
AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

559

AMO - Advanced Modeling and Optimization, Volume 16, Number 3, 2014

PSO and Harmony Search Algorithms for Cardinality Constrained Portfolio

Optimization Problem

M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

Department of Applied Mathematics, Faculty of Mathematical Sciences

 University of Guilan, Rasht, Iran

salahim@guilan.ac.ir

Abstract: Markowitz cardinality constraint mean-variance (MCCMV) model is a well studied and important one in

the portfolio optimization literature. It is formulated as mixed integer quadratic programming problem (MIQP)

which belongs to class of NP-hard problems, thus various heuristic and meta-heuristic algorithms are applied to

solve it. In this paper, two modified versions of particle swarm optimization (PSO) and harmony search (HS)

algorithms are applied to solve the underlying problem. In the proposed PSO algorithm, modifications in inertia

weight and learning coefficients are done and in the modified HS algorithm, modifications in harmony memory

consideration rate, pitch adjustment rate, and bandwidth are done. Experimental results on five data sets that

includes 31 assets up to 225 assets show that the modified HS algorithm is much faster than the modified PSO,

specially on large data sets.

Key words: Markowitz mean-variance model, cardinality constrained, portfolio optimization, efficient frontier,

particle swarm optimization, harmony search.

JEL Classification:G11, C60.

1. Introduction

One of the most important problems in finance is selecting portfolio such that improve tradeoff between risk and

return. For this purpose, Markowitz in 1952 introduced mean-variance model which is one of the well-known

models for solving the portfolio selection problem [1-2]. This model can be described as a two-objective nonlinear

programming problem such that the goal is to minimize risk and maximize return. This model can be equivalently

reformulated as a quadratic programming (QP) problem [3]. The Efficient frontier for the standard mean-variance

model as defined in [2] can be easily obtained by solving the corresponding QP for all tradeoffs between risk and

return.

Many variants have been proposed to make the Markowitz model more realistic. These refinements come from real-

world applications, in which constructing a portfolio made up of a large number of assets possibly with very small

holdings for some of them, is clearly not desirable. This is because of transactions costs, minimum lot sizes,

complexity of management and policy of the asset management companies [1-4]. In fact, limiting the number of

different assets included in the portfolio decreases transaction cost. Also the monitoring of news and firm’s results is

easier and so less costly with few assets in the portfolio [5]. One of the most important variants of mean-variance

model is "cardinality constraint" which includes limitation on the number of assets to be held in an efficient

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

560

portfolio, and prescribes lower and upper bounds on this limitations. "Quantity constraint" or "bounding constraint"

is another limitation that limits the amount of an asset in portfolio. This makes sense in real life, because portfolio

managers usually put a limit on amount of investment in a single security in their portfolio. Moreover, this constraint

prevents having portfolios with small or large shares. However imposing such constraint in portfolio optimization

makes it complex, and consequently finding efficient frontier becomes difficult. By adding cardinality and quantity

constraints in mean-variance model, the QP formulation of the problem converts to mixed-integer QP (MIQP)

model and QP solvers or traditional mathematical method cannot deal with it efficiently and might lead to local

solutions [1-4]. Therefor, solving this problem with heuristic or meta-heuristic algorithms is of interest.

Many heuristics and meta-heuristic algorithms have been applied to obtain the efficient frontier of the corresponding

MIQP problem, for example, Chang et al. (2001) used Genetic algorithm (GA), simulated annealing (SA) and Tabu

Search (TS) to draw efficient frontier [4], Fernandez and Gomez (2007) applied neural network (NN) [2] and Cura

(2009) proposed basic particle swarm optimization (PSO) heuristic [6] to tackle the problem. In another study,

Anagnostopoulos et al. (2011) applied five multi-objective evolutionary algorithms (MOEAs), compared them and

traced efficient frontier related to each algorithm [3]. Mozafari et al. (2011) proposed a hybrid algorithm of SA

procedure and improved PSO for the problem [7]. Moreover, Deng at al. (2012) compared PSO with different

modifications and suggested a mutation in PSO heuristic for maximizing diversification [8].

In this paper, we use a modified version of PSO by Eberhart and Shi [9] to solve the Markowitz MIQP model. This

modification uses a simplified method of constriction factor and dynamic inertia weight. This version of PSO is

referred to here as ICPSO. Also, we use a version of harmony search algorithm proposed by Mahdavi et al [10] with

some modifications on parameters. This modification is called improved harmony search algorithm (IHS). The two

algorithms are compared on five sets of test problem. Our comparison shows that IHS algorithm is much faster than

ICPSO, especially on large data sets.

