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Abstract: Markowitz cardinality constraint mean-variance (MCCMV) model is a well studied and important one in 

the portfolio optimization literature. It is formulated as mixed integer quadratic programming problem (MIQP) 

which belongs to class of NP-hard problems, thus various heuristic and meta-heuristic algorithms are applied to 

solve it. In this paper, two modified versions of particle swarm optimization (PSO) and harmony search (HS) 

algorithms are applied to solve the underlying problem. In the proposed PSO algorithm, modifications in inertia 

weight and learning coefficients are done and in the modified HS algorithm, modifications in harmony memory 

consideration rate, pitch adjustment rate, and bandwidth are done. Experimental results on five data sets that 

includes 31 assets up to 225 assets show that the modified HS algorithm is much faster than the modified PSO, 

specially on large data sets. 
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1. Introduction 

One of the most important problems in finance is selecting portfolio such that improve tradeoff between risk and 

return. For this purpose, Markowitz in 1952 introduced mean-variance model which is one of the well-known 

models for solving the portfolio selection problem [1-2]. This model can be described as a two-objective nonlinear 

programming problem such that the goal is to minimize risk and maximize return. This model can be equivalently 

reformulated as a quadratic programming (QP) problem [3]. The Efficient frontier for the standard mean-variance 

model as defined in [2] can be easily obtained by solving the corresponding QP for all tradeoffs between risk and 

return.  

Many variants have been proposed to make the Markowitz model more realistic. These refinements come from real-

world applications, in which constructing a portfolio made up of a large number of assets possibly with very small 

holdings for some of them, is clearly not desirable. This is because of transactions costs, minimum lot sizes, 

complexity of management and policy of the asset management companies [1-4]. In fact, limiting the number of 

different assets included in the portfolio decreases transaction cost. Also the monitoring of news and firm’s results is 

easier and so less costly with few assets in the portfolio [5]. One of the most important variants of mean-variance 

model is "cardinality constraint" which includes limitation on the number of assets to be held in an efficient 
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portfolio, and prescribes lower and upper bounds on this limitations. "Quantity constraint" or "bounding constraint" 

is another limitation that limits the amount of an asset in portfolio. This makes sense in real life, because portfolio 

managers usually put a limit on amount of investment in a single security in their portfolio. Moreover, this constraint 

prevents having portfolios with small or large shares. However imposing such constraint in portfolio optimization 

makes it complex, and consequently finding efficient frontier becomes difficult. By adding cardinality and quantity 

constraints in mean-variance model, the QP formulation of the problem converts to mixed-integer QP (MIQP) 

model and QP solvers or traditional mathematical method cannot deal with it efficiently and might lead to local 

solutions [1-4]. Therefor, solving this problem with heuristic or meta-heuristic algorithms is of interest. 

Many heuristics and meta-heuristic algorithms have been applied to obtain the efficient frontier of the corresponding 

MIQP problem, for example, Chang et al. (2001) used Genetic algorithm (GA), simulated annealing (SA) and Tabu 

Search (TS) to draw efficient frontier [4], Fernandez and Gomez (2007) applied neural network (NN) [2] and Cura 

(2009) proposed basic particle swarm optimization (PSO) heuristic [6] to tackle the problem. In another study, 

Anagnostopoulos et al. (2011) applied five multi-objective evolutionary algorithms (MOEAs), compared them and 

traced efficient frontier related to each algorithm [3]. Mozafari et al. (2011) proposed a hybrid algorithm of SA 

procedure and improved PSO for the problem [7]. Moreover, Deng at al. (2012) compared PSO with different 

modifications and suggested a mutation in PSO heuristic for maximizing diversification [8].  

In this paper, we use a modified version of PSO by Eberhart and Shi [9] to solve the Markowitz MIQP model. This 

modification uses a simplified method of constriction factor and dynamic inertia weight. This version of PSO is 

referred to here as ICPSO. Also, we use a version of harmony search algorithm proposed by Mahdavi et al [10] with 

some modifications on parameters. This modification is called improved harmony search algorithm (IHS). The two 

algorithms are compared on five sets of test problem. Our comparison shows that IHS algorithm is much faster than 

ICPSO, especially on large data sets. 

