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Abstract

In this paper we will explore the solutions of the diophantine equation
related the well known Erdds-Straus conjecture about unit fractions. For
each prime p, we are discussing the relationship between the values x, vy,
and z € N satisfying

4 1 1 1

-—=—+-+-,z<y<z=z

p r 'y =z
We will separate these solutions into two classes. We show that the most
common relationship found is

Y
T = +1
Lly—pJ

Finally, we will make a few conjectures to motivate further research in
this area.

1. INTRODUCTION

The Erdés-Straus conjecture asserts that for every n > 2, there there exist

natural numbers x, y, and z so that

4 1 1 1
(1.1) — =4 +-.
n T Yy =z

Naturally, this claim reduces to be shown correct for prime numbers n. We may
assume that x < y < z, without loss of generality, since one of these values will be

the largest and one will be the smallest. The solutions to (1.1) need not be unique.

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311
41



42 K. Bradford and E. J. Ionascu

For example, one can check that

4_1+1 1
175 34 170
—1+1+ 1
(1.2) 5 30 510
' RS
6 15 510
L1
6 17 1027

The Erdds-Straus conjecture dates back to the 1940s and early 1950s [7, 16, 18].
There have been attempts to solve this problem in many different ways. For exam-
ple, some people used algebraic geometry techniques to bring a certain structure
to this problem (see [4]), or analytic number theory techniques to find asymptotic
results (see [5, 6, 11, 19, 20, 25, 26, 30]). Others looked into the study of related
fractions, such as k/n for k > 2 (see [1, 5, 13, 17, 27, 28]) or using computational
methods (see [23]). Less elementary methods were used in [2, 6, 19, 20]). The
current authors have made attempts to make equivalent conjectures in different
number fields [3]. The best-known approach was developed by Rosati [18]. Mordell
[14] has a great description of this method and many attempts use the techniques
in his paper (see [9, 21, 24, 29]).

The purpose of this paper is to classify each solution based on its geometric
location. Figure 1 shows the geometric location of the solutions listed in (1.2)
as pink cells where the cells represent the standard xy integer lattice when both
x> 0 and y > 0. This image was made with a Microsoft excel worksheet by using
conditional formatting of the cell colors. The pink cells that border the yellow cells
in figure 1 will be of particular interest. In this case we see that all the pink cells
border the yellow cells. To define the border between the yellow and blue cells in
figure 1 we need to relate x and y. We let the cells be white if z > y or if y > 2.
When p = 17 we will see that y > z if y > 34z /(4dx — 17). We will let the cells be
yellow if z < 0. The cells will be yellow if y < 172/(4x — 17) and the cells will be
blue or pink if 17z /(42 —17) < y < 34z /(4x —17). The cells are pink only if z is an
integer. Our main argument will be that a overwhelming majority of the solutions
fall along the boundary of all (x,y) values that give z > 0.

We will also see that for all primes p # 2 and p # 2521 there exists at least one
solution to (1.1) so that x = |py/(4y — p)| + 1, ged (p,y) =1 and z = p-lem (z, y).
For p = 17 we see that there are two solutions with this pattern.

These solutions are
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1 2 3 4 B 6! 7 8 ) 10 11 12
1 -0.5666667 -0.7906977 -0.9107143 -0.9855072 -1.0365854 -1.0736842, -1.1018519 -1.1239669 -1.141791 -1.1564626 -1.16875 -1.1791908
2 -0.7906977 -1.3076923 -1.6721311 -1.9428571 -2.1518987 -2.3181818) -2.4536082 -2.5660377 -2.6608696 -2.7419355 -2.8120301 -2.8732394
3 -0.9107143 -1.6721311 -2.3181818 -2.8732394 -3.3552632 -3.7777778) -4.1511628 -4.4835165  -4.78125 -5.049505 -5.2924528 -5.5135135
4 -0.9855072 -1.9428571 -2.8732394 -3.7777778 -4.6575342 -5.5135135, -6.3466667 -7.1578947 -7.9480519 -8.7179487 -9.4683544 -10.2
5 -1.0365854 -2.1518987 -3.3552632 -4.6575342 -6.0714286 -7.6119403] -9.296875 -11.147541 -13.189655 -15.454545 -17.980769 -20.816327
6 -1.0736842 -2.3181818 -3.7777778 -5.5135135 -7.6119403 -10.2, -13.471698 -17.73913 -23.538462 -31.875 -44.88 -68
7 -1.1018519 -2.4536082 -4.1511628 -6.3466667 -9.296875 -13.471698 -19.833333 -30.709677 -53.55 -132.22222 654.5 109.846154
8 -1.1239669 -2.5660377 -4.4835165 -7.1578947 -11.147541 -17.73913! -30.709677 -1224 97.1428571 51.5862060 37.0909091
9 -1.141791 -2.6608696 -4,78125 -7.9480519 -13.189655 -23.538462 41,3513514 30.0535714 24.48
10 -1.1564626 -2.7419355 -5.049505 -8.7179487 -15.454545 . g 22.5301205 19.245283