The rest of the paper is organized as follows. In Section 2 we introduce cardinality constrained portfolio

optimization for the standard mean-variance model. To solve this problem, first we review PSO and HS algorithms

in Section 3 and introduce some modifications on the algorithms parameters to have better performance. In Section

4 we present computational results and finally Section 5 gives the conclusions.

2. Cardinality constrained portfolio optimization

Having cardinality and quantity constraint in the standard mean-variance model leads us to the following model:

(1)

(2)

(3)

(4)

(5)

(6) { }

where is the variance-covariance matrix, is the vector of expected returns, R is the desired expected return, k is

the number of desired assets in basket (portfolio) and and are lower and upper bound for asset i, respectively.

Because variance is a criteria for measuring risk, we minimize variance of a portfolio in the objective. Constraint (2)

ensures that we have return R. Constraint (3) makes proportion of a portfolio unique. Constraint (4) determines that

we must have k assets in the portfolio and constraint (5) give limitation on proportion of a portfolio between lower

and upper bound. 's are binary variables, which if there is an asset in a portfolio then it is equal to 1, otherwise it is

0.

One usual way to solve this problem is to use trade-off parameter between risk and return of portfolio. Thus the

cardinality constrained mean-variance model (CCMV) can be formulated as follows [2-4].

PSO and Harmony Search for Portfolio Optimization Problem

561

(7) 𝜆 (𝜆)

(8)

(9)

(10)

(11) { }

If 𝜆 then we can reach to maximum return and if 𝜆 we can reach to minimum risk. By moving from 𝜆

to λ , we can move from portfolios with maximum return toward portfolios with minimum risk. By solving the

aforementioned problem for λ between 0 and 1 and obtaining respective optimal portfolios, we can compute

coordinate of the corresponding mean and variance of returns. Linking these coordinates, result in a curve that is

called efficient frontier. From this curve, we can see that how portfolios risk increase as desired return increases [1].

This frontier can be different from the one obtained by standard Markowitz model [4].

3. PSO and HS Algorithms

Finding algorithms with reasonable run time and good quality of solution for problems are two main goals in

computer science. For this purposes, heuristic and meta-heuristic algorithms might be very useful, specially for

problems belong the class of NP-hard problems [11-12]. In this section we present two meta-heuristic algorithms,

namely PSO and HS algorithms to solve the MCCMV.

3.1. PSO meta-heuristic

PSO is a population based algorithm that fountain from social acting of a swarm of birds, bees or fishes which

introduced by Eberhart and Kennedy in 1995. Each swarm has number of particles that their positions depend on

their velocities and both are vectors in multi dimensional search spaces. Current particle’s velocity also depends on

its previous velocity, best position founded by it and best positions founded by entire swarm.

To picture algorithm better, imagine a group of birds that randomly searching for a food and one of them is near the

food and there is just one food. Let's call this bird the leader. Other birds by following the leader, try to improve

their position and try to be nearer to the food. In other words, by imitation from the leader and its knowledge, one of

them can reach the food [13].

Using PSO method for selecting a basket, vector of particle’s position is the basket of assets and vector of best

particle's position in entire swarm is the efficient basket of assets.

3.1.1. ICPSO Method

For finding best particle in whole swarm we need information about particles distance from each other, from the best

one and also we need information about their velocities. Let vector x denotes particle’s location. Let index b

determine best particle in the swarm and index determine global best particle in entire swarm. So velocity and

position of particle i at iteration t+1 can be updated by the following equations, respectively:

12)) (),

(13) .

In equations (12), w is the inertia weight, and are personal and global learning coefficients, respectively and

 is a random number between 0 and 1. Adjusting these coefficients make convergence of the algorithm better

and faster [6-9].

In this paper, for tracing efficient frontier by PSO algorithm, we use the approach suggested in [6] that considers

every particle in 2×N dimensional search space. Suppose that include the share on a portfolio and be binary

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

562

variable that shows share is in our portfolio or not. In dimension and dimension velocity vector will be updated

as follows, respectively.

