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1. Introduction

Optimization has been expanding in all directions at an astonishing rate during the

last few decades. The theory of duality is elegant and important concept within the

field of operations research. The concept of second-order duality was first introduced by

Mangasarian [10], where he pointed out possible advantages of second-order dual over the

first order dual. Due to the fact that there are more parameters involved, second-order

dual provides tighter bounds for the value of objective function of the primal problem

when approximations are used.

The problems in which objective functions are ratio of two functions are termed

as fractional programming problems. It can be used in engineering and economics to

minimize a ratio of functions between a given period of time and a utilized resource in

order to measure the efficiency or productivity of a system (see Stancu-Minasian [14]).

For more information on the fractional programs the readers are advised to see [13].
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The first symmetric dual formulation for quadratic program was proposed by Dorn

[6], who defined the program and its dual to be symmetric if the dual program is recasted

in the form of the primal, its dual is primal. Subsequently, the notion of symmetric

duality was developed significantly by Dantzig et al. [5]. Chandra et al. [4] considered

the symmetric dual fractional program and derived the appropriate duality theorems.

Mond et al. [12], Weir [16] extended the results of Chandra et al. [4] to nondifferentiable

fractional programs and to multiobjective fractional programs.

Suneja et al. [15] studied a pair of Mond-Weir type multiobjective second-order sym-

metric dual programs without non-negative constraints and established duality theorems

under η-bonvexity and η-pseudobonvexity assumptions. They also discussed second-order

self-duality theorems by taking the functions to be skew-symmetric. Ahmad and Husain

[1] formulated a pair of multiobjective fractional symmetric dual programs over arbitrary

cones and established appropriate duality results. Recently, Ahmad and Husain [2] fo-

cused on multiobjective second-order symmetric duality with cone constraints and usual

duality results are established under second-order invexity assumptions.

Yang et al. [18] considered a pair of second-order symmetric dual programs and ob-

tained duality results under F -convexity assumptions. Gupta and Kailey [8, 9] formulated

second-order symmetric dual programs for a class of nondifferentiable multiobjective pro-

gramming problem and established duality theorems for the aforementioned pair using

the notion of second-order F -convexity/pseudoconvexity. Very recently, the work is fur-

ther extended by Gulati et al. [7] by introducing a pair of symmetric dual second-order

fractional programs to derive appropriate duality results. They also discussed minimax

mixed integer symmetric dual fractional programs.

In this paper, a pair of multiobjective second-order fractional symmetric dual pro-

grams is formulated. Weak, strong and converse duality theorems are established under

second-order (ϕ, ρ)-invexity assumptions. Moreover, a self dual programs is formulated

and also self duality theorem is discussed. Some known models are the special case of the

model considered in the present paper.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and let Rn
+ be its non-negative orthant.

The following conventions for vectors in Rn will be used in the sequel of the paper:

x < y if and only if y − x ∈ int Rn;
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x ≤ y if and only if y − x ∈ int Rn
+ \ {0};

x 5 y if and only if y − x ∈ int Rn
+;

x ̸≤ y is the negation of x ≤ y.

A general multiobjective programming problem can be expressed in the following

form:

(P) Minimize h(x) = (h1(x), h2(x), ..., hk(x))

subject to r(x) 5 0,

where h : Rn → Rk and r : Rn → Rm. We shall denote the feasible set of (P) by

A = {x|r(x) 5 0, x ∈ Rn}.

Definition 2.1 A feasible point x∗ is said to be an weak efficient (or weak Pareto optimal)

solution of (P), if there exists no other x ∈ A such that h(x) < h(x∗).

Definition 2.2 A feasible point x∗ is said to be an efficient (or Pareto optimal) solution

of (P), if there exists no other x ∈ A such that h(x) ≤ h(x∗).

Definition 2.3 A feasible point x∗ is said to be a properly efficient solution of (P), if it

is an efficient solution of (P) and if there exists a scalar M > 0 such that for each i and

x ∈ A satisfying hi(x) < hj(x
∗), we have

hi(x
∗)− hi(x)

hj(x)− hj(x∗)
≤ M,

for some j satisfying hj(x) > hj(x
∗).

