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Abstract

In this paper, we develop a variational model for simultaneous multiphase seg-
mentation and denoising of images corrupted with multiplicative noise. The
presented model uses soft segmentation, which allows each pixel to belong to
each image pattern with some probability being more flexible than the classi-
cal hard segmentation. The denoising is performed by minimizing a variable
exponential growth functional, which is a combination between TV-based and
isotropic smoothing for better feature preserving. The model development and
computational implementation are explored in detail, and experimental results
on real and synthetic images are presented.

Keywords: multiplicative noise, soft segmentation, variable exponential
growth energy functional.

1. Introduction

Noise removal and image segmentation are two key steps in image vision
modelling and analysis. Multiplicative denoising problems have received more
attention in the recent years [1,8,11-13,16,17,24]. In a multiplicative noise
model, a given image I defined on a rectangle Ω ⊂ R2, is the multiplication
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of an original image u and a noise n:

I = un.

Without loss of generality, we can assume that u and n are positive in the noise
model. It is well known that multiplicative noises are found in many real world
image processing applications, such as SAR images, laser images and medical
ultrasonic images. Unlike additive noises, the multiplicative ones are more dif-
ficult to be removed from the corrupted images because of their multiplicative
nature. The additive noise removal problems, such as the PDE-based variational
methods, have been studied extensively over the last decades. These include
the Rudin-Osher-Fatemi (ROF) model [22] and Lysaker-Lundervold-Tai (LLT)
model [18]. Given a noisy image I = u + n, the ROF model can be described
as the minimization of the functional∫

Ω

|∇u|+
∫

Ω

α(u− I)2. (1.1)

The first term of the functional is the TV-regularization term and the second
is the fitting term with α as the weighted parameter. This model preserves
well the sharp edges in image denoising and it was used extensively for images
corrupted with additive gaussian noise.

In comparison to the additive noise, the multiplicative noise removal has not
yet been studied completely. As we know so far, the variational approach was
proposed firstly by Rudin, Lions and Osher (RLO model)[23] as the minimiza-
tion of the energy functional

E(u) = α

∫
Ω

|∇u|+ α1

∫
Ω

I

u
+ α2

∫
Ω

(
I

u
− 1)2 (1.2)

where I = un is the image contaminated with multiplicative noise and the
last two terms are the data fitting terms with α1, α2 the weighted parameters.
Recently, several variational approaches are devoted to the multiplicative noise
removal [1,8,10-13,16].

An important model, which can be applied to the non-textured SAR images,
is the variational model proposed by Aubert and Aujol (AA model) [1]. The
authors proposed the following restoration model

infu

∫
Ω

|∇u|+ λ

∫
Ω

(logu+
I

u
) (1.3)

where u belongs to BV (Ω), u > 0, I = un, I > 0 in L∞(Ω) is the observed
noisy image and λ is a regularization parameter. The (AA) model is specifically
devoted to the denoising of images corrupted by Gamma noise, which appears
more frequently in SAR images. The authors proved the existence of a minimizer
for the problem (1.3).

Motivated by the (AA) model, the authors in papers [11] developed the
following denoising model:

minu

∫
Ω

|∇u|+ λ

∫
Ω

(u+ Ie−u). (1.4)
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The new fitting term u+Ie−u is obtained from the fitting term logu+ I
u used in

the (AA) model, under the exponential transformation: u → eu. The authors
[11] motivation is that the new fitting term image u + Ie−u becomes globally
convex for all u and I > 0, which ensures the uniqueness of the solutions to the
variational problem (1.4). In plus, the proposed fitting term preserves well the
image edges.