11 -1.16875 -2.8120301 -5.2024528 -9.4683544 -17.980769 . 16.379562
12 -1.1791908 -2.8732394 -5.5135135 -10.2 -20.816327
13 -1.188172 -2.9271523 -5.7155172 -10.91358 -24.021739

14 -1.1959799 -2.975 -5.9008264 -11.609756 -27.674419 13.7068063 12.4173913
15 -1.2028302 -3.0177515 -6.0714286 -12.289157 R 14.5714286 128669725 11.7241379
16 -1.2088889 -3.0561798 -6.2290076 -12.952381 13.7373737 12.2122449 11.1780822
17 -1.2142857 -3.0909091 -6.375 -13.6 . 15.3 13.0769231 11.6875 10.7368421
18 -1.2191235 -3.122449 -6.5106383 -14.232558 -49.354839) 14.5714286 12.5409836 11.2575251 10.3728814
19 -1.2234848 -3.1512195 -6.6369863 -14.850575 -57.678571 17.3422819 13.9759615 12.0973783 10.898773 10.0675325
20 -1.2274368 -3.1775701 -6.7549669 -15.454545 -68 16.5853659 13.4801762 11.7241379 10.5949008 9.80769231
21 -1.2310345 -3.2017937 -6.8653846 -16.044944 -81.136364 15.9553072 13.0609756 11.4057508 10.3342105 9.58389262
22 -1.2343234 -3.2241379 -6.9689441 -16.622222 -98.421053 21.2845528 15.4226804 12.7018868 11.1309524 10.1081081 9.38912134

23 -1.2373418 -3.2448133 -7.0662651 -17.186813
24 -1.2401216 -3.264 -7.1578947 -17.73913
25 -1.2426001 -3.2818533 -7.2443182 -18.27957
26 -1.2450704 -3.2985075 -7.3259669 -18.808511
27 -1.2472826 -3.3140794 -7.4032258 -19.326316

20.4253731 14.9665072 12.3908451 10.8913649 9.91013825 9.21807466
19.6965517 14.5714286 12.1188119 10.6806283 9.73535792 9.06666667
19.0705128 14.2250414 11.878882 10.4928272 0.57991803 8.03169877
18.5269461 13.9212598 11.6656891 10.3271028 9.4407767 8.81063123
18.0505618 13.6505576 11.475 10.1773836 9.31549815 8.7014218

28 -1.2493438 -3.3286713 -7.4764398 -10.833333 17.6206296 13.4084507 11.3034301 10.0421941 9.20210896 8.60240964
29 -1.251269 -3.3423729 -7.5459184 -20.329897 17,255 13.1906355 11.1482412 9.9195171 9.09899329 8.51223022
30 -1.2530713 -3.3552632 -7.6119403 . 28.3333333_16.9194313 12.9936306 11.0071942 9.80769231 9.00481541 8.42975207
31 -1.2547619 -3.3674121 -7.6747573 B 27.4956522| 16.6171171] 12.8145897 10.8784404 9.7053407 8.91846154 8.35402906