Let S1 ⊂ Rn and S2 ⊂ Rm and let f(x, y) be a real valued twice differentiable function

defined on S1 × S2. Then ∇xf and ∇yf denote gradient vectors of f with respect to x

and y, respectively and ∇xyf denotes the n×m matrix of second-order partial derivatives.

Definition 2.4 A real valued function f(., y) : S1 × S2 → R is said to be second-order

(ϕ, ρ)-invex at u ∈ S1 with respect to q ∈ Rn, if for all ϕ : S1 × S1 ×Rn+1 → R with ρ as

a real number, we have

f(x, y)− f(u, y) +
1

2
qT∇xxf(u, y)q = ϕ(x, u;∇xf(u, y) +∇xxf(u, y)q, ρ).

Definition 2.5 A real valued function f(x, .) : S1 × S2 → R is said to be second-order

(ϕ, ρ)-invex at y ∈ S2 with respect to p ∈ Rm, if for all ϕ : S2 × S2 × Rm+1 → R with ρ

as a real number, we have

f(x, v)− f(x, y) +
1

2
pT∇yyf(x, y)p = ϕ(v, y;∇yf(x, y) +∇yyf(x, y)p, ρ).
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3. Second-order multiobjective fractional symmetric duality

In this paper, we consider the following pair of multiobjective Mond-Weir type frac-

tional symmetric dual programs:

Primal problem (MWP)

Minimize L(x, y, p) = (L1(x, y, p1), L2(x, y, p2), ..., Lk(x, y, pk))
t

subject to

k∑
i=1

λi[(∇yfi(x, y) +∇yyfi(x, y)pi)− Li(x, y, pi)(∇ygi(x, y) +∇yygi(x, y)pi)] 5 0,

yt
k∑

i=1

λi[(∇yfi(x, y) +∇yyfi(x, y)pi)− Li(x, y, pi)(∇ygi(x, y) +∇yygi(x, y)pi)] = 0,

λ > 0.

Dual problem (MWD)

Maximize M(u, v, q) = (M1(u, v, q1),M2(u, v, q2), ...,Mk(u, v, qk))
t

subject to

k∑
i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−Mi(u, v, qi)(∇xgi(u, v) +∇xxgi(u, v)qi)] = 0,

ut
k∑

i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−Mi(u, v, qi)(∇xgi(u, v) +∇xxgi(u, v)qi)] 5 0,

λ > 0,

where

Li(x, y, pi) =
fi(x, y)− 1

2p
t
i∇yyfi(x, y)pi

gi(x, y)− 1
2p

t
i∇yygi(x, y)pi

,

Mi(u, v, qi) =
fi(u, v)− 1

2q
t
i∇xxfi(u, v)qi

gi(u, v)− 1
2q

t
i∇xxgi(u, v)qi

.

Here fi, gi : S1 × S2 → R are twice continuously differentiable functions for all i =

1, 2, ..., k, pi = (p1, p2, ..., pk) ∈ Rm, qi = (q1, q2, ..., qk) ∈ Rn and λ = (λ1, λ2, ..., λk) ∈

Rk. It is assumed that in the feasible regions the numerators are nonnegative and de-

nominators are positive. Let l = (l1, l2, ..., lk)
t, m = (m1,m2, ...,mk)

t ∈ Rk. Then we can

express the programs (MWP) and (MWD) equivalently to:

(EMWP) Minimize l

subject to

(fi(x, y)−
1

2
pti∇yyfi(x, y)pi)− li(gi(x, y)−

1

2
pti∇yygi(x, y)pi) = 0, i = 1, 2, ..., k, (1)
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k∑
i=1

λi[(∇yfi(x, y) +∇yyfi(x, y)pi)− li(∇ygi(x, y) +∇yygi(x, y)pi)] 5 0, (2)

yt
k∑

i=1

λi[(∇yfi(x, y) +∇yyfi(x, y)pi)− li(∇ygi(x, y) +∇yygi(x, y)pi)] = 0, (3)

λ > 0.