Another variational model for multiplicative noise removal was developed in
paper [13]. This model was motivated by the form of the corrupted image (for
instance in medical ultrasound images)

I = u+
√
un (1.5)

where n is a zero mean Gaussian variable. In their work, the authors introduced
the following fitting term for removing the ”speckle” noise in the ultrasound
images:

E1(u) =

∫
Ω

(I − u)2

u
. (1.6)

The restoration model of the noiseless image u becomes

minu

∫
Ω

|∇u|+ λ

∫
Ω

(I − u)2

u
. (1.7)

The model was implemented with good results.
The segmentation of images with additive Gaussian noise has been studied

extensively and many models have been developed with various methods (e.g.
[2-7,14,15,19,20,21,26,27]). However, the segmentation of images corrupted with
multiplicative noise is more challenging in many cases. For instance, the medical
ultrasound images are difficult to be segmented because of low signal/noise ratio
which reduces greatly the observable details in such images. Consequently, the
accuracy and precision of the measurements are compromised. In the recent
years, more attention has been paid to tackle this problem. For instance, in the
work of [10,17,24], several models have been developed for segmenting images
contaminated with multiplicative noise. The models developed in [17] concerns
the piecewise constant segmentation, where the authors proposed the following
variational framework:

Let u0 : Ω→ R , u0 = un be an observed image containing the multiplicative
noise n and the domain Ω is bounded with Lipschitz boundary. Assume that u
is piecewise constant. Denote by C included in Ω the contour which separates
Ω into two regions Ω1 and Ω2, and let the Lipschitz function φ be a level set
function which represent C. Then the functional energy for the two-phase case
segmentation is given by

L(c1, c2, φ) = λ1

∫
Ω

(u0/c1 − 1)2 + λ2

∫
Ω

(u0/c2 − 1)2 + µ

∫
Ω

|∇H(φ)|. (1.8)

The energy minimization problem is solved using the Euler-Lagrange equa-
tion for the unknown level set function φ, and c1, c2.
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Due to the fact that ultrasound images have poor signal to noise ratio and
higher inhomogeneity, the piecewise constant Mumford-Shah model presented
in [17] is not efficient for segmentation of images with multiplicative noise.

In [24], a region based active contour model is developed using MLE with the
assumption that the image intensity at each pixels is an independent random
variable with Rayleigh distribution. A finite difference approximation for the
curve evolution was derived. The models presented in [17,24] were tested on
real (ultrasound) and synthetic images.

In this work we will present a novel variational framework for simultaneous
denoising and multiphase segmentation of the images corrupted with multi-
plicative noise. The segmentation is performed by estimating the probabilities
that each pixel belongs to the partitioned sub-regions. The denoising is carried
out by minimizing a variable exponential growth functional, which consists of
a combination of TV-based and isotropic smoothing, and a data fitting term
under the consideration of multiplicative noise. The model development and
computational implementation are explored in section 2 and 3 respectively, and
experimental results and comparisons with existing models on real and synthetic
images are presented in section 4. We present our conclusions on the proposed
work in section 5.

2. Proposed work

In this section, we will make a more detailed presentation of our proposed
variational model for simultaneous noise removal and multiphase segmentation
of images contaminated with multiplicative noise. Let I : Ω → R be a noisy
image defined on an open, bounded, smooth domain Ω ⊂ R2. Suppose that the
image I has K patterns and it can be modeled as corrupted with noise of the
form (1.5).

The proposed model refers to the minimization of an energy functional which
contains two parts: the noise removal and, respectively the soft segmentation
part. First, we denote by ui(x) the mean field of the intensity of the pattern
i and pi(x) the probability that the pixel x from Ω belongs to the pattern i,
satisfying the simplex constraints

K∑
i=1

pi(x) = 1, 0 ≤ pi(x) ≤ 1, i = 1, ...,K. (2.1)

Then, for our work, the noise can be modeled by the formula:

n2(x) =

K∑
i=1

(I(x)− ui(x))2pi(x)

ui(x)
(2.2)

for any x from Ω.
The proposed model for simultaneous denoising and soft segmentation of the

images corrupted with ”speckle” noise refers to the minimization of the following
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energy functional:

E[pi, ui|I] = α

K∑
i=1

∫
Ω

|∇ui(x)|q(x) + λ

K∑
i=1

∫
Ω

(I(x)− ui(x))2pi(x)

ui(x)

+

K∑
i=1

∫
Ω

|∇pi(x)|2 +

∫
Ω

(

K∑
i=1

√
pi(x))2, i = 1, ...,K (2.3)

where α and λ are weighted parameters and the memberships functions pi(x)
are subject to the simplex constraints (2.1).