The rest of the paper is organized as follows. In Section 2 we introduce cardinality constrained portfolio 

optimization for the standard mean-variance model. To solve this problem, first we review PSO and HS algorithms 

in Section 3 and introduce some modifications on the algorithms parameters to have better performance. In Section 

4 we present computational results and finally Section 5 gives the conclusions.  

2. Cardinality constrained portfolio optimization  

  

Having cardinality and quantity constraint in the standard mean-variance model leads us to the following model: 

(1)                              

(2)                            

(3)                                  

(4)                              

(5)                                 

(6)                          {   }   

where   is the variance-covariance matrix,   is the vector of expected returns, R is the desired expected return, k is 

the number of desired assets in basket (portfolio) and    and    are lower and upper bound for asset i, respectively. 

Because variance is a criteria for measuring risk, we minimize variance of a portfolio in the objective. Constraint (2) 

ensures that we have return R.  Constraint (3) makes proportion of a portfolio unique. Constraint (4) determines that 

we must have k assets in the portfolio and constraint (5) give limitation on proportion of a portfolio between lower 

and upper bound.   's are binary variables, which if there is an asset in a portfolio then it is equal to 1, otherwise it is 

0.  

One usual way to solve this problem is to use trade-off parameter between risk and return of portfolio. Thus the 

cardinality constrained mean-variance model (CCMV) can be formulated as follows [2-4]. 
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(7)            𝜆     (  𝜆)           

(8)                                               

(9)                                                     

(10)                                 

(11)                    {   }                            

If 𝜆     then we can reach to maximum return and if 𝜆    we can reach to minimum risk. By moving from 𝜆    

to λ   , we can move from portfolios with maximum return toward portfolios with minimum risk. By solving the 

aforementioned problem for  λ between 0 and 1 and obtaining respective optimal portfolios, we can compute 

coordinate of the corresponding mean and variance of returns. Linking these coordinates, result in a curve that is 

called efficient frontier. From this curve, we can see that how portfolios risk increase as desired return increases [1]. 

This frontier can be different from the one obtained by standard Markowitz model [4]. 

3. PSO and HS Algorithms 

Finding algorithms with reasonable run time and good quality of solution for problems are two main goals in 

computer science. For this purposes, heuristic and meta-heuristic algorithms might be very useful, specially for 

problems belong the class of NP-hard problems [11-12].  In this section we present two meta-heuristic algorithms, 

namely PSO and HS algorithms to solve the MCCMV.  

3.1. PSO meta-heuristic 

PSO is a population based algorithm that fountain from social acting of a swarm of birds, bees or fishes which 

introduced by Eberhart and Kennedy in 1995. Each swarm has number of particles that their positions depend on 

their velocities and both are vectors in multi dimensional search spaces. Current particle’s velocity also depends on 

its previous velocity, best position founded by it and best positions founded by entire swarm. 

To picture algorithm better, imagine a group of birds that randomly searching for a food and one of them is near the 

food and there is just one food. Let's call this bird the leader. Other birds by following the leader, try to improve 

their position and try to be nearer to the food. In other words, by imitation from the leader and its knowledge, one of 

them can reach the food [13]. 

Using PSO method for selecting a basket, vector of particle’s position is the basket of assets and vector of best 

particle's position in entire swarm is the efficient basket of assets.  

3.1.1. ICPSO Method 

For finding best particle in whole swarm we need information about particles distance from each other, from the best 

one and also we need information about their velocities. Let vector x denotes particle’s location. Let index b 

determine best particle in the swarm and index   determine global best particle in entire swarm. So velocity and 

position of particle i at iteration t+1 can be updated by the following equations, respectively: 

12))                                         (     ), 

(13)                      . 

In equations (12), w is the inertia weight,    and    are personal and global learning coefficients, respectively and 

     is a random number between 0 and 1. Adjusting these coefficients make convergence of the algorithm better 

and faster [6-9].  