32 -1.256351 -3.378882 -7.7345972 5 26.75409841 16.3433476 12.6511628 10.7604396 9.61130742 8.83899557 8,28426396
33 -1.2578475 -3.3897281 -7.7916667 -22.217822 26.0930233 16.0942623 12.5013928 10.6518987 9.524618 8.765625 8.21978022
34 -1.2592593 -3.4 -7.8461538 25.5, 15.8666667 12.3636364 10.5517241 9.44444444 B8.69767442 8.16
35 -1.2605032 -3.4097421 -7.8982301 24.065035] 15.65780947 12.2265030 10.4580844 0.37007874 8.63456464 8.10442679
36 -1.2618557 -3.4189944 -7.9480519 24.48) 15.465704 12.1188119 10.3728814 9.30091185 8.57579618 8.05263158
37 -1.2630522 -3.4277929 -7.9957627 24.0382166! 15.2881944 12.0095465 10.2927273 9.23641703 8.52093596 8.00424178
38 -1.2641879 -3.4361702 -8.0414938 23.6341463| 15.1237458 11.9078341 10.2179262 9.17613636 8.46960667 7.95893224
39 -1.2652672 -3.4441558 -8.0853659 23.2631579, 14.9709677 11.8129176 10.1479592 9.11966988 8.42147806 7.91641791
40 -1.2662942 -3.4517766  -8.12749 22.9213483: 14.8286604 11.7241379 10.0823723 9.06666667 8.3762598 7.87644788
41 -1.2672727 -3.4590571 -8.1679688 22.6054054 14.6957831 11.6409186 10.0207668 9.01681759 B8.33369565 7.83880037
42 -1.268206 -3.4660194 -8.2068966 22.3125! 14.5714286 11.562753 9.9627907 8,96984925 8,29355861 7.80327869
43 -1.2690972 -3.4726841 -8.2443609 22.040201) 14.4548023 11.4891945 9.90813253 8.92551893 8.25564682 7.76970771
44 -1.2699491 -3.4790698 -8.2804428 21.7864078, 14.3452055 11.4198473 9.85651537 8.88361045 8.21978022 7.73793103
45 -1.2707641 -3.4851936 -8.3152174 21.5492958, 14.24202123 11.3543599 0.80769231 8.84393064 8.18579767 7.70780856
46 -1.2715447 -3.4910714 -8.3487544 21.3272727, 14.1447028 11.2924188 9.76144244 8.80630631 8.1535545 7.6792144
47 -1277703 -1 40A7177 -R 3R111Ra 71 112477 14 N527A3& 11 23317434 Q 7175A757 R 77NSR17R A 127@7057 7 AS7N3517

FIGURE 1. For p = 17, the cells contain the z value in terms of x €
{1,2,..,12} andy € {1,2,..47}. If x > y ory > z the cell color is white.
If z is negative the cell color is yellow. If z is a solution of (1.1), i.e.
z 1s a positive integer and © < y < z, the cell color is red (see (1.2)).
Otherwise the cell color is blue.

Finally we will see that for all primes p ¢ {2,3,7,47,193,2521} there exists
at least one solution to (1.1) so that y = |pxz/(4x —p)| + 1, ged(p,y) = 1 and
z = p-lem(x,y). For p = 17 we see that there is only one solution with this

requirement. This solution is
4 1 1 1

7615 0
The rest of the paper is organized as follows: in Section 2 we will describe the

main results without proof and in Section 3 we will fill in the necessary details.

2. MAIN RESULTS

We would like to generalize the observations made in the introduction for 17,
to any prime p. Our first goal in this endeavor is to define the boundary between

the yellow cells and the blue or pink cells as in Figure 1 for a general prime p. We
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notice that if

pT
<
Y dr —p
then
4 1 1
(2.1) - <=+ -
p z Yy

To solve (1.1) when (2.1) holds, we necessarily need z be negative. Because this
cannot happen, this implies that

P
4o —p

y >

To solve (1.1), the equation 4zy — p(z + y) = 0 cannot hold because if it did

hold, then
4 1 1

p x Yy
and necessarily z cannot be an integer. This equation will, however, define the

boundary between the yellow cells and the blue or red cells mentioned from Figure 1
and it will apply to any prime p. To be on the correct side of this boundary we see

that

(2.2) dzy —p(x +y) > 0.

To be along the boundary, yet satisfy (2.2), we need to select the integer values
of z and y so that the left hand side of the inequality (2.2) is the smallest possible
positive value. The following definition will describe two ways that a solution to

(1.1) can be along this boundary.

Definition 2.1. A solution to (1.1) is a type I(a) solution if

(2.3) y = hxpf pJ +1.

A solution to (1.1) is a type I(b) solution if
Py
2.4 T = +1
4 Lly - pJ
A solution is called a type I solution if it is a type I(a) solution, a type I(b) solution

or both.

