Mond-Weir type multiobjective second-order fractional symmetric duality with (ϕ, ρ)-invexity

Ashish Kumar Prasad
Department of Mathematics, National Institute of Technology, Jamshedpur-831 014, Jharkhand, India

Abstract

In this paper, we start our discussion with a pair of multiobjective MondWeir type second-order symmetric dual fractional programming problem and derive weak, strong and strict duality theorems under second-order (ϕ, ρ)-invexity assumptions.

Keywords: Second-order symmetric duality, multiobjective fractional programming, efficient solution, second-order (ϕ, ρ)-invexity.

Mathematical Subject Classification (2010): 90C29; 90C30; 90C46

1. Introduction

Optimization has been expanding in all directions at an astonishing rate during the last few decades. The theory of duality is elegant and important concept within the field of operations research. The concept of second-order duality was first introduced by Mangasarian [10], where he pointed out possible advantages of second-order dual over the first order dual. Due to the fact that there are more parameters involved, second-order dual provides tighter bounds for the value of objective function of the primal problem when approximations are used.

The problems in which objective functions are ratio of two functions are termed as fractional programming problems. It can be used in engineering and economics to minimize a ratio of functions between a given period of time and a utilized resource in order to measure the efficiency or productivity of a system (see Stancu-Minasian [14]). For more information on the fractional programs the readers are advised to see [13].

[^0]AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

The first symmetric dual formulation for quadratic program was proposed by Dorn [6], who defined the program and its dual to be symmetric if the dual program is recasted in the form of the primal, its dual is primal. Subsequently, the notion of symmetric duality was developed significantly by Dantzig et al. [5]. Chandra et al. [4] considered the symmetric dual fractional program and derived the appropriate duality theorems. Mond et al. [12], Weir [16] extended the results of Chandra et al. [4] to nondifferentiable fractional programs and to multiobjective fractional programs.

Suneja et al. [15] studied a pair of Mond-Weir type multiobjective second-order symmetric dual programs without non-negative constraints and established duality theorems under η-bonvexity and η-pseudobonvexity assumptions. They also discussed second-order self-duality theorems by taking the functions to be skew-symmetric. Ahmad and Husain [1] formulated a pair of multiobjective fractional symmetric dual programs over arbitrary cones and established appropriate duality results. Recently, Ahmad and Husain [2] focused on multiobjective second-order symmetric duality with cone constraints and usual duality results are established under second-order invexity assumptions.

Yang et al. [18] considered a pair of second-order symmetric dual programs and obtained duality results under F-convexity assumptions. Gupta and Kailey $[8,9]$ formulated second-order symmetric dual programs for a class of nondifferentiable multiobjective programming problem and established duality theorems for the aforementioned pair using the notion of second-order F-convexity/pseudoconvexity. Very recently, the work is further extended by Gulati et al. [7] by introducing a pair of symmetric dual second-order fractional programs to derive appropriate duality results. They also discussed minimax mixed integer symmetric dual fractional programs.

In this paper, a pair of multiobjective second-order fractional symmetric dual programs is formulated. Weak, strong and converse duality theorems are established under second-order (ϕ, ρ)-invexity assumptions. Moreover, a self dual programs is formulated and also self duality theorem is discussed. Some known models are the special case of the model considered in the present paper.

2. Preliminaries

Let R^{n} be the n-dimensional Euclidean space and let R_{+}^{n} be its non-negative orthant. The following conventions for vectors in R^{n} will be used in the sequel of the paper: $x<y \quad$ if and only if $\quad y-x \in \operatorname{int} R^{n}$;
$x \leq y \quad$ if and only if $\quad y-x \in \operatorname{int} R_{+}^{n} \backslash\{0\} ;$
$x \leqq y \quad$ if and only if $\quad y-x \in \operatorname{int} R_{+}^{n}$;
$x \not \leq y \quad$ is the negation of $x \leq y$.
A general multiobjective programming problem can be expressed in the following form:
(P) Minimize $\quad h(x)=\left(h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right)$
subject to $\quad r(x) \leqq 0$,
where $h: R^{n} \rightarrow R^{k}$ and $r: R^{n} \rightarrow R^{m}$. We shall denote the feasible set of (P) by $A=\left\{x \mid r(x) \leqq 0, x \in R^{n}\right\}$.

Definition 2.1 A feasible point x^{*} is said to be an weak efficient (or weak Pareto optimal) solution of (P), if there exists no other $x \in A$ such that $h(x)<h\left(x^{*}\right)$.
Definition 2.2 A feasible point x^{*} is said to be an efficient (or Pareto optimal) solution of (P), if there exists no other $x \in A$ such that $h(x) \leq h\left(x^{*}\right)$.