The reconstructed image result for the proposed model at any pixel x from
Ω is given by the formula

u(x) =

K∑
i=1

ui(x)pi(x). (2.4)

In the proposed work, the smoothing part of the energy functional contains
a variable exponent defined as

q(x) =

{
1 + 1

1+β|∇Gσ̃∗I(x)|2 , if |∇u(x)| ≤ ρ
1, if |∇u(x)| > ρ

(2.5)

with β, ρ > 0 fixed, and Gσ̃ a Gaussian function.
Using this functional with variable exponent will give the model the following

benefits:
a) it ensures TV based diffusion (q(x) = 1) along edges and Gaussian

smoothing (q(x) = 2) in homogenous regions and,
b) it employs anisotropic diffusion (1 < q(x) < 2) in regions in which the

difference between noise and edge is difficult to distinguish.
For our work model, we also seek to minimize the term

K∑
i=1

∫
Ω

|∇pi(x)|2 +

∫
Ω

(

K∑
i=1

√
pi(x))2. (2.6)

That means, we impose the condition that membership functions pi(x) are
smooth inside the pattern and discontinuous across it.

Denote by P = (p1, ..., pK) the membership probability defined on the (K−
1)-simplex. In plus, for any x from Ω, the membership P is forced to be close
to the vertices of the (K-1) simplex, i.e. each pi(x) is close to either 0 or 1, for
i = 1, 2, ...,K.

To find an optimal solution for the minimization of the energy functional
(2.3), we compute the Euler-Lagrange equations associated with this problem.
Denote U = (u1, ..., uK) with the membership P = (p1, ..., pK).

The first order variation of the energy functional given by (2.3) with respect
to the membership P is computed by using the projection on (K-1)simplex
technique [21,25].
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We can write the equations for the first order variation of the energy E with
respect to P without the simplex constraints (2.1) as

∂E =

∫
Ω

K∑
i=1

Wiδpidx+

∫
∂Ω

K∑
i=1

wiδpidH, (2.7)

where H is the Hausdorff measure on ∂Ω and

Wi = −∆pi(x) + λ
(I(x)− ui(x))2

ui(x)
+

1

K

∑K
i=1

√
pi√

pi
, x ∈ Ω, (2.8)

wi =
∂pi(x)

∂n
, x ∈ ∂Ω. (2.9)

Taking W = (W1, ...,WK) and w = (w1, ..., wK), the relation (2.7) can be
written in the free-gradient form

∂E

∂fP
= W |Ω + w|∂Ω. (2.10)

Because P belongs to the (K − 1)-simplex, we consider the orthogonal pro-
jection

Π : TPR
K → TP∆K−1.

For any t ∈ TPRK ,

Π(t) = t− 1K < t, 1K >

K
= t− < t > 1K ,

where < t >=
∑K
i=1 ti
K and 1K√

K
= (1,...,1)√

K
is the normal direction of the tangent

plane.
The constrained gradient of E on the (K − 1)-simplex is given by

∂E

∂P
= Π(

∂E

∂fP
) = (W− < W > 1K)|Ω + (w− < w > 1K)|∂Ω. (2.11)

To solve the equation
∂E

∂P
= 0 (2.12)

is equivalent to solve the Euler- Lagrange system of equations on P , given U :

Wi(x) =< W (x) >, x ∈ Ω, (2.13)

wi(x) =< w(x) >, x ∈ ∂Ω (2.14)

where Wi and wi are given in the relations (2.8) and (2.9).
The Euler- Lagrange system of equations on U , given P is