(EMWD) Maximize m

subject to

fi(u, v)−
1

2
qti∇xxfi(u, v)qi −mi(gi(u, v)−

1

2
qti∇xxgi(u, v)qi) = 0, i = 1, 2, ..., k, (4)

k∑
i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−mi(∇xgi(u, v) +∇xxgi(u, v)qi)] = 0, (5)

ut
k∑

i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−mi(∇xgi(u, v) +∇xxgi(u, v)qi)] 5 0, (6)

λ > 0.

Now we prove weak, strong and converse duality theorems for (EMWP) and (EMWD)

but equally apply to (MFP) and (MFD).

Theorem 3.1 (Weak Duality). Let (x, y, l, λ, p) be feasible to (EMWP)and (u, v,m, λ, q)

be feasible to (EMWD) and g(x, v) > 0. Further, we assume that

(a)
∑k

i=1 λi(fi(., v)−migi(., v)) be second-order (ϕ1, ρ)-invex at u,

(b)
∑k

i=1 λi(−fi(x, .) + ligi(x, .)) be second-order (ϕ2, ρ)-invex at y,

(c) ϕ1(x, u, (ξ1, ρ)) + uT ξ1 = 0, ∀ξ1 ∈ Rn
+ and ϕ2(v, y, (ξ2, ρ)) + yT ξ2 5 0, ∀ξ2 ∈ Rm

+ .

Then l = m.

Proof. From the dual constraint (5) and the condition ϕ1(x, u, (ξ1, ρ))+uT ξ1 = 0, ∀ξ1 ∈

Rn
+ we have

ϕ1(x, u; (

k∑
i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−mi(∇xgi(u, v) +∇xxgi(u, v)qi)], ρ))

uT
k∑

i=1

λi[(∇xfi(u, v)+∇xxfi(u, v)qi)−mi(∇xgi(u, v)+∇xxgi(u, v)qi)] = 0,

which by the dual constraint (6) becomes

ϕ1(x, u; (

k∑
i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−mi(∇xgi(u, v) +∇xxgi(u, v)qi)], ρ)) = 0.
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From the second-order (ϕ1, ρ)-invexity of
∑k

i=1 λi(fi(., v) − migi(., v)) at u, the above

inequality gives

k∑
i=1

λi[fi(x, v)−migi(x, v)−{fi(u, v)−migi(u, v)}+
1

2
qTi {∇xx(fi(u, v)−migi(u, v))}qi] = 0,

which by the dual constraint (4) becomes

k∑
i=1

λi[fi(x, v)−migi(x, v)] = 0. (7)

On the other hand, from the dual constraint (2) and the condition ϕ2(v, y, (ξ2, ρ))+yT ξ2 5

0, ∀ξ2 ∈ Rm
+ , we have

ϕ2(v, y, (−
k∑

i=1

λi[(∇yfi(x, y) +∇yyfi(x, y)pi)− li(∇ygi(x, y) +∇yygi(x, y)pi)], ρ))

−yT
k∑

i=1

λi[(∇yfi(x, y)+∇yyfi(x, y)pi)−li(∇ygi(x, y)+∇yygi(x, y)pi)] = 0,

which by the dual constraint (3) becomes

ϕ2(v, y, (−
k∑

i=1

λi[(∇yfi(x, y) +∇yyfi(x, y)pi)− li(∇ygi(x, y) +∇yygi(x, y)pi)], ρ)) = 0.

From second-order (ϕ2, ρ)-invexity of
∑k

i=1 λi(−fi(x, .) + ligi(x, .)) at y, the above in-

equality gives

k∑
i=1

λi[{−fi(x, v)+ligi(x, v)}−{−fi(x, y)+ligi(x, y)}+
1

2
pTi ∇yy{−fi(x, y)+ligi(x, y)}pi] = 0,

which by the dual constraint (1) becomes

k∑
i=1

λi(−fi(x, v) + ligi(x, v)) = 0. (8)

From (7) and (8), we get
k∑

i=1

λi(li −mi)gi(x, v) = 0.

Since λ > 0, g(x, v) > 0, it implies that

l = m.

Hence the theorem.