If we relate this to Figure 1, then type I solutions are given by the red cells that
border a yellow cell from the bottom or from the right. In particular, a type I(a)
solution is given by a red cell that borders a yellow cell from the bottom and a

type I(b) solution is given by a pink cell that borders a yellow cell from the right.
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We quickly find a relationship between type I(a) solutions and type I(b) solutions,

which we outline in the following proposition.
Proposition 2.2. If a solution is a type I(a) solution then it is a type I(b) solution.

This means that if a solution to (1.1) is of type I, then it is of type I(b). We
can use the two terms interchangeably. There is computational evidence to suggest
that the only prime p where there is no solution of type I(a) is when p = 193.
This computation evidence is through all primes less that 108. We summarize this

conclusion in the following conjecture.

Conjecture 2.3. The only prime p where there is no solution of type I(a) is p =
193.

Because all type I(a) solutions are type I(b) solutions, we can make a stronger

statement about type I(b) solutions. Because

411
193 50 ' 1930 4825

is a type I(b) solution, there is computational evidence to suggest that every prime
p has a solution of type I(b). This computational evidence is through all primes

less that 108. We summarize this conclusion in the following conjecture.
Conjecture 2.4. Every prime p has a solution of type 1(b).

The fact that every prime has at least one solution of type I(b) gives the authors
of this paper the impression that the proof of the Erdés-Straus conjecture reduces
to finding a solution of type I(b) for every prime p. This may not be true, but it
leads us to ask the natural question: “for which primes p, we can prove that there
exists at least one decomposition of type I(b)?” In this direction, first we recall a

theorem from [9].

Theorem 2.5. (Ionascu-Wilson) Equation (1.1) has at least one solution for ev-
ery prime number p, except possible for those primes of the form p = r( mod 9240)

where r is one of the 34 entries in the table:

1 169 | 289 | 361 | 529 | 841
961 | 1369 | 1681 | 1849 | 2041 | 2209
2521 | 2641 | 2689 | 2809 | 3361 | 3481
3529 | 3721 | 4321 | 4489 | 5041 | 5161
5329 | 5569 | 6169 | 6241 | 6889 | 7561
7681 | 7921 | 8089 | 8761
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The decompositions created to prove Theorem 2.5 were given in [9] and can be
tested to determine whether or not they were of type I(b). The following theorem
tells us that every solution provided is of type I(b).

Theorem 2.6. FEvery prime p that is guaranteed a solution by Theorem 2.5 has at

least one solution of type I(b).

Although we believe, every prime has at least one solution of type I(b), we were
curious to know whether or not every solution was of type I(b). We can see for
p = 17 that every solution was of type I(b), however, for other primes there exist
solutions that are not of type I. For example, we have that

4 1 1 1

7120 T 284 ' 355
where we see that

{ 71 - 284

4~284—71J +2=20.

To account for the remaining solutions, we make the following definition.
Definition 2.7. A solution to (1.1) that is not a type I solution is a type II solution.

It is natural to ask if there is a pattern within the class of type II solutions.
Although there is most likely no upper bound to the number of type II solutions
that exist for a given prime, it appears that as the number of type II solutions
grow, the number of type I solutions grow as well. They do not, however, appear
to grow at a uniform rate. Figure 2 shows the proportion of type II solutions for
each prime less than 4000. There is no prime less than 4000 that has less than 80%
of its solutions of type I, but this proportion seems sporadic.

We can see from Figure 2 that most primes have no type II solutions at all, so
our next goal was to make an empirical distribution for the solutions to (1.1) based
on the proximity of the solution to the boundary. For example, there are 38434
solutions to (1.1) for primes p < 4000. We will separate the number of solutions to

(1.1) for prime numbers p into categories based on whether the solutions satisfy

by .
xr = +1
Lly—pJ

for 1 < ¢ < 5. Table 1 and Figure 3 summarize what we have found for primes

p < 4000.
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FiGURE 2. This graph shows the proportion of type II solutions
for each prime p.