 (14) (())

(15) (())

(16) √ ⁄

(17)

where is constriction factor and is inertia weight. These formulas were derived from Clerc's work in 1999

where he noticed that manipulation of constriction factor could be essential for particles convergence [9].

The PSO with modification on inertia weight and constriction factor is referred to here as ICPSO. Moreover, for

constraints satisfaction, we used arrangement algorithm in [6] that makes every solution (particle) feasible.

3.2. HS meta-heuristic

HS algorithm is a meta-heuristic method that introduced by Geem et al. (2001) and uses musician creation of music

for producing harmonies. It has three rules that link creation of music to optimization method. These three rules are

presented in Table 1 [14].

Table 1: analogues improvisation with optimization

Musician creation of music rules Related rules in HS method Called

1. Playing every sound from listener

memory

Selecting every value from harmony search

memory

memory

consideration

2. Playing familiar sound to listener

memory

Selecting value near to harmony search

memory
pitch adjustment

3. Playing random sound from

possible sound range.

Selecting random value from possible value

range.
Randomization

Using HS method for selecting a portfolio, every harmony vector is related with a portfolio, each player is related

with a decision variable, listener satisfaction is related with objective function, player's creation of music is related

with local and global search procedure and range of music sounds is like interval of variables. Analogous to the

other meta-heuristic methods, this method has some parameters that adjusting them might improve its performance.

These parameters include HMS, HMCR, PAR, BW and NI that are harmony memory, harmony memory

consideration rate, pitch adjusting rate, bandwidth and number of improvisation (creation of music), respectively.

3.2.1. IHS algorithm

Mahdavi et al [10], proposed dynamic parameters for HS algorithm and called the new version of HS algorithm

improved HS (IHS). In this paper, we utilize this version of HS with modifications on parameters. We describe IHS

procedure as follows:

 Initialization of the problem and algorithm parameters

PSO and Harmony Search for Portfolio Optimization Problem

563

Let

 denote harmony vectors and N denotes number of harmony vectors. Also

let where and are given lower and upper bounds on the harmony vector i,

respectively.

In general, optimization problem can be described as the following:

Three main parameters that have most effect on performance of IHS are HMCR, PAR and BW [9-11]. In this paper,

we set theses parameters as following:

 ,

 ,

 .

and

(18)

 ,

(19)

 ,

(20)

where iter is the current iteration and is the maximum number of iterations.

 Initialization of the harmony memory

Let HM denotes harmony memory and HMS denotes harmony memory size. HM is a matrix that filled up with

harmony vectors in size of HMS as follows:

 (21)

[

]

 Creation of new harmony

Let NHM, NHMS denote the new harmony memory and new harmony memory size, respectively. Also NHM is a

matrix of size NHMS. NHM includes
 (

) for that are produced randomly.

To improve these harmonies, we must use three rules as were mentioned in Table 1.

1. Memory consideration:

 (22)

 {

 {

 }

Here

 is improved harmony and selected from HM with probability HMCR or otherwise from possible value

range with probability 1-HMCR.

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

564

2. Pitch adjustment: for new produced harmony we must check that whether it needs to be adjusted or not.

 (23)

 {

3. Randomization: if pitch adjustment decision is yes then use Eq (24) as follow.

 (24)

where rand is a random number and Bw is Bandwidth. If this is no then there is no need to adjust

 [10, 14-15].

 Update harmony memory

To compare harmonies (candidate solutions), we must a have a metric. One obvious and simple criteria is to use

objective function to evaluate the harmonies and find best harmony. In other words, we can use

 (25) 𝜆 𝜆

where is value of fitness function for harmony x, 𝜆 is trade-off parameter, is variance-covariance matrix and

 is the vector of expected returns [6].

Now we can summarize IHS algorithm as it follows.

1. Initialize the problem and algorithm parameters: HMS, HMCR, PAR, BW and NHMS (NI).

2. Initialize harmony memory (HM): a matrix in HMS size.

3. a. Produce new harmony randomly in size of NHMS.

 b. Check equation (22) and (23).

4. Find best new harmony and delete worse one based on value.

5. Check stopping criteria. If the algorithm reaches maximum number of iterations, then it will be terminated.

Otherwise steps 3 and 4 will be repeated [10-11, 14-15].

 Table 2: Pseudo Code of IHS Meta-Heuristic

For i=1:maxiter

Compute HMCR,PAR,BW with related equations.