α div(q(x)|∇ui(x)|q(x)−2∇ui(x)) + λ(
I(x)2

ui(x)2
− 1)pi(x) = 0, x ∈ Ω, (2.15)

q(x)|∇ui(x)|q(x)−2 ∂ui(x)

∂n
= 0, x ∈ ∂Ω. (2.16)
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3. Algorithm

To obtain an optimal solution (U,P) to problem (2.3), we used the alter-
nating minimization (AM) algorithm. For each step (n+ 1), given the patterns
Un = (uni ; i = 1, 2, ...,K) and the ownership Pn = (pni ; i = 1, 2, ...,K) find

Pn+1 = argminPE[P|Un, I] (3.1)

where U=(u1, ..., uK) and P=(p1, ..., pK) satisfies the simplex constraints (2.1).
To find a solution of the equation (2.12) is equivalent to solve the associated

flow equation:
d(pi)

dt
= Lpi(I, ui, pi, ) (3.2)

where
Lpi(I, ui, pi) = Wi− < W > (3.3)

with Wi defined in (2.8) and < W >=
∑K
i=1Wi

K .
Therefore

Lpi(I, ui, pi) = λ
(I − ui)2

ui
−∆pi +

1

K

∑K
i=1

√
pi√

pi
− < W > (3.4)

and

< W >=
1

K

K∑
i=1

(−∆pi + λ
(I − ui)2

ui
+

1

K

∑K
i=1

√
pi√

pi
)

=
1

K

K∑
i=1

(λ
(I − ui)2

ui
+

1

K

∑K
i=1

√
pi√

pi
) (3.5)

since

∆(

K∑
i=1

pi) = 0. (3.6)

Following, given Pn and Un,

Un+1 = argminUE[U|Pn, I] (3.7)

which is equivalent to solving the associated flow equation

d(ui)

dt
= Lui(I, ui, pi, ) (3.8)

where

Lui = α div(q|∇ui|q−2∇ui) + λ(
I2

u2
i

− 1)pi (3.9)

and q (depending on x) is given in relation (2.5).
Summarizing, the updating...(Un,Pn)...→ (Un+1,Pn+1)... is obtained solv-

ing the following system of equations:

pn+1
i = pni + dtpLpi(I, u

n
i , p

n
i ),

un+1
i = uni + dtuLui(I, u

n
i , p

n
i ). (3.10)

where dtp and dtu are steps sizes, Lpi , Lui are defined in (3.4) and (3.9).
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4. Experiments

To show the effectiveness of our model, six experiments were performed. For
all experiments, the contaminated image I is given by the formula (1.5). Denote
by n the number of iterations for each experiment.

Figure 1 is a comparison between the RLO model (1.2) and the proposed
model (2.3) using a synthetic image contaminated with multiplicative noise.
Figure 1(a) is the original clean image, figure 1(b) is the contaminated image
with multiplicative Gaussian noise of mean zero and variance 0.03. Figure 1(c)-
(d) represent the reconstructed image result u(x) using our model, respectively
the RLO model. We have tested the performance of our model by computing
the signal to noise ratio and the relative error for both models. We denoted by
Ic the original clean image and by u the restored image. With this notations, we
defined the SNR (signal to noise ratio) and the ReErr (relative error) as follows
[9]:

SNR = 10log10
||Ic||22
||u− Ic||22

, ReErr =
||u− Ic||22
||Ic||22

.

We summarized the results in table 1. From the quantitative comparison
results shown in table 1 and from the computational results from figure 1(c)-(d)
we can conclude that our model performs a better and faster denoising than the
traditional RLO model for the same number of iterations. The parameters used
for our model are α = 8, λ = 0.8 and the number of iterations is n = 50.