In this paper, for tracing efficient frontier by PSO algorithm, we use the approach suggested in [6] that considers 

every particle in 2×N dimensional search space. Suppose that    include the share   on a portfolio and    be binary 
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variable that shows share   is in our portfolio or not. In dimension   and dimension   velocity vector will be updated 

as follows, respectively.  

 (14)           (                                 (     ))  

  

(15)            (                                  (     ))  

  

(16)         √      ⁄                                                   

  

(17)                
 

where    is constriction factor and   is inertia weight. These formulas were derived from Clerc's work in 1999 

where he noticed that manipulation of constriction factor could be essential for particles convergence [9].  

The PSO with modification on inertia weight and constriction factor is referred to here as ICPSO. Moreover, for 

constraints satisfaction, we used arrangement algorithm in [6] that makes every solution (particle) feasible. 

3.2. HS meta-heuristic 

HS algorithm is a meta-heuristic method that introduced by Geem et al. (2001) and uses musician creation of music 

for producing harmonies. It has three rules that link creation of music to optimization method. These three rules are 

presented in Table 1 [14]. 

 

Table 1: analogues improvisation with optimization 

Musician creation of music  rules Related rules in HS method Called 

1. Playing every sound from listener 

memory 

Selecting every value from harmony search 

memory 

memory 

consideration 

2. Playing familiar sound to  listener 

memory 

Selecting value near to harmony search 

memory 
pitch adjustment 

3. Playing random sound from 

possible sound range.  

Selecting random value from possible value 

range. 
Randomization 

 

Using HS method for selecting a portfolio, every harmony vector is related with a portfolio, each player is related 

with a decision variable, listener satisfaction is related with objective function, player's creation of music is related 

with local and global search procedure and range of music sounds is like interval of variables. Analogous to the 

other meta-heuristic methods, this method has some parameters that adjusting them might improve its performance. 

These parameters include  HMS, HMCR, PAR, BW and NI that are harmony memory, harmony memory 

consideration rate, pitch adjusting rate, bandwidth and number of improvisation (creation of music), respectively. 

3.2.1. IHS algorithm 

Mahdavi et al [10], proposed dynamic parameters for HS algorithm and called the new version of HS algorithm 

improved HS (IHS). In this paper, we utilize this version of HS with modifications on parameters. We describe IHS 

procedure as follows: 

 Initialization of the problem and algorithm parameters  
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Let       
      

             denote harmony vectors and N denotes number of harmony vectors. Also 

let                    where     and    are given lower and upper bounds on the harmony vector i, 

respectively. 

In general, optimization problem can be described as the following: 

   
 

                               

Three main parameters that have most effect on performance of IHS are HMCR, PAR and BW [9-11]. In this paper, 

we set theses parameters as following: 

                              , 

                               , 

                            . 

and  

(18)              
               

       
     , 

(19)            
             

       
     , 

(20) 
         

           

       
       

where iter is the current iteration and         is the maximum number of iterations. 

 Initialization of the harmony memory 

Let HM denotes harmony memory and HMS denotes harmony memory size. HM is a matrix that filled up with 

harmony vectors in size of HMS as follows: 

  (21) 

   

[
 
 
 
 

  
               

                     
            

 

  
               

            
            

 

                                          
       

         
                

            
     

          
          

                    
              

         ]
 
 
 
 

  

 Creation of new harmony 

Let NHM, NHMS denote the new harmony memory and new harmony memory size, respectively. Also NHM is a 

matrix of size NHMS. NHM includes   
    (  

     
     

     
) for            that are produced randomly. 

To improve these harmonies, we must use three rules as were mentioned in Table 1. 

1. Memory consideration: 

     (22) 
  

     
 {

  
     

 {  
    

      
   }                           

    
     

                                                   
 

Here    
     

 is improved harmony and selected from HM with probability HMCR or otherwise from possible value 

range with probability 1-HMCR.  
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2. Pitch adjustment: for new produced harmony we must check that whether it needs to be adjusted or not.  

  (23) 
                                

     
   {

                                         
                                   

 

3. Randomization: if pitch adjustment decision is yes then use Eq (24) as follow.  

  
     

   
     

          (24) 

where rand is a random number and Bw is Bandwidth. If this is no then there is no need to adjust   
     

 [10, 14-15].  