Theorem 3.3 (Strong Duality). Let f be thrice differentiable function on Rn ×Rm. Let

(x̄, ȳ, l̄, λ̄, p̄) be a weak efficient solution of (EMWP) and suppose that
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(a) (∇yyfi − l̄i∇ygi) is positive definite and p̄Ti (∇yfi − l̄i∇ygi) = 0, ∀i = 1, 2, ..., k, or

(∇yyfi − l̄∇yygi) is negative definite and p̄Ti (∇yfi − l̄i∇ygi) 5 0, ∀i = 1, 2, ..., k,

(b) ∇ygi p̄i + p̄Ti ∇yygi p̄i = 0, i = 1, 2, ..., k,

(c) the set {(∇yf1 +∇yyf1 p̄1)− l̄1(∇yg1 +∇yyg1 p̄1), (∇yf2 +∇yyf2 p̄2)− l̄2(∇yg2 +

∇yyg2 p̄2), ..., (∇yfk +∇yyfk p̄k)− l̄k(∇ygk +∇yygk p̄k)} is linearly independent,

where fi = fi(x̄, ȳ), i = 1, 2, ..., k. Then (x̄, ȳ, l̄, λ̄, q̄ = 0) is feasible for (EMWD). Further-

more, if the hypotheses of Theorem 3.1 are satisfied, then (x̄, ȳ, l̄, λ̄, q̄ = 0) is a properly

efficient solution of (EMWD) and the two objective values are equal.

Proof. Since (x̄, ȳ, l̄, λ̄, p̄) is a weak efficient solution of (EMWP) by Fritz John type

necessary optimality conditions, there exists α ∈ Rk, β ∈ Rk, γ ∈ Rm, δ ∈ R,µ ∈ Rk such

that

k∑
i=1

βi[(∇xfi −
1

2
(∇yyfip̄i)xp̄)− l̄i(∇xgi −

1

2
(∇yygip̄i)xp̄i) + (γ − δȳ)T

k∑
i=1

λ̄i[(∇yxfi

+ (∇yy fip̄i)xp̄i)− l̄i(∇yxgi + (∇yygi p̄i)x)]− η = 0, (9)

k∑
i=1

(βi − δλi)[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)] +

k∑
i=1

[(∇yyfi − l̄i∇yygi)

{(γ − δȳ)λi − βip̄i}] +
k∑

i=1

[(∇yyfip̄i)y − l̄i(∇yygip̄i)y(γ − δȳ)λi −
βip̄i
2

] = 0, (10)

(γ − δȳ)t[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)]− µi = 0, i = 1, 2, ..., k, (11)

[(γ − δȳ)tλ̄i − βip̄i]
t(∇yyfi − l̄i∇yygi) = 0, i = 1, 2, ..., k, (12)

αi − βi

(
gi −

1

2
p̄ti∇yygip̄i

)
− (γ − δȳ)t(λ̄i(∇ygi +∇yygip̄i)) = 0, i = 1, 2, ..., k, (13)

γt
k∑

i=1

λ̄i[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)] = 0, (14)

δȳt
k∑

i=1

λ̄i[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)] = 0, (15)

µtλ̄ = 0, (16)

ηT x̄ = 0, (17)

(α, β, γ, δ, µ) ̸= 0, (α, β, γ, δ, µ) = 0. (18)

Since λ̄ > 0, it follows from (16) that µ = 0. Therefore from (11) we get

(γ − δȳ)t[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)] = 0, i = 1, 2, ..., k. (19)
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From (12) and the condition (a), we have

(γ − δȳ)tλ̄i = βip̄i, i = 1, 2, ..., k. (20)

Using (20) in (10), we get

k∑
i=1

(βi − δλ̄i)[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)]

+
1

2

k∑
i=1

λ̄i[((∇yyfip̄i)y − l̄i(∇yygip̄i)y)(γ − δȳ)] = 0. (21)

We claim that βi ̸= 0, ∀i ∈ 1, 2, ..., k. If possible, let us suppose that there exists i ∈