This distribution shows our point very well. If we are to describe a pattern for

solutions to (1.1) for a general prime p, it appears that it is a safe assumption to

by
T = +1
Lly—pJ

Next we turn our attention to another pattern one can easily identify for solu-

let

tions of (1.1). As mentioned in the introduction, we can see that for all primes p
such that p # 2 and p # 2521 there exists a solution so that z = |py/(4dy — p)| +1,
ged (p,y) =1 and z = p - lem (z,y). This has been checked computationally for all
primes less than 10%. Instead of trying to explain why the two primes p = 2 and
p = 2521 do not follow this pattern, we argue that it suffices to find a prime p*
large enough so that every prime larger than p* has the pattern we describe above.
This brings up two conjectures. We believe that these conjectures govern at least

one way to find a general pattern for the solutions of (1.1).
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’ i \ # solutions | proportion
1 37612 0.9786
2 517 0.0135
3 170 0.0044
4 64 0.0017
5 71 0.0018

TABLE 1. This table shows the empirical probability distribution
function of the solutions to (1.1) based on their proximity to the
boundary values that make z positive. The solutions are accumu-
lated for primes less than 4000 and separated into categories based
on whether the solutions satisfy x = |py/(4y — p)| + 1.

First we mention that for any prime p # 2 and y € N that satisfy (1.1) we have
that |py/(4y —p)] + 1 = [py/(4y — p)]. Similarly for any prime p # 2 and z € N
that satisfy (1.1) we have that|pz/(4x —p)] + 1 = [pz/(4z — p)]. This will help
simplify how we express our work. We now state our conjecture and provide a

corollary to show the nature of our solution.

Conjecture 2.8. Consider a prime p* > 2521. Given any prime p > p* there
exists y € N so that [p/2] <y < |p(p+3)/6], ged (p,y) =1 and

Y

(%—m—mEN

where m = py mod (4dy — p).

Corollary 2.9. Consider a prime p* > 2521. Given any prime p > p* there exists

y € N so that [p/2] <y < [p(p+3)/6], ged (p,y) =1 and

4 1 1 1
- = +-+

P v pe([d25] )

There are some scenarios for the prime p that are guaranteed a solution of this

type. We outline the cases that have are guaranteed a solution in the following

tables. These results are incomplete and rather difficult to show in general.

p y p y
3 modd | (p(p+1)/4) +1| |24 mod 840 | (23p + 1)/8
5 mod 8 Bp+1)/4 409 mod 840 | (23p+1)/8
17 mod 24 | (7p+1)/4 133 mod 840 | (15p 1 1)/4
97 mod 120 | (7p+1)/8 601 mod 840 | (15p + 1)/4
73 mod 840 | (23p + 1)/8 769 mod 840 | (15p + 1)/4

We next make an analogue to conjecture 2.8 when the solutions are of type I(a).
This is much more enlightening for programming reasons. We only need to check

that the following conjecture holds for values of x € N so that [p/4] < z < |p/2].
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0.1+

F1cURE 3. This graph draws the probability distribution function
defined from table 1. The points in the pdf are connected with
lines.

The first conjecture will require us to search for a solution to (1.1) for values of y on
the boundary locations. As p gets large, the number of boundary locations grow at
an asymptotic rate of O(p?). For this next conjecture, when considering type I(a)
solutions, as p gets large, the number of boundary locations grow at an asymptotic
rate of O(p). This suggests that the result in [23] showing that every prime less
than 10** has a solution can be improved by searching for type I(a) solutions with
z=p-lem(z,y).

Here we see that for all primes p & {2,3,7,47,193,2521} there exists a solution
so that y = [pz/(4x — p)], ged (p,y) = 1 and z = p - lem (x,y). We provide the

foundation of this in the following conjecture.

Conjecture 2.10. Consider a prime p* > 2521. Given any prime p > p* there
exists © € N so that [p/4] <z < |p/2], ged (p, [px/(4x —p)]) =1 and

T
—F €N
(49U—p)—m€
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where m = px mod (4 — p).

Much like conjecture 2.8, this conjecture will lead to a solution of (1.1). Now we
will have the denominators of our unit fractions z, [pz/(4z — p)] and p-lem(z, [px/(4x — p)]).

We conclude our paper with proofs for some of our main points.

3. DETAILED ANALYSIS

3.1. Proposition 2.2.

Proof. Suppose that for a prime p there exist values x, y, z € N that make a solution
to (1.1). Further suppose that this solution is of type I(a).
This will imply that

px
= 1.
Y le—pJ -

We can clearly see that being a solution will imply that

4 1 1
— Z — —
p x oy
but to begin we will prove is that
4 1 1
Z< -
p-r—1 "y

Proving this claim will lead us to show that it is a type I(b) solution.