 Update harmony memory 

To compare harmonies (candidate solutions), we must a have a metric. One obvious and simple criteria is to use 

objective function to evaluate the harmonies and find best harmony. In other words, we can use  

  (25)       𝜆          𝜆        

where       is value of fitness function for harmony x, 𝜆 is trade-off parameter,   is variance-covariance matrix and 

  is the vector of expected returns [6].  

Now we can summarize IHS algorithm as it follows. 

1. Initialize the problem and algorithm parameters: HMS, HMCR, PAR, BW and NHMS (NI). 

2. Initialize harmony memory (HM): a matrix in HMS size. 

3. a. Produce new harmony randomly in size of NHMS. 

    b. Check equation (22) and (23). 

4. Find best  new harmony and delete worse one based on    value. 

5. Check stopping criteria. If the algorithm reaches maximum number of iterations, then it will be terminated. 

Otherwise steps 3 and 4 will be repeated [10-11, 14-15]. 

                                                        Table 2: Pseudo Code of  IHS  Meta-Heuristic  

For i=1:maxiter 

Compute HMCR,PAR,BW with related equations. 

     For i=1:NI  

         NHM(i).position=unifrnd(0.01,1, [1 number_of_variable]); 

       For j=1:number_of_variables  

         if rand<=HMCR 

           k=randi([1 HMS]); 

           NHM(i).position(j)=HM(k).position(j); 

         else 

           NHM(i).position(j)=rand; 

         end 

         if rand<=PAR 

           NHM(i).position(j)=NHM(i).position(j)+ BW*unifrnd(0.01,1); 

         end  

     end 

   Make NHM(i).position feasible; 
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  ;    Compute      

  end 

find best harmony and delete worse one; 

end 

 

In this algorithm, like ICPSO, we used arrangement algorithm in [6] to make every solution feasible.    

4. Computational Results 

To test the performance of ICPSO and IHS algorithm, we use data sets include the weekly prices from March 1992 

to September 1997, for indices Hang Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in 

USA and Nikkei in Japan. Numbers of different assets for these indices are 31, 85, 89, 98 and 225, respectively. The 

set of mean returns for assets, covariance between these assets and 2000 points from efficient frontier are available 

in http://people.brunel.ac.uk/%7Emastjjb /jeb/orlib/portinfo.html. 

Let    
    

  s for i=1 to 2000 be the set of mean and variance of portfolio return points on the standard efficient 

frontier and (  
    

 ) for       ξ (that in here ξ is 51) be the set of mean and variance of portfolio return points 

on heuristic efficient frontier. Let    
    

   be the point on standard frontier that has minimum Euclidean distance 

from the heuristic point (  
    

 ) where e the corresponding index can be found as follows: 

                    (√(  
    

 )
 
 (  

    
 )

 
 )                  . (26) 

So mean Euclidean distance, variance of return error and mean return error can be defined as follow: 

 

(27) 
                        ∑ √(  

    
 )

 
 (  

    
 )

  
    

 

  
, 

 

(28) 
                          ∑    |

(  
    

 )

  
 |  

 

  

 
   , 

 

(29) 
                   ∑    |

(  
    

 )

  
 |  

 

  

 
   , 

respectively. For 51 different values of trade-off parameter, equally spaced in [0, 1], we run our algorithms for 

CCMV using the five test data sets. In our study, number of desired assets in our portfolio is 10 and lower and upper 

bound for all of these assets is 0.01 and 1, respectively. We implemented our algorithms in MATLAB version 

8.0.0.783 and ran it  on a Core CPU 2.70GHz machine with 1GB of  RAM. 

HMCR parameter in each step is increased linearly from 0.8 to 0.99 in the IHS parameter setting with Eq (18). 