 For i=1:NI

 NHM(i).position=unifrnd(0.01,1, [1 number_of_variable]);

 For j=1:number_of_variables

 if rand<=HMCR

 k=randi([1 HMS]);

 NHM(i).position(j)=HM(k).position(j);

 else

 NHM(i).position(j)=rand;

 end

 if rand<=PAR

 NHM(i).position(j)=NHM(i).position(j)+ BW*unifrnd(0.01,1);

 end

 end

 Make NHM(i).position feasible;

PSO and Harmony Search for Portfolio Optimization Problem

565

 ; Compute

 end

find best harmony and delete worse one;

end

In this algorithm, like ICPSO, we used arrangement algorithm in [6] to make every solution feasible.

4. Computational Results

To test the performance of ICPSO and IHS algorithm, we use data sets include the weekly prices from March 1992

to September 1997, for indices Hang Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in

USA and Nikkei in Japan. Numbers of different assets for these indices are 31, 85, 89, 98 and 225, respectively. The

set of mean returns for assets, covariance between these assets and 2000 points from efficient frontier are available

in http://people.brunel.ac.uk/%7Emastjjb /jeb/orlib/portinfo.html.

Let

 s for i=1 to 2000 be the set of mean and variance of portfolio return points on the standard efficient

frontier and (

) for ξ (that in here ξ is 51) be the set of mean and variance of portfolio return points

on heuristic efficient frontier. Let

 be the point on standard frontier that has minimum Euclidean distance

from the heuristic point (

) where e the corresponding index can be found as follows:

 (√(

)

 (

)

) . (26)

So mean Euclidean distance, variance of return error and mean return error can be defined as follow:

(27)
 ∑ √(

)

 (

)

,

(28)
 ∑ |

(

)

 |

 ,

(29)
 ∑ |

(

)

 |

 ,

respectively. For 51 different values of trade-off parameter, equally spaced in [0, 1], we run our algorithms for

CCMV using the five test data sets. In our study, number of desired assets in our portfolio is 10 and lower and upper

bound for all of these assets is 0.01 and 1, respectively. We implemented our algorithms in MATLAB version

8.0.0.783 and ran it on a Core CPU 2.70GHz machine with 1GB of RAM.

HMCR parameter in each step is increased linearly from 0.8 to 0.99 in the IHS parameter setting with Eq (18).

Lowest value of PAR and BW both is taken to be equal to and highest values of these parameters equal

to . Then, we linearly increased PAR while simultaneously decreased BW with Eq (19) and Eq (20),

respectively. Maximum number of iterations which is used as stopping criteria is set to 50. Moreover, we set

Harmony memory size equal to 10 and number of improvisation equal to 30. Also, For ICPSO parameters, we set

number of populations equal to 50, maximum number of iterations equal to 100. Then, we linearly decreased inertia

weight with Eq (17). Initial value of is set to 1. Figures 1 to 5 illustrate the efficient frontier obtained from ICPSO

and IHS algorithms as well as the standard efficient frontier. Table 4 shows the result of computation. It can be

figured out that IHS algorithm outperform ICPSO algorithm. In , MED is mean Euclidean distance, VRE is

variance of return error and MRE is mean return error.