First notice that for any prime p and any € N such that (p/4) + 1 < < (p/2)
we have that

p(zr —1) pT p

dr—1)—p dz—p (4z—1)-p)dz—p))

This tells us that

ple—-1)  _pr
4z —1)—p ~dax—p

\
—_—
s
8
-
+
—_

This will imply that
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To finish the proof we prove the following claim: if x,y, z € N is a solution to (1.1)

for a prime p and

4 1 1
< + =
p-xz—1 y
then the solution is of type I(b).
Because
4 1 1
p r oy
and
4 1 1
< + =
p-xz—1 y
we see that
py Py
<z< + 1.
y—p dy —p

Because 4zy — p(x + y) # 0 for any x,y € N that will make a solution to (1.1), we
see that py/(4y — p) is not an integer for the possible values of y and p. Because x

is a positive integer, we see then it must be true that

Y
xr = + 1.
Lly—pJ

This shows that the solution is of type I(b). O

3.2. Theorem 2.6.

Proof. This theorem is proved by the following selections of the value of y:

p y p y

2 p(p+2)/4 241 mod 840 | p(p+11)/42

3 mod 4 (plp+1)/4)+1 409 mod 840 | p(p+11)/42

5 mod 8 p(p+3)/8 481 mod 840 | p(p+11)/84

17 mod 24 p(p+7)/24 649 mod 840 | p(p+11)/84

73 mod 120 p(p+7)/20 601 mod 840 | p(p+15)/56

97 mod 120 | p(p+3)/10 769 mod 840 | p(p + 15)/56
4561 mod 9240 3p 1009 mod 9240 3p
4729 mod 9240 3p 1129 mod 9240 3p
5881 mod 9240 3p 1801 mod 9240 3p
6049 mod 9240 3p 2881 mod 9240 3p
6409 mod 9240 3p 3649 mod 9240 3p
6841 mod 9240 3p 4201 mod 9240 3p
7081 mod 9240 3p 8521 mod 9240 3p
7729 mod 9240 3p 8689 mod 9240 3p
8401 mod 9240 3p 8929 mod 9240 3p

3049 mod 9240 | p(p + 31)/44 3889 mod 9240 | p(p + 71)/44

1369 mod 9240 | p(p + 31)/44 5209 mod 9240 (p 1) /44

7009 mod 9240 p(p+31)/44 7849 mod 9240 | p(p+ 71)/44

1201 mod 9240 | 5p(p + 31)/616 6001 mod 9240 | p(p + 159)/616

From this information one can derive the value of z that solves equation (1.1).
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For example, if p =5 mod 8, then there exists a value k so that p = 8k + 5. We
would see then that y = (k + 1)(8%k + 5).
Because

py  (k+1)(8k+5)
dy—p 4k + 3
k+1

4k + 3
and 0 < (k+1)/(4k +3) < 1 for all k > 0, we see that z = 2(k+ 1) = (p + 3)/4.

=2(k+1) -

Letting « = (p+ 3)/4 and y = p(p + 3)/8 we see that necessarily z = p(p + 3)/4.
For every prime p listed above, the given selection of y will provide the values of x

and z through the same process. ]
3.3. Corollary 2.9.

Proof. 1f conjecture 2.8 holds then we necessarily have that py/((4y —p) —m) € N
and one fact about every natural number a € N is that gcd(a,a + 1) = 1, this will

imply that

Py Py
cd , +1)=1.
& ((4yp)m (4y —p) —m )

In particular, this would imply that

ged (py, py + (4y — p) —m) = (dy — p) — m.

Because m = py mod (4y — p), we see that

(4y —p) Lypﬂ = py+ (4y —p) —m.

This would imply that

ged (py7 (4y —p) Lypﬁ pD =(4y —p) Lypﬁ p] - py.

Because ged(p, y) = 1 we see that ged((4y — p), py) = 1. This will necessarily imply

ged (py’ [4;3 pD = -r) Lypg pw e
Because [p/4] < [py/(4y —p)] < [p/2] we see that ged ([py/(4y —p)],p) = 1.

This will imply that

| I e

We can express this as

w5 e || e (|55 0):
4y —p dy—p 4y —p

that
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Dividing both sides of the equation by py [py/(4dy — p)], we have that

oo
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20.
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