Lowest value of PAR and BW both is taken to be equal to      and highest values of these parameters equal 

to     . Then, we linearly increased PAR while simultaneously decreased BW with Eq (19) and Eq (20), 

respectively. Maximum number of iterations which is used as stopping criteria is set to 50. Moreover, we set 

Harmony memory size equal to 10 and number of improvisation equal to 30. Also, For ICPSO parameters, we set 

number of populations equal to 50, maximum number of iterations equal to 100. Then, we linearly decreased inertia 

weight with Eq (17). Initial value of   is set to 1. Figures 1 to 5 illustrate the efficient frontier obtained from ICPSO 

and IHS algorithms as well as the standard efficient frontier. Table 4 shows the result of computation. It can be 

figured out that IHS algorithm outperform ICPSO algorithm. In         , MED is mean Euclidean distance, VRE is 

variance of return error and MRE is mean return error.  

 

 

http://people.brunel.ac.uk/~mastjjb%20/jeb/orlib/portinfo.html
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Table 3: Parameters setting for two meta-heuristics 

ICPSO Parameter IHS Parameter min max 

Initial of w 1 HMCR 0.8 0.99 

Damping rate of w 0.9 PAR      0.1 

No.population 50 BW      0.1 

Max.iteartion 100 Max.iteartion 50 

Constriction factor 0.729 Harmony memory size 10 

Global  learning 

coefficient 

2.05 Number of 

improvisation 

30 

Personal  learning 

coefficient 

2.05  

 

 

 
Figure 1: Efficient Frontiers for Hang Seng data set 

 

 
Figure 2: Efficient Frontiers for DAX data set 
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Figure 3: Efficient Frontiers for FTSE 100 data set 

 

 

 

 
Figure 4: Efficient Frontiers for S&P 100 data set 

 

 

 

 

 

Figure 5: Efficient Frontiers for Nikkei data set 
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Table 4: Experimental Results for two Heuristics 

Index 
Number of 

Assets 
Errors ICPSO IHS 

HangSeng 31 

MED 0.0000824 0.0000820 

VRE(%) 1.9003836 1.8044041 

MRE (%) 0.6409340 0.6483910 

Time (sec) 57 55 

DAX100 85 

MED 0.0001298 0.0001296 

VRE (%) 7.2061918 7.3849655 

MRE (%) 1.1876764 1.0492997 

Time (sec) 254 159 

FTSE100 89 

MED 0.0000408 0.0000400 

VRE (%) 3.3812060 3.2479355 

MRE (%) 0.3239293 0.3202507 

Time (sec) 269 168 

S&P 100 98 

MED 0.0000756 0.0000746 

VRE (%) 4.5894404 3.9023695 

MRE (%) 0.8963859 0.9480060 

Time (sec) 323 186 

Nikkei 225 

MED 0.0000220 0.0000206 

VRE (%) 1.8414523 1.6020636 

MRE (%) 0.4328426 0.4036726 

Time (sec) 2676 659 

5. Conclusions 

In this paper, we have studied Markowitz mean-variance model with limitation on the number and quantity of assets. 

For finding efficient portfolio and tracing efficient frontier, we proposed new modifications of PSO and HS 

algorithms. The two algorithms are compared on five benchmark data sets from 31 up to 225 assets. Results show 

that IHS algorithm outperforms ICPSO in both time and accuracy, specially on large data sets. 
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MATLAB Codes of HS and PSO 