Definition 2.3 A feasible point x^{*} is said to be a properly efficient solution of (P), if it is an efficient solution of (P) and if there exists a scalar $M>0$ such that for each i and $x \in A$ satisfying $h_{i}(x)<h_{j}\left(x^{*}\right)$, we have

$$
\frac{h_{i}\left(x^{*}\right)-h_{i}(x)}{h_{j}(x)-h_{j}\left(x^{*}\right)} \leq M,
$$

for some j satisfying $h_{j}(x)>h_{j}\left(x^{*}\right)$.
Let $S_{1} \subset R^{n}$ and $S_{2} \subset R^{m}$ and let $f(x, y)$ be a real valued twice differentiable function defined on $S_{1} \times S_{2}$. Then $\nabla_{x} f$ and $\nabla_{y} f$ denote gradient vectors of f with respect to x and y, respectively and $\nabla_{x y} f$ denotes the $n \times m$ matrix of second-order partial derivatives.

Definition 2.4 A real valued function $f(., y): S_{1} \times S_{2} \rightarrow R$ is said to be second-order (ϕ, ρ)-invex at $u \in S_{1}$ with respect to $q \in R^{n}$, if for all $\phi: S_{1} \times S_{1} \times R^{n+1} \rightarrow R$ with ρ as a real number, we have

$$
f(x, y)-f(u, y)+\frac{1}{2} q^{T} \nabla_{x x} f(u, y) q \geqq \phi\left(x, u ; \nabla_{x} f(u, y)+\nabla_{x x} f(u, y) q, \rho\right) .
$$

Definition 2.5 A real valued function $f(x,):. S_{1} \times S_{2} \rightarrow R$ is said to be second-order (ϕ, ρ)-invex at $y \in S_{2}$ with respect to $p \in R^{m}$, if for all $\phi: S_{2} \times S_{2} \times R^{m+1} \rightarrow R$ with ρ as a real number, we have

$$
f(x, v)-f(x, y)+\frac{1}{2} p^{T} \nabla_{y y} f(x, y) p \geqq \phi\left(v, y ; \nabla_{y} f(x, y)+\nabla_{y y} f(x, y) p, \rho\right) .
$$

3. Second-order multiobjective fractional symmetric duality

In this paper, we consider the following pair of multiobjective Mond-Weir type fractional symmetric dual programs:

Primal problem (MWP)

$$
\text { Minimize } L(x, y, p)=\left(L_{1}\left(x, y, p_{1}\right), L_{2}\left(x, y, p_{2}\right), \ldots, L_{k}\left(x, y, p_{k}\right)\right)^{t}
$$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-L_{i}\left(x, y, p_{i}\right)\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right] \leqq 0, \\
& y^{t} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-L_{i}\left(x, y, p_{i}\right)\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right] \geqq 0, \\
& \lambda>0 .
\end{aligned}
$$

Dual problem (MWD)

$$
\text { Maximize } M(u, v, q)=\left(M_{1}\left(u, v, q_{1}\right), M_{2}\left(u, v, q_{2}\right), \ldots, M_{k}\left(u, v, q_{k}\right)\right)^{t}
$$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-M_{i}\left(u, v, q_{i}\right)\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \geqq 0, \\
& u^{t} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-M_{i}\left(u, v, q_{i}\right)\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \leqq 0, \\
& \lambda>0,
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{i}\left(x, y, p_{i}\right)=\frac{f_{i}(x, y)-\frac{1}{2} p_{i}^{t} \nabla_{y y} f_{i}(x, y) p_{i}}{g_{i}(x, y)-\frac{1}{2} p_{i}^{t} \nabla_{y y} g_{i}(x, y) p_{i}}, \\
& M_{i}\left(u, v, q_{i}\right)=\frac{f_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} f_{i}(u, v) q_{i}}{g_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} g_{i}(u, v) q_{i}} .
\end{aligned}
$$