http://people.brunel.ac.uk/~mastjjb%20/jeb/orlib/portinfo.html

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

566

Table 3: Parameters setting for two meta-heuristics

ICPSO Parameter IHS Parameter min max

Initial of w 1 HMCR 0.8 0.99

Damping rate of w 0.9 PAR 0.1

No.population 50 BW 0.1

Max.iteartion 100 Max.iteartion 50

Constriction factor 0.729 Harmony memory size 10

Global learning

coefficient

2.05 Number of

improvisation

30

Personal learning

coefficient

2.05

Figure 1: Efficient Frontiers for Hang Seng data set

Figure 2: Efficient Frontiers for DAX data set

PSO and Harmony Search for Portfolio Optimization Problem

567

Figure 3: Efficient Frontiers for FTSE 100 data set

Figure 4: Efficient Frontiers for S&P 100 data set

Figure 5: Efficient Frontiers for Nikkei data set

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

568

Table 4: Experimental Results for two Heuristics

Index
Number of

Assets
Errors ICPSO IHS

HangSeng 31

MED 0.0000824 0.0000820

VRE(%) 1.9003836 1.8044041

MRE (%) 0.6409340 0.6483910

Time (sec) 57 55

DAX100 85

MED 0.0001298 0.0001296

VRE (%) 7.2061918 7.3849655

MRE (%) 1.1876764 1.0492997

Time (sec) 254 159

FTSE100 89

MED 0.0000408 0.0000400

VRE (%) 3.3812060 3.2479355

MRE (%) 0.3239293 0.3202507

Time (sec) 269 168

S&P 100 98

MED 0.0000756 0.0000746

VRE (%) 4.5894404 3.9023695

MRE (%) 0.8963859 0.9480060

Time (sec) 323 186

Nikkei 225

MED 0.0000220 0.0000206

VRE (%) 1.8414523 1.6020636

MRE (%) 0.4328426 0.4036726

Time (sec) 2676 659

5. Conclusions

In this paper, we have studied Markowitz mean-variance model with limitation on the number and quantity of assets.

For finding efficient portfolio and tracing efficient frontier, we proposed new modifications of PSO and HS

algorithms. The two algorithms are compared on five benchmark data sets from 31 up to 225 assets. Results show

that IHS algorithm outperforms ICPSO in both time and accuracy, specially on large data sets.

References:

1. G. Cornuejols, R. Tutuncu, Optimization Methods in Finance, Cambridge University Press, New York,

(2007).

PSO and Harmony Search for Portfolio Optimization Problem

569

2. A. Fernandez, S. Gomez, Portfolio Selection Using Neural Networks, Computers & Operations Research,

(2007), 34, 1177-1191.

3. K.P. Anagnostopoulos, G. Mamanis, The Mean–Variance Cardinality Constrained Portfolio Optimization

Problem: An Experimental Evaluation of Five Multi-Objective Evolutionary Algorithms, Expert Systems

with Applications, (2011), 38, 14208-14217.

4. T.J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for Cardinality Constrained Portfolio

Optimization, Computers & Operations Research, (2000), 27, 1271-1302.

5. A. Kresta, K. Slova, Solving Cardinality Constrained Portfolio Optimization Problem by Binary Particle

Swarm Optimization Algorithm, Department of Mathematical Methods in Economics, Faculty of

Economics, VŠB-Technical University of Ostrava, Sokolská třída, 33(701), 21.

6. T. Cura, Particle Swarm Optimization Approach to Portfolio Optimization, Nonlinear Analysis: Real World

Applications, (2008), 10, 2396-2406.

7. M. Mozafari, S. Tafazzoli, F. Jolai, A New IPSO-SA Approach for Cardinality Constrained Portfolio

Optimization, International Journal of Industrial Engineering Computations, (2011), 2, 249-262.

8. G.F. Deng, W.T. Lin, C.C. Lo, Markowitz-Based Portfolio Selection with Cardinality Constraints Using

Improved Particle Swarm Optimization, Expert Systems with Applications, (2012), 39, 4558-4566.

9. R.C. Eberhart, Y. Shi, Particle Swarm Optimization: Developments, Applications and Resources, In

Evolutionary Computation, Proceedings of the 2001 Congress on IEEE, (2001), 1, 81-86.

10. M. Mahdavi, M. Fesanghary, E. Damangir, An Improved Harmony Search Algorithm for Solving

Optimization Problems, Applied Mathematics and Computation, (2007), 188, 1567-1579.

11. Z.W. Geem, J.H. Kim, G.V. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search,

Simulation, (2001), 76, 60-68.

12. Nozim Komilov, Particle Swarm Intelligence: an Alternative Approach in Portfolio Optimization, Master

Thesis, University Ca'Foscary, Venezia, (2008).

13. M. Salahi, A. Jamalian, A. Taati, Global Minimization of Multi-Funnel Functions Using Particle Swarm

Optimization, Neural Computing and Applications, (2013), 23, 2101-2106 .

14. K. Luo, a Novel Self-Adaptive Harmony Search Algorithm, Journal of Applied Mathematics, (2013), 2013,

Article ID 653749, 16 pages, doi:10.1155/2013/653749.

15. A. Kaveh, H. Nasr, Solving the Conditional and Unconditional p-center Problem with Modified

Harmony Search: A Real Case Study, Scientia Iranica, (2011), 18, 867-877.