Figure 2 shows a comparison of a reconstructed image obtained by using the
proposed model with different q(x). The test image is given in figure 1 (b). We
compare the results of our model (2.3), when q(x) is a function on the interval
[1,2] with the case when q(x) is a constant, either one or two. In our model,
q(x) varies from pixel to pixel and from iteration to iteration and provide better
results than if q(x) is fixed and does not vary in x and n. To illustrate this fact,
we considered two cases for q(x) constant:

1) q(x) = 1 and 2) q(x) = 2. In case 1), Figure 2 (c), the denoising is more
slower and takes more iterations in order to obtain a satisfactory result. In case
2), Figure 2 (d), the denoising is faster and leads to a loss of the image details.
As it can be seen in Figure 2 (b) and Table 2, the proposed model offers a better
noise removal, being a combination of the TV-based and isotropic smoothing.
The parameters used for the proposed model, for the experiments shown figure
2, are α = 3, λ = 0.3 and the number of iterations is n = 50.

In the third experiment, we compare the results between the proposed model
and RLO model (1.2), for an ultrasound image. The results are shown after 50
iterations and the parameters used for our model are α = 1, λ = 0.4. We
included the mean fields for our reconstructed image with the corresponding
probabilities for the proposed model and the resulting minimized energy for each
model. We can see from the energy plot in figure 3(h) that we reached an optimal
solution after 50 iterations for the proposed model (2.3). The results show that
our model performs a better and faster denoising, with feature preserving than
the RLO model (1.2).
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Figure 4 represents a comparison between our model (2.3) and model (1.8).
Figure 4 (a) is the given image contaminated with multiplicative noise with mean
zero and variance 0.1 and with contrast 17/60 on [0,255] gray scale. Figure 4
(b) represents the segmentation result u(x) using our model, after 50 iterations,
figure 4 (c)-(d) represent the mean fields of the segmentation result for our
model. The parameters used for this experiment for our model are α = 7, λ =
0.7. The results of model (1.8) are shown in figure 4 (e)-(j) after 50, respectively
1200 iterations. As we can see from table 3 and from the reconstructed image
from figure 4 (b) , our model performs a better and faster segmentation than
the model (1.8).

In experiment 5, we make a comparison between the segmentation results
of the proposed model (2.3) and the model (1.8) for three different situations.
These three initial images with different level of noise and different level of
contrast, are represented in figure 5(a)-(c).

Figure 5(a) is an initial image with contrast 17/33 on [0,255] gray scale
and noise of variance 0.03, figure 5(b) represents an initial image with contrast
17/60 on [0,255] gray scale and noise of variance 0.1 and the last initial image has
contrast 17/138 on [0, 255] gray scale and noise of variance 0.2. The results are
shown after 50 iterations. In figure 5 (j)-(l) we have shown the corresponding
energies for the proposed model (2.3). As we can see from the comparison
results, the proposed model performs well the segmentation for all the situations
given above. From the experiments 4 and 5, we can conclude that the proposed
model is faster, more robust to noise and contrast. For the proposed model, for
these three different cases,we have used the parameters α = 8, λ = 0.8,α = 7,
λ = 0.7, and respectively α = 5, λ = 0.5. For the comparison model (1.8), we
used the same initialization for all test images.

In the last experiment, we compare our model with model (1.8) for an thyroid
ultrasound image. We have shown the final reconstructed result u(x) and the
corresponding mean fields u1(x), u2(x) for both models. For our model, we
used the parameters α = 1, λ = 0.4. We have included the results for our model
after 50 iterations and for the comparison model (1.8) after 50, respectively 1000
iterations. From this experiment we can conclude that our model performs a
better segmentation for the same number of iterations.

All the experiments presented in this paper were performed on a Sony Vaio
laptop with Intel Core 2 Duo T 6400, 2.0 GHz processor and 4GB memory
(RAM).

Table 1: The SNR and ReErr for the synthetic image in Figure 1.