Here $f_{i}, g_{i}: S_{1} \times S_{2} \rightarrow R$ are twice continuously differentiable functions for all $i=$ $1,2, \ldots, k, p_{i}=\left(p_{1}, p_{2}, \ldots, p_{k}\right) \in R^{m}, q_{i}=\left(q_{1}, q_{2}, \ldots, q_{k}\right) \in R^{n}$ and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in$ R^{k}. It is assumed that in the feasible regions the numerators are nonnegative and denominators are positive. Let $l=\left(l_{1}, l_{2}, \ldots, l_{k}\right)^{t}, m=\left(m_{1}, m_{2}, \ldots, m_{k}\right)^{t} \in R^{k}$. Then we can express the programs (MWP) and (MWD) equivalently to:
(EMWP) Minimize l
subject to

$$
\begin{equation*}
\left(f_{i}(x, y)-\frac{1}{2} p_{i}^{t} \nabla_{y y} f_{i}(x, y) p_{i}\right)-l_{i}\left(g_{i}(x, y)-\frac{1}{2} p_{i}^{t} \nabla_{y y} g_{i}(x, y) p_{i}\right)=0, i=1,2, \ldots, k \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-l_{i}\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right] \leqq 0, \\
& y^{t} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-l_{i}\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right] \geqq 0, \\
& \lambda>0 .
\end{aligned}
$$

(EMWD) Maximize m
subject to

$$
\begin{align*}
& f_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} f_{i}(u, v) q_{i}-m_{i}\left(g_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} g_{i}(u, v) q_{i}\right)=0, i=1,2, \ldots, k, \tag{4}\\
& \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \geqq 0, \tag{5}\\
& u^{t} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \leqq 0, \tag{6}\\
& \quad \lambda>0 .
\end{align*}
$$

Now we prove weak, strong and converse duality theorems for (EMWP) and (EMWD) but equally apply to (MFP) and (MFD).

Theorem 3.1 (Weak Duality). Let (x, y, l, λ, p) be feasible to (EMWP) and (u, v, m, λ, q) be feasible to (EMWD) and $g(x, v)>0$. Further, we assume that
(a) $\sum_{i=1}^{k} \lambda_{i}\left(f_{i}(., v)-m_{i} g_{i}(., v)\right)$ be second-order $\left(\phi_{1}, \rho\right)$-invex at u,
(b) $\sum_{i=1}^{k} \lambda_{i}\left(-f_{i}(x,)+.l_{i} g_{i}(x,).\right)$ be second-order $\left(\phi_{2}, \rho\right)$-invex at y,
(c) $\phi_{1}\left(x, u,\left(\xi_{1}, \rho\right)\right)+u^{T} \xi_{1} \geqq 0, \forall \xi_{1} \in R_{+}^{n}$ and $\phi_{2}\left(v, y,\left(\xi_{2}, \rho\right)\right)+y^{T} \xi_{2} \leqq 0, \forall \xi_{2} \in R_{+}^{m}$.

Then $l \geqq m$.

Proof. From the dual constraint (5) and the condition $\phi_{1}\left(x, u,\left(\xi_{1}, \rho\right)\right)+u^{T} \xi_{1} \geqq 0, \forall \xi_{1} \in$ R_{+}^{n} we have

$$
\begin{aligned}
\phi_{1}(x, u ; & \left.\left(\sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right], \rho\right)\right) \\
& u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \geqq 0,
\end{aligned}
$$

which by the dual constraint (6) becomes

$$
\phi_{1}\left(x, u ;\left(\sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right], \rho\right)\right) \geqq 0 .
$$

From the second-order $\left(\phi_{1}, \rho\right)$-invexity of $\sum_{i=1}^{k} \lambda_{i}\left(f_{i}(., v)-m_{i} g_{i}(., v)\right)$ at u, the above inequality gives
$\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-m_{i} g_{i}(x, v)-\left\{f_{i}(u, v)-m_{i} g_{i}(u, v)\right\}+\frac{1}{2} q_{i}^{T}\left\{\nabla_{x x}\left(f_{i}(u, v)-m_{i} g_{i}(u, v)\right)\right\} q_{i}\right] \geqq 0$, which by the dual constraint (4) becomes

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-m_{i} g_{i}(x, v)\right] \geqq 0 \tag{7}
\end{equation*}
$$

On the other hand, from the dual constraint (2) and the condition $\phi_{2}\left(v, y,\left(\xi_{2}, \rho\right)\right)+y^{T} \xi_{2} \leqq$ $0, \forall \xi_{2} \in R_{+}^{m}$, we have

$$
\begin{aligned}
\phi_{2}\left(v, y,\left(-\sum_{i=1}^{k}\right.\right. & \left.\left.\lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-l_{i}\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right], \rho\right)\right) \\
& \quad-y^{T} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-l_{i}\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right] \geqq 0,
\end{aligned}
$$

which by the dual constraint (3) becomes

$$
\phi_{2}\left(v, y,\left(-\sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(x, y)+\nabla_{y y} f_{i}(x, y) p_{i}\right)-l_{i}\left(\nabla_{y} g_{i}(x, y)+\nabla_{y y} g_{i}(x, y) p_{i}\right)\right], \rho\right)\right) \geqq 0
$$