1, 2, ..., k such that βi = 0. Then from (20) implies that

γ − δȳ = 0, (22)

therefore, (21) reduces to

k∑
i=1

(βi − δλ̄i)[(∇yfi +∇yyfip̄i)− l̄i(∇ygi +∇yygip̄i)] = 0. (23)

By assumption (c), the above relation yields

βi − δλ̄i = 0, i = 1, 2, ..., k, (24)

Since λ̄ > 0, the above relation implies that δ = 0 and β = 0. From (9), (13) and (22),

we get η = 0, α = 0 and γ = 0. It contradicts the fact that (α, β, γ, δ, µ) = 0. Hence

βi ̸= 0, ∀i ∈ {1, 2, ..., k}. We now prove that β > 0. To prove this, it suffices to show that

β = 0. From (13) and (20), we have

αi = βi[(gi −
1

2
p̄ti∇yygip̄i)− p̄i(λ̄i(∇ygi +∇yygip̄i))] = 0, i = 1, 2, ..., k.

Since α = 0, gi − 1
2 p̄

T
i ∇yygip̄i > 0, i = 1, 2, ...k, from assumption (b), we can obtain

β = 0, which by βi ̸= 0, ∀i ∈ 1, 2, ..., k yields β > 0.

From (14), (15) and (20), we have

k∑
i=1

βi(p̄
T
i (∇yfi − l̄i∇ygi) + p̄Ti (∇yyfi − l̄i∇yygi)p̄i) = 0.

By β > 0 and assumption (a), we obtain p̄i = 0, i = 1, 2, ..., k. Thus from (20) we get

(22). Similarly, we obtain (24). Using (22) and the fact that p̄i = 0, i = 1, 2, ..., k in (9),

we get
k∑

i=1

βi[∇xfi − l̄i(∇xgi)] = η,
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which by β > 0, λ̄ > 0, η = 0 and (24) yields

k∑
i=1

βi[∇xfi − l̄i(∇xgi)] =
η

δ
= 0,

Combining the above result with (17), we obtain

x̄T
k∑

i=1

λ̄i[∇xfi − l̄i(∇xgi)] = 0,

Since δ > 0, so from (22) we get

ȳ =
γ

δ
= 0.

Thus it follows from the above three inequalities that (x̄, ȳ, l̄, λ̄, q̄) is feasible solution to

(EMWD). Under the assumptions of Theorem 3.1, if (x̄, ȳ, l̄, λ̄, q̄ = 0) is not an efficient

solution of (EMWD), then there exists other feasible solution (u, v,m, λ̄, q) of (EMWD)

such that l̄ ≤ m. Since (x̄, ȳ, l̄, λ̄, p̄) is a feasible solution of (EMWP), by Theorem 3.1,

we have l̄ ̸≤ m, hence the contradiction implies (x̄, ȳ, l̄, λ̄, q̄ = 0) is an efficient solution of

(EMWD).

If (x̄, ȳ, l̄, λ̄, q̄ = 0) is not a properly efficient solution of (EMWD), then there exists

other feasible solution (u, v,m, λ̄, q) of (EMWD) such that for an index i ∈ {1, 2, ..., k}

and any real number M > 0, mi − l̄i > M(l̄j − mj) for j satisfying l̄j > mj whenever

mi > l̄i. This implies mi > l̄i can be made arbitrarily large and this contradicts with

Theorem 3.1. Also the two objective values are equal.

Theorem 3.4 (Converse Duality). Let f be thrice differentiable function on Rn × Rm.

Let (ū, v̄, m̄, λ̄, q̄) be a weak efficient solution of (EMWD) and suppose that

(a) (∇xxfi−m̄i∇xgi) is positive definite and q̄Ti (∇xfi−m̄i∇xgi) = 0, ∀i = 1, 2, ..., k, or

(∇xxfi − m̄∇xxgi) is negative definite and q̄Ti (∇xfi − m̄i∇xgi) 5 0, ∀i = 1, 2, ..., k,

(b) ∇xgi q̄i + q̄Ti ∇xxgi q̄i = 0, i = 1, 2, ..., k,

(c) the set {(∇xf1+∇xxf1 q̄1)− m̄1(∇xg1+∇xxg1 q̄1), (∇xf2+∇xxf2 q̄2)− m̄2(∇xg2+

∇xxg2 q̄2), ..., (∇xfk +∇xxfk q̄k)− m̄k(∇xgk +∇xxgk q̄k)} is linearly independent,

where fi = fi(ū, v̄), i = 1, 2, ..., k. Then (ū, v̄, m̄, λ̄, p̄ = 0) is feasible for (EMWD).