HS Method 
clear all 
%% parameters setting 
global   Q  mo 
load  cov1  
load  mo1 
Q=A; mo=mo1; 
[~,nvar]=size(Q); 
varsize=[1 nvar];     % Number of Variables 
lambda=0;  deltalambda=0.02;                
HMS=10;                    % Harmony Memory Size 
NHMS=30;                 % New Harmony Memory Size  
maxiter=50;               % Minimum Iteration 
PARmin=0.000001; % Minimum Pitch Adjustment Rate 
PARmax=0.1;           % Maximum Pitch Adjustment Rate 
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FWmin=0.000001;   % Minimum BandWith 
FWmax=.1;                % Maximum BandWith           
k=10;                           % Number of Desired Asset 
xglobal=zeros(51,nvar); 
i2=1; 
tic; 
%% initialization 
while (lamda<1.001) 
empty.pos=[]; 
empty.cost=[]; 
HM=repmat(empty,HMS,1); 
for i=1:HMS 
HM(i).pos=unifrnd(0.01,1,[1 nvar]); 
[HM(i).pos]=Harmoneyarrange2... 
    (Q,mo,HM(i).pos,nvar,lamda,k); 
HM(i).cost=Cost20(Q,mo,HM(i).pos,lamda); 
end 
[value,index]=sort([HM.cost]); 
HM=HM(index); 
GHM=HM(1);                 % Global Harmony 
%% main loop 
best=zeros(maxiter,1); 
MEAN=zeros(maxiter,1); 
for iter=1:maxiter 
    HMCR=.8+.19*iter/maxiter;  % Harmony Memory Consideration Rate 
    PAR=PARmin+(PARmax-PARmin)*iter/maxiter; % Pitch Adjustment Rate 
    FW=FWmax-(FWmax-FWmin)*iter/maxiter; % BandWith 
    NHM=repmat(empty,NHMS,1);     
   for i=1:NHMS     
       NHM(i).pos=unifrnd(0.01,1,[1 nvar]); 
       for j=1:nvar              
       if rand<=HMCR 
           kk=randi([1 HMS]); 
           NHM(i).pos(j)=HM(kk).pos(j); 
       else 
           NHM(i).pos(j)=rand/5; 
       end     
       if rand<=PAR 
           delta=FW*unifrnd(0.01,1)*(0.99); 
           NHM(i).pos(j)=NHM(i).pos(j)+delta;    
       end  
       end        
       [NHM(i).pos]=Harmoneyarrange2... 
           (Q,mo,NHM(i).pos,nvar,lamda,k); 
       NHM(i).cost=Cost20(Q,mo,NHM(i).pos,lamda);  
   end   
   [HM]=[HM;NHM];    
   [value,index]=sort([HM.cost]);    
   HM=HM(index(1:HMS));  
   if HM(1).cost<GHM.cost 
       GHM=HM(1); 
   end   
   best(iter)=GHM.cost; 
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   MEAN(iter)=mean([HM.cost]);    
end 
xglobal(i2,:)=GHM.pos; 
fprintf('\n lambda(%d)= %2.2f\n  ',i2-1,lamda); 
lambda=lambda+deltalambda; 
i2=i2+1; 
end 
%% results 
toc; 
ResultHS (Q,xglobal,mo,nvar) 
figure(3) 
plot(best(1:iter),'r','LineWidth',2); 
hold on 
plot(MEAN(1:iter),'b','LineWidth',2); 
xlabel('t') 
ylabel(' fitness') 
legend(' BEST' , 'MEAN') 
title('HS') 
 