From second-order $\left(\phi_{2}, \rho\right)$-invexity of $\sum_{i=1}^{k} \lambda_{i}\left(-f_{i}(x,)+.l_{i} g_{i}(x,).\right)$ at y, the above inequality gives
$\sum_{i=1}^{k} \lambda_{i}\left[\left\{-f_{i}(x, v)+l_{i} g_{i}(x, v)\right\}-\left\{-f_{i}(x, y)+l_{i} g_{i}(x, y)\right\}+\frac{1}{2} p_{i}^{T} \nabla_{y y}\left\{-f_{i}(x, y)+l_{i} g_{i}(x, y)\right\} p_{i}\right] \geqq 0$,
which by the dual constraint (1) becomes

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}\left(-f_{i}(x, v)+l_{i} g_{i}(x, v)\right) \geqq 0 \tag{8}
\end{equation*}
$$

From (7) and (8), we get

$$
\sum_{i=1}^{k} \lambda_{i}\left(l_{i}-m_{i}\right) g_{i}(x, v) \geqq 0 .
$$

Since $\lambda>0, g(x, v)>0$, it implies that

$$
l \geqq m .
$$

Hence the theorem.
Theorem 3.3 (Strong Duality). Let f be thrice differentiable function on $R^{n} \times R^{m}$. Let $(\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{p})$ be a weak efficient solution of (EMWP) and suppose that
(a) $\left(\nabla_{y y} f_{i}-\bar{l}_{i} \nabla_{y} g_{i}\right)$ is positive definite and $\bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{l}_{i} \nabla_{y} g_{i}\right) \geqq 0, \forall i=1,2, \ldots$, , or $\left(\nabla_{y y} f_{i}-\bar{l} \nabla_{y y} g_{i}\right)$ is negative definite and $\bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{l}_{i} \nabla_{y} g_{i}\right) \leqq 0, \forall i=1,2, \ldots, k$,
(b) $\nabla_{y} g_{i} \bar{p}_{i}+\bar{p}_{i}^{T} \nabla_{y y} g_{i} \bar{p}_{i} \geqq 0, i=1,2, \ldots, k$,
(c) the set $\left\{\left(\nabla_{y} f_{1}+\nabla_{y y} f_{1} \bar{p}_{1}\right)-\bar{l}_{1}\left(\nabla_{y} g_{1}+\nabla_{y y} g_{1} \bar{p}_{1}\right),\left(\nabla_{y} f_{2}+\nabla_{y y} f_{2} \bar{p}_{2}\right)-\bar{l}_{2}\left(\nabla_{y} g_{2}+\right.\right.$ $\left.\left.\nabla_{y y} g_{2} \bar{p}_{2}\right), \ldots,\left(\nabla_{y} f_{k}+\nabla_{y y} f_{k} \bar{p}_{k}\right)-\bar{l}_{k}\left(\nabla_{y} g_{k}+\nabla_{y y} g_{k} \bar{p}_{k}\right)\right\}$ is linearly independent, where $f_{i}=f_{i}(\bar{x}, \bar{y}), i=1,2, \ldots, k$. Then $(\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{q}=0)$ is feasible for (EMWD). Furthermore, if the hypotheses of Theorem 3.1 are satisfied, then $(\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{q}=0)$ is a properly efficient solution of (EMWD) and the two objective values are equal.
Proof. Since ($\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{p}$) is a weak efficient solution of (EMWP) by Fritz John type necessary optimality conditions, there exists $\alpha \in R^{k}, \beta \in R^{k}, \gamma \in R^{m}, \delta \in R, \mu \in R^{k}$ such that