Furthermore, if the hypotheses of Theorem 3.1 are satisfied, then (ū, v̄, m̄, λ̄, p̄ = 0) is a

properly efficient solution of (EMWD) and the two objective values are equal.

Proof. It follows on the lines of Theorem 3.3.
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4. Self duality

A mathematical programming problem is said to be self-dual if it is formally identical

with its dual, that is, the dual can be recast in the form of the primal. If we take the

functions fi as skew-symmetric and gi as symmetric, that is,

fi(x, y) = −fi(y, x), gi(x, y) = gi(y, x)

for each i = 1, 2, ..., k, then we shall show that the programs (EMWP) and (EMWD) are

self-dual. By recasting the dual problem (EMWD) as minimization problem, we have

Minimize −m = (−m1,−m2, ...,−mk)

subject to

[
fi(u, v)−

1

2
qti∇xxfi(u, v)qi −mi(gi(u, v)−

1

2
qti∇xxgi(u, v)qi)

]
= 0, i = 1, 2, ..., k,

k∑
i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−mi(∇xgi(u, v) +∇xxgi(u, v)qi)] = 0,

ut
k∑

i=1

λi[(∇xfi(u, v) +∇xxfi(u, v)qi)−mi(∇xgi(u, v) +∇xxgi(u, v)qi)] 5 0,

λ > 0,

where mi =
[
fi(u,v)− 1

2
qti∇xxfi(u,v)qi

gi(u,v)− 1
2
qti∇xxgi(u,v)qi

]
.

Since fi and gi, i = 1, 2, ..., k are skew-symmetric and symmetric, respectively, we

have

∇xfi(u, v) = −∇xfi(v, u),∇xxfi(u, v) = −∇xxfi(v, u),

∇yfi(u, v) = −∇yfi(v, u),∇yyfi(u, v) = −∇yyfi(v, u),

∇xgi(u, v) = ∇xgi(v, u),∇xxgi(u, v) = ∇xxgi(v, u),

∇ygi(u, v) = ∇ygi(v, u),∇yygi(u, v) = ∇yygi(v, u).

Hence the dual problem (EMWD) can be written as

Minimize z = (z1, z2, ..., zk)

subject to

fi(v, u)−
1

2
qti∇yyfi(v, u)qi − zi(gi(v, u)−

1

2
qti∇yygi(v, u)qi) = 0, i = 1, 2, ..., k,

k∑
i=1

λi[(∇yfi(v, u) +∇yyfi(v, u)qi)− zi(∇ygi(v, u) +∇yygi(v, u)qi) 5 0,
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ut
k∑

i=1

λi[(∇yfi(v, u) +∇yyfi(v, u)qi)− zi(∇ygi(v, u) +∇yygi(v, u)qi)] = 0,

λ > 0,

where zi =
fi(v,u)− 1

2
qti∇yyfi(v,u)qi

gi(v,u)− 1
2
qti∇yygi(v,u)qi

, for all i = 1, 2, ..., k.

This shows that the dual problem (EMWD) is identical to (EMWP). Hence if (u, v, λ,m, q)

is feasible for (EMWD), then (v, u, λ,m, q) is feasible for (EMWP) and conversely.

We now state the self-duality theorem.

Theorem 4.1 Let fi and gi, i = 1, 2, ..., k be skew-symmetric and symmetric, respectively.

Then (EMWP)is self-dual. Furthermore, if (EMWP)and(EMWD)are dual problems and

(x̄, ȳ, λ̄, m̄, p̄) is a joint optimal solution, then so is (ȳ, x̄, λ̄, m̄, p̄) and and the common

optimal value of the objective functions is 0.

Proof. It follows on the lines of the corresponding results by Weir and Mond [17].

