−p

⌋
+ 1

=
1

x− 1
+

1

y
.
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To finish the proof we prove the following claim: if x, y, z ∈ N is a solution to (1.1)

for a prime p and

4

p
≤ 1

x− 1
+

1

y

then the solution is of type I(b).

Because

4

p
≥ 1

x
+

1

y

and

4

p
≤ 1

x− 1
+

1

y

we see that

py

4y − p
≤ x ≤ py

4y − p
+ 1.

Because 4xy − p(x + y) 6= 0 for any x, y ∈ N that will make a solution to (1.1), we

see that py/(4y − p) is not an integer for the possible values of y and p. Because x

is a positive integer, we see then it must be true that

x =

⌊
py

4y − p

⌋
+ 1.

This shows that the solution is of type I(b). �

3.2. Theorem 2.6.

Proof. This theorem is proved by the following selections of the value of y:
p y
2 p(p + 2)/4

3 mod 4 (p(p + 1)/4) + 1
5 mod 8 p(p + 3)/8

17 mod 24 p(p + 7)/24
73 mod 120 p(p + 7)/20
97 mod 120 p(p + 3)/10

4561 mod 9240 3p
4729 mod 9240 3p
5881 mod 9240 3p
6049 mod 9240 3p
6409 mod 9240 3p
6841 mod 9240 3p
7081 mod 9240 3p
7729 mod 9240 3p
8401 mod 9240 3p
3049 mod 9240 p(p + 31)/44
4369 mod 9240 p(p + 31)/44
7009 mod 9240 p(p + 31)/44
1201 mod 9240 5p(p + 31)/616

p y
241 mod 840 p(p + 11)/42
409 mod 840 p(p + 11)/42
481 mod 840 p(p + 11)/84
649 mod 840 p(p + 11)/84
601 mod 840 p(p + 15)/56
769 mod 840 p(p + 15)/56

1009 mod 9240 3p
1129 mod 9240 3p
1801 mod 9240 3p
2881 mod 9240 3p
3649 mod 9240 3p
4201 mod 9240 3p
8521 mod 9240 3p
8689 mod 9240 3p
8929 mod 9240 3p
3889 mod 9240 p(p + 71)/44
5209 mod 9240 p(p + 71)/44
7849 mod 9240 p(p + 71)/44
6001 mod 9240 p(p + 159)/616

From this information one can derive the value of z that solves equation (1.1).
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For example, if p ≡ 5 mod 8, then there exists a value k so that p = 8k + 5. We

would see then that y = (k + 1)(8k + 5).

Because

py

4y − p
=

(k + 1)(8k + 5)

4k + 3

= 2(k + 1)− k + 1

4k + 3

and 0 < (k + 1)/(4k + 3) < 1 for all k ≥ 0, we see that x = 2(k + 1) = (p + 3)/4.

Letting x = (p + 3)/4 and y = p(p + 3)/8 we see that necessarily z = p(p + 3)/4.

For every prime p listed above, the given selection of y will provide the values of x

and z through the same process. �

3.3. Corollary 2.9.

Proof. If conjecture 2.8 holds then we necessarily have that py/((4y− p)−m) ∈ N

and one fact about every natural number a ∈ N is that gcd(a, a + 1) = 1, this will

imply that

gcd

(
py

(4y − p)−m
,

py

(4y − p)−m
+ 1

)
= 1.

In particular, this would imply that

gcd (py, py + (4y − p)−m) = (4y − p)−m.

Because m ≡ py mod (4y − p), we see that

(4y − p)

⌈
py

4y − p

⌉
= py + (4y − p)−m.

This would imply that

gcd

(
py, (4y − p)

⌈
py

4y − p

⌉)
= (4y − p)

⌈
py

4y − p

⌉
− py.

Because gcd(p, y) = 1 we see that gcd((4y−p), py) = 1. This will necessarily imply

that

gcd

(
py,

⌈
py

4y − p

⌉)
= (4y − p)

⌈
py

4y − p

⌉
− py.

Because dp/4e ≤ dpy/(4y − p)e ≤ bp/2c we see that gcd (dpy/(4y − p)e , p) = 1.

This will imply that

gcd

(
y,

⌈
py

4y − p

⌉)
= (4y − p)

⌈
py

4y − p

⌉
− py.

We can express this as

4y

⌈
py

4y − p

⌉
= py + p

⌈
py

4y − p

⌉
+ gcd

(⌈
py

4y − p

⌉
, y

)
.
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Dividing both sides of the equation by py dpy/(4y − p)e, we have that

4

p
=

1⌈
py

4y−p

⌉ +
1

y
+

1

p · lcm
(⌈

py
4y−p

⌉
, y
) .

�
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