MATLAB Codes of HS and PSO

HS Method
clear all
%% parameters setting
global Q mo
load cov1
load mo1
Q=A; mo=mo1;
[~,nvar]=size(Q);
varsize=[1 nvar]; % Number of Variables
lambda=0; deltalambda=0.02;
HMS=10; % Harmony Memory Size
NHMS=30; % New Harmony Memory Size
maxiter=50; % Minimum Iteration
PARmin=0.000001; % Minimum Pitch Adjustment Rate
PARmax=0.1; % Maximum Pitch Adjustment Rate

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

570

FWmin=0.000001; % Minimum BandWith
FWmax=.1; % Maximum BandWith
k=10; % Number of Desired Asset
xglobal=zeros(51,nvar);
i2=1;
tic;
%% initialization
while (lamda<1.001)
empty.pos=[];
empty.cost=[];
HM=repmat(empty,HMS,1);
for i=1:HMS
HM(i).pos=unifrnd(0.01,1,[1 nvar]);
[HM(i).pos]=Harmoneyarrange2...
 (Q,mo,HM(i).pos,nvar,lamda,k);
HM(i).cost=Cost20(Q,mo,HM(i).pos,lamda);
end
[value,index]=sort([HM.cost]);
HM=HM(index);
GHM=HM(1); % Global Harmony
%% main loop
best=zeros(maxiter,1);
MEAN=zeros(maxiter,1);
for iter=1:maxiter
 HMCR=.8+.19*iter/maxiter; % Harmony Memory Consideration Rate
 PAR=PARmin+(PARmax-PARmin)*iter/maxiter; % Pitch Adjustment Rate
 FW=FWmax-(FWmax-FWmin)*iter/maxiter; % BandWith
 NHM=repmat(empty,NHMS,1);
 for i=1:NHMS
 NHM(i).pos=unifrnd(0.01,1,[1 nvar]);
 for j=1:nvar
 if rand<=HMCR
 kk=randi([1 HMS]);
 NHM(i).pos(j)=HM(kk).pos(j);
 else
 NHM(i).pos(j)=rand/5;
 end
 if rand<=PAR
 delta=FW*unifrnd(0.01,1)*(0.99);
 NHM(i).pos(j)=NHM(i).pos(j)+delta;
 end
 end
 [NHM(i).pos]=Harmoneyarrange2...
 (Q,mo,NHM(i).pos,nvar,lamda,k);
 NHM(i).cost=Cost20(Q,mo,NHM(i).pos,lamda);
 end
 [HM]=[HM;NHM];
 [value,index]=sort([HM.cost]);
 HM=HM(index(1:HMS));
 if HM(1).cost<GHM.cost
 GHM=HM(1);
 end
 best(iter)=GHM.cost;

PSO and Harmony Search for Portfolio Optimization Problem

571

 MEAN(iter)=mean([HM.cost]);
end
xglobal(i2,:)=GHM.pos;
fprintf('\n lambda(%d)= %2.2f\n ',i2-1,lamda);
lambda=lambda+deltalambda;
i2=i2+1;
end
%% results
toc;
ResultHS (Q,xglobal,mo,nvar)
figure(3)
plot(best(1:iter),'r','LineWidth',2);
hold on
plot(MEAN(1:iter),'b','LineWidth',2);
xlabel('t')
ylabel(' fitness')
legend(' BEST' , 'MEAN')
title('HS')

PSO Method
clear all;
k=10; phi1=2.05; phi2=2.05;
phi=phi1+phi2;
chi=2/(phi-2+sqrt(phi^2-4*phi));
w1=chi*phi1; w2=chi*phi2;
w=chi; wdamp=.9;
global Q mo
load cov1
load mo1
Q=A;
mo=mo1;
[~,nvar]=size(Q);
varsize=[1 nvar];
lamda=0;
deltalamda=0.02;
ret=zeros(1,50);
i5=1;
R=Q';
npop=50;
xglobal=zeros(npop,nvar);
maxiteration=100;
p=zeros(1,npop);
v=zeros(npop,nvar);
tic
while lamda<1.001
xp=zeros(npop,nvar);
xpbefor=xp;
zp=zeros(npop,nvar);
xpb=zeros(npop,nvar);
zpb=zeros(npop,nvar);
vx=zeros(npop,nvar);
vxbefor=vx;