5. Special Cases

(i) If k = 1, then the problem (MWP) and (MWD) are reduced to that presented in

Gulati et al. [7].

(ii) If we set k = 1, g(x, y) = 1, then (MWP) and (MWD) becomes the programs

studied in Bector and Chandra [3]. Also if p = 0 and q = 0, then they reduce to

the problems presented in Mond and Weir [11].

(iii) If g = 1 for all x, y in (MWP) and (MWD), we get the programs studied in Suneja

et al. [15].

6. Conclusion

In this article, a pair of Mond-Weir type multiobjective second-order fractional sym-

metric dual programs is presented and weak, strong and converse duality relations between

primal and dual problems are discussed. It is the future tasks of the the authors to extend

these results to higher-order fractional symmetric dual programs over cones. It will be

interesting to check the validity of duality results for multiobjective second-order mixed

integer programs, wherein some primal and dual variables are constrained to belong to

some arbitrary sets.

543



Ashish Kumar Prasad

References

[1] I. Ahmad, S. Sharma, Multiobjective fractional symmetric duality involving cones,

J. Appl. Math. Informatics, 26 (2008) 151-160.

[2] I. Ahmad, Z. Husain, On multiobjective second order symmetric duality with cone

constraints, European J. Oper. Res., 204 (2010) 402-409.

[3] C. R. Bector, S. Chandra, Second order symmetric and self-dual programs, Opsearch,

23 (1986) 89-95.

[4] S. Chandra, B. D. Craven, B. Mond, Symmetric dual fractional programming,

Zeitschrift für Oper. Res., 29 (1985) 59-64.

[5] G. B. Dantzig, E. Eisenberg, R. W. Cottle, Symmetric dual nonlinear programming,

Pac. J. Math., 15 (1965) 809-812.

[6] W. S. Dorn, A symmetric dual theorem for quadratic progarms, J. Oper. Res. Soc.

Japan, 2 (1960) 93-97.

[7] T. R. Gulati, G. Mehndiratta, K. Verma, Symmetric duality for second-order frac-

tional programs, Optim. Lett., 7 (2013) 1341-1352.

[8] S. K. Gupta, N. Kailey, Multiobjective second-order mixed symmetric duality with

a square root term, Appl. Math. Comput., 218 (2012) 7602-7613.

[9] S. K. Gupta, N. Kailey, Nondifferentiable multiobjective second-order symmetric

duality, Optim. Lett., 5 (2011) 125-139.

[10] O. L. Mangasarian, Second and higher order duality in nonlinear programming, J.

Math. Anal. Appl., 51 (1975) 607-620.

[11] B. Mond, T. Weir, Generalized concavity and duality, in: S. Schaible, W. T. Ziemba

(Eds.), Generalized concavity in Optimization and Economics, Academic press, New

York (1981) 263-280.

[12] B. Mond, S. Chandra, M. V. Durga Prasad, Symmetric dual non-differentiable frac-

tional programming, Indian J. Manag. Syst., 3 (1987) 1-10.

544



Mond-Weir type multiobjective second-order fractional symmetric...

[13] I. M. Stancu Minasian, A sixth bibliography of fractional programming, Optimiza-

tion, 55 (2006) 405-428.

[14] I. M. Stancu Minasian, Fractional programming : Theory, Methods, and Applica-

tions, Kluwer Academic, Dordrecht, (1997).

[15] S. K. Suneja, C. S. Lalitha, S. Khurana, Second order symmetric duality in multi-

objective programming, European J. Oper. Res., 144 (2003) 492-500.

[16] T. Weir, Symmetric dual multiobjective fractional programming, J. Aust. Math. Soc.

Ser., 50 (1991) 67-74.

[17] T. Weir, B. Mond, Symmetric and self-duality in multiobjective programming, Asia

Pac. J. Oper. Res., 5 (1988) 124-133.

[18] X. M. Yang, X. Q. Yang, K. L. Teo, S. H. Hou, Multiobjective second-order Sym-

metric duality with F -convexity, European J. Oper. Res., 165 (2005) 585-591.

545