Proposed model RLO model
SNR 24.96 21.48

ReErr 0.00001 0.00005
CPU time 62.960000 153.381415
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Table 2: The SNR and ReErr for synthetic image in Figure 2.

q(x) variable q(x) = 1 q(x) = 2
SNR 24.96 21.24 22.38

ReErr 0.00001 0.00005 0.00003

Table 3: The computing time for ultrasound thyroid image in Figure 3.

Proposed model RLO model
CPU time 39.362986 84.0805575

Table 4: The number of pixels per partition for synthetic image in Figure 4.

Initial image Proposed model Vese model Vese model
50 iterations 50 iterations 1200 iterations

U1 28847 28847 12467 28547
U2 28753 28753 45124 29053

5. Conclusions

The proposed model is a novel variational approach for simultaneous seg-
mentation and denoising of images contaminated with multiplicative noise. By
using the soft segmentation procedure and an energy functional with variable
exponent for noise removal, the model becomes more robust to noise and per-
forms a better segmentation.

The functional with variable exponent
∫

Ω
|∇u(x)|q(x) provides a better noise

removal with features preservation. It ensures the TV- based diffusion (q(x) = 1)
along edges and Gaussian smoothing (q(x) = 2) in homogenous regions and, it
employs anisotropic diffusion (1 < q(x) < 2) in regions in which the difference
between noise and edge is difficult to distinguish.

We compared our model to some traditional models, for both real (ultra-
sound) and synthetic images and the computational results show the effective-
ness of the proposed work.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 1: (a) Synthetic image. (b) Synthetic image with noise. (c) The denoised image result
obtained by using the proposed model.
(d) The denoised image result obtained by using the RLO model (1.2).
(e),(f),(g) The mean fields u1(x), u2(x), u3(x) for the result (c).
(h),(i),(j) The corresponding probabilities p1(x), p2(x), p3(x) for our model (2.3).
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(a) (b)

(c) (d)

Figure 2: Comparison on q(x): (a) Synthetic image corrupted with multiplicative noise.
(b) The reconstructed image using q(x) variable.
(c) The reconstructed image using q(x) = 1 fixed in our model.
(d) The reconstructed image using q(x) = 2 fixed in our model.
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Figure 3: (a) Ultrasound thyroid with noise.
(b) The denoised image obtained by using the proposed model (2.3).
(c) The denoised image result using the RLO model (1.2).
(d)-(e) The mean fields u1(x), u2(x) of the patterns for model (2.3).
(f)-(g) The corresponding probabilities p1(x), p2(x) for model (2.3).
(h)-(i) The normalized energy versus iterations for the proposed model (2.3) and for RLO
model (1.2).
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Figure 4: (a) Synthetic image with noise. (b) Segmentation result using the proposed model
(2.3) after 50 iterations.
(c)-(d) The mean fields u1(x), u2(x) of the segmentation result (b).
(e) Segmentation result using model (1.8) after 50 iterations.
(f)-(g) The mean fields u1(x), u2(x) of the patterns for model (1.8) after 50 iterations.
(h) Segmentation result using model (1.8) after 1200 iterations.
(i)-(j) The mean fields u1(x), u2(x) of the patterns for model (1.8) after 1200 iterations.
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Figure 5: (a)-(b)-(c) Initial images with different level of contrast and different level of noise.
(d)-(e)-(f) The corresponding segmentation results using the proposed model (2.3).
(g)-(h)-(i) The corresponding segmentation results using model (1.8).
(j)-(k)-(l) The normalized energy versus iterations for the proposed model (2.3).
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Figure 6: (a) Ultrasound thyroid with noise. (b) Segmentation result using the proposed
model (2.3).
(c)-(d) The mean fields u1(x), u2(x) of the patterns for our model.
(e) Segmentation result using model (1.8) after 50 iterations.
(f)-(g) The corresponding mean fields u1(x), u2(x) for (e).
(h) Segmentation result using model (1.8) after 1000 iterations.
(i)-(j) The corresponding mean fields u1(x), u2(x) for (h).
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