 M. Salahi, M. Daemi, S. Lotfi, A. Jamalian

572

vz=zeros(npop,nvar);
cost=zeros(1,npop);
bestcost=zeros(1,npop);
globalbestcost=inf;
for i=1:npop
 xp(i,:)=unifrnd(0,1,varsize);
 xp(i,:)=xp(i,:)/sum(xp(i,:));
 xpbefor(i,:)=xp(i,:);
 zp(i,:)=floor(unifrnd(0,1,varsize)+.5);
 vx(i,:)=zeros(varsize);
 vxbefor(i,:)=vx(i,:);
 vz(i,:)=zeros(varsize);
 cost(i)=rand;
 xpb(i,:)=xp(i,:);
 zpb(i,:)=zp(i,:);
 bestcost(i)=cost(i);
 if bestcost(i)<globalbestcost
 globalbestcost=bestcost(i);
 Gxpb=xpb(i,:);
 Gzpb=zpb(i,:);
 end
end
for i=1:npop
 v(i,:)=xp(i,:)+w1*(Gxpb-xp(i,:))+w2*(xpb(i,:)-xp(i,:));
 [xp(i,:),zp(i,:),vx(i,:)]=...
 arrangenewer(Q,mo,xp(i,:),xpbefor(i,:),zp(i,:),vx(i,:),vxbefor(i,:),v(i,:),nvar,lamda,k);
 cost(i)=Cost21(Q,mo,xp(i,:),zp(i,:),lamda);
 if cost(i)<bestcost(i)
 bestcost(i)=cost(i);
 xpb(i,:)=xp(i,:);
 zpb(i,:)=zp(i,:);
 if bestcost(i)<globalbestcost
 globalbestcost=bestcost(i);
 Gxpb=xpb(i,:);
 Gzpb=zpb(i,:);
 end
 end
end
gamma=globalbestcost;
for counter=1:maxiteration
 t=gamma;
 for i=1:npop
 for j=1:nvar
 r1=rand;r2=rand;
 vz(i,j)=(w*vz(i,j)+w1*r1*(zpb(i,j)-zp(i,j))+w2*r2*(Gzpb(j)-zp(i,j)));
 kesi=zp(i,j)+vz(i,j);
 alpha=0.06;
 zp(i,j)=round(1/(1+exp(-kesi))-alpha);
 if zp(i,j)==1
 vxbefor(i,:)=vx(i,:);
 xpbefor(i,:)=xp(i,:);
 vx(i,j)=(w*vx(i,j)+w1*r1*(xpb(i,j)-xp(i,j))+w2*r2*(Gxpb(j)-xp(i,j)));
 if vx(i,j)+xp(i,j)>=0

PSO and Harmony Search for Portfolio Optimization Problem

573

 xp(i,j)=vx(i,j)+xp(i,j);
 else
 zp(i,j)=0;
 xp(i,j)=0;
 end
 else
 xp(i,j)=0;
 end
 v(i,:)=(xp(i,:)+w1*(xpb(i,:)-xp(i,:))+w2*(Gxpb-xp(i,:)));
 [xp(i,:),zp(i,:),vx(i,:)]=...
 arrangenewer(Q,mo,xp(i,:),xpbefor(i,:),zp(i,:),vx(i,:),vxbefor(i,:),v(i,:),nvar,lamda,k);
 cost(i)=Cost21(Q,mo,xp(i,:),zp(i,:),lamda);
 if cost(i)<bestcost(i)
 bestcost(i)=cost(i);
 xpb(i,:)=xp(i,:);
 zpb(i,:)=zp(i,:);
 if bestcost(i)<globalbestcost
 globalbestcost=bestcost(i);
 Gxpb=xpb(i,:);
 Gzpb=zpb(i,:);
 end
 end
 if globalbestcost<gamma
 gamma=globalbestcost;
 end
 end
 end
 if counter>5
 if norm(t-gamma)<1e-6
 break
 end
 end
 w=w*wdamp;
end
xglobal(i5,:)=Gxpb;
ret(i5)=gamma;
fprintf('\n lamda(%d)= %2.2f\n ',i5-1,lamda);
lambda=lambda+deltalambda;
i5=i5+1;
end
fprintf('\n');
toc
Result (Q,xglobal,mo,nvar)
figure (3);
plot(ret,'Linewidth',2)
xlabel('Iteration')
ylabel('Best Cost')
globalbestpositionx=Gxpb;
[~,pp]=size(globalbestpositionx);
PrinteResult(globalbestpositionx,gamma,pp)