PSO Method 
clear all; 
k=10; phi1=2.05; phi2=2.05;  
phi=phi1+phi2; 
chi=2/(phi-2+sqrt(phi^2-4*phi)); 
w1=chi*phi1;  w2=chi*phi2; 
w=chi;  wdamp=.9;  
global  Q  mo 
load cov1  
load  mo1 
Q=A; 
mo=mo1; 
[~,nvar]=size(Q); 
varsize=[1 nvar]; 
lamda=0; 
deltalamda=0.02; 
ret=zeros(1,50); 
i5=1; 
R=Q'; 
npop=50; 
xglobal=zeros(npop,nvar); 
maxiteration=100; 
p=zeros(1,npop); 
v=zeros(npop,nvar); 
tic 
while lamda<1.001 
xp=zeros(npop,nvar); 
xpbefor=xp; 
zp=zeros(npop,nvar); 
xpb=zeros(npop,nvar); 
zpb=zeros(npop,nvar); 
vx=zeros(npop,nvar); 
vxbefor=vx; 
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vz=zeros(npop,nvar); 
cost=zeros(1,npop); 
bestcost=zeros(1,npop); 
globalbestcost=inf; 
for i=1:npop 
    xp(i,:)=unifrnd(0,1,varsize); 
    xp(i,:)=xp(i,:)/sum(xp(i,:)); 
    xpbefor(i,:)=xp(i,:); 
    zp(i,:)=floor(unifrnd(0,1,varsize)+.5); 
    vx(i,:)=zeros(varsize); 
    vxbefor(i,:)=vx(i,:); 
    vz(i,:)=zeros(varsize); 
    cost(i)=rand; 
    xpb(i,:)=xp(i,:); 
    zpb(i,:)=zp(i,:); 
    bestcost(i)=cost(i); 
    if bestcost(i)<globalbestcost 
        globalbestcost=bestcost(i); 
        Gxpb=xpb(i,:); 
        Gzpb=zpb(i,:); 
    end 
end 
for i=1:npop 
    v(i,:)=xp(i,:)+w1*(Gxpb-xp(i,:))+w2*(xpb(i,:)-xp(i,:)); 
    [xp(i,:),zp(i,:),vx(i,:)]=... 
    arrangenewer(Q,mo,xp(i,:),xpbefor(i,:),zp(i,:),vx(i,:),vxbefor(i,:),v(i,:),nvar,lamda,k); 
   cost(i)=Cost21(Q,mo,xp(i,:),zp(i,:),lamda); 
    if cost(i)<bestcost(i) 
        bestcost(i)=cost(i); 
        xpb(i,:)=xp(i,:); 
        zpb(i,:)=zp(i,:); 
        if bestcost(i)<globalbestcost 
           globalbestcost=bestcost(i); 
           Gxpb=xpb(i,:); 
           Gzpb=zpb(i,:); 
        end 
    end 
end  
gamma=globalbestcost; 
for counter=1:maxiteration 
    t=gamma; 
      for i=1:npop 
          for j=1:nvar 
              r1=rand;r2=rand; 
              vz(i,j)=(w*vz(i,j)+w1*r1*(zpb(i,j)-zp(i,j))+w2*r2*(Gzpb(j)-zp(i,j))); 
              kesi=zp(i,j)+vz(i,j); 
              alpha=0.06; 
              zp(i,j)=round(1/(1+exp(-kesi))-alpha); 
              if zp(i,j)==1 
                   vxbefor(i,:)=vx(i,:); 
                   xpbefor(i,:)=xp(i,:); 
                   vx(i,j)=(w*vx(i,j)+w1*r1*(xpb(i,j)-xp(i,j))+w2*r2*(Gxpb(j)-xp(i,j))); 
                  if vx(i,j)+xp(i,j)>=0 
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                      xp(i,j)=vx(i,j)+xp(i,j); 
                  else 
                      zp(i,j)=0; 
                      xp(i,j)=0; 
                  end 
              else 
                  xp(i,j)=0; 
              end 
              v(i,:)=(xp(i,:)+w1*(xpb(i,:)-xp(i,:))+w2*(Gxpb-xp(i,:))); 
     [xp(i,:),zp(i,:),vx(i,:)]=... 
        arrangenewer(Q,mo,xp(i,:),xpbefor(i,:),zp(i,:),vx(i,:),vxbefor(i,:),v(i,:),nvar,lamda,k); 
    cost(i)=Cost21(Q,mo,xp(i,:),zp(i,:),lamda); 
    if cost(i)<bestcost(i) 
        bestcost(i)=cost(i); 
        xpb(i,:)=xp(i,:); 
        zpb(i,:)=zp(i,:); 
        if bestcost(i)<globalbestcost 
           globalbestcost=bestcost(i); 
           Gxpb=xpb(i,:); 
           Gzpb=zpb(i,:); 
        end 
    end 
   if globalbestcost<gamma 
        gamma=globalbestcost; 
   end                         
          end 
      end  
      if counter>5 
       if norm(t-gamma)<1e-6 
              break 
       end 
      end 
       w=w*wdamp; 
end 
xglobal(i5,:)=Gxpb; 
ret(i5)=gamma; 
fprintf('\n lamda(%d)= %2.2f\n  ',i5-1,lamda); 
lambda=lambda+deltalambda; 
i5=i5+1; 
end 
fprintf('\n'); 
toc 
Result (Q,xglobal,mo,nvar) 
figure (3); 
plot(ret,'Linewidth',2) 
xlabel('Iteration') 
ylabel('Best Cost') 
globalbestpositionx=Gxpb; 
[~,pp]=size(globalbestpositionx); 
PrinteResult(globalbestpositionx,gamma,pp) 

 