$$
\begin{gather*}
\sum_{i=1}^{k} \beta_{i}\left[\left(\nabla_{x} f_{i}-\frac{1}{2}\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{x} \bar{p}\right)-\bar{l}_{i}\left(\nabla_{x} g_{i}-\frac{1}{2}\left(\nabla_{y y} g_{i} \bar{p}_{i}\right)_{x} \bar{p}_{i}\right)+(\gamma-\delta \bar{y})^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\left(\nabla_{y x} f_{i}\right.\right.\right. \\
\left.\left.+\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{x} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y x} g_{i}+\left(\nabla_{y y} g_{i} \bar{p}_{i}\right)_{x}\right)\right]-\eta=0, \tag{9}\\
\sum_{i=1}^{k}\left(\beta_{i}-\delta \lambda_{i}\right)\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right]+\sum_{i=1}^{k}\left[\left(\nabla_{y y} f_{i}-\bar{l}_{i} \nabla_{y y} g_{i}\right)\right. \\
\left.\left\{(\gamma-\delta \bar{y}) \lambda_{i}-\beta_{i} \bar{p}_{i}\right\}\right]+\sum_{i=1}^{k}\left[\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}-\bar{l}_{i}\left(\nabla_{y y} g_{i} \bar{p}_{i}\right)_{y}(\gamma-\delta \bar{y}) \lambda_{i}-\frac{\beta_{i} \bar{p}_{i}}{2}\right]=0, \tag{10}\\
(\gamma-\delta \bar{y})^{t}\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right]-\mu_{i}=0, i=1,2, \ldots, k, \tag{11}\\
{\left[(\gamma-\delta \bar{y})^{t} \bar{\lambda}_{i}-\beta_{i} \bar{p}_{i}\right]^{t}\left(\nabla_{y y} f_{i}-\bar{l}_{i} \nabla_{y y} g_{i}\right)=0, i=1,2, \ldots, k,} \tag{12}\\
\alpha_{i}-\beta_{i}\left(g_{i}-\frac{1}{2} \bar{p}_{i}^{t} \nabla_{y y} g_{i} \bar{p}_{i}\right)-\left(\gamma-\delta \bar{y}^{t}\left(\bar{\lambda}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right)=0, i=1,2, \ldots, k,\right. \tag{13}\\
\gamma^{t} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right]=0, \tag{14}\\
\delta \bar{y}^{t} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right]=0, \tag{15}\\
\mu^{t} \bar{\lambda}=0, \tag{16}\\
\eta^{T} \bar{x}=0, \tag{17}
\end{gather*}
$$

Since $\bar{\lambda}>0$, it follows from (16) that $\mu=0$. Therefore from (11) we get

$$
\begin{equation*}
(\gamma-\delta \bar{y})^{t}\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right]=0, i=1,2, \ldots, k . \tag{19}
\end{equation*}
$$

From (12) and the condition (a), we have

$$
\begin{equation*}
(\gamma-\delta \bar{y})^{t} \bar{\lambda}_{i}=\beta_{i} \bar{p}_{i}, i=1,2, \ldots, k \tag{20}
\end{equation*}
$$

Using (20) in (10), we get

$$
\begin{align*}
\sum_{i=1}^{k}\left(\beta_{i}-\right. & \left.\delta \bar{\lambda}_{i}\right)\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right] \\
& +\frac{1}{2} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\left(\left(\nabla_{y y} f_{i} \bar{p}_{i}\right)_{y}-\bar{l}_{i}\left(\nabla_{y y} g_{i} \bar{p}_{i}\right)_{y}\right)(\gamma-\delta \bar{y})\right]=0 . \tag{21}
\end{align*}
$$

We claim that $\beta_{i} \neq 0, \forall i \in 1,2, \ldots, k$. If possible, let us suppose that there exists $i \in$ $1,2, \ldots, k$ such that $\beta_{i}=0$. Then from (20) implies that

$$
\begin{equation*}
\gamma-\delta \bar{y}=0 \tag{22}
\end{equation*}
$$

therefore, (21) reduces to

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\beta_{i}-\delta \bar{\lambda}_{i}\right)\left[\left(\nabla_{y} f_{i}+\nabla_{y y} f_{i} \bar{p}_{i}\right)-\bar{l}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right]=0 . \tag{23}
\end{equation*}
$$

By assumption (c), the above relation yields

$$
\begin{equation*}
\beta_{i}-\delta \bar{\lambda}_{i}=0, i=1,2, \ldots, k \tag{24}
\end{equation*}
$$

Since $\bar{\lambda}>0$, the above relation implies that $\delta=0$ and $\beta=0$. From (9), (13) and (22), we get $\eta=0, \alpha=0$ and $\gamma=0$. It contradicts the fact that $(\alpha, \beta, \gamma, \delta, \mu) \geqq 0$. Hence $\beta_{i} \neq 0, \forall i \in\{1,2, \ldots, k\}$. We now prove that $\beta>0$. To prove this, it suffices to show that $\beta \geqq 0$. From (13) and (20), we have

$$
\alpha_{i}=\beta_{i}\left[\left(g_{i}-\frac{1}{2} \bar{p}_{i}^{t} \nabla_{y y} g_{i} \bar{p}_{i}\right)-\bar{p}_{i}\left(\bar{\lambda}_{i}\left(\nabla_{y} g_{i}+\nabla_{y y} g_{i} \bar{p}_{i}\right)\right)\right]=0, i=1,2, \ldots, k .
$$

Since $\alpha \geqq 0, g_{i}-\frac{1}{2} \bar{p}_{i}^{T} \nabla_{y y} g_{i} \bar{p}_{i}>0, i=1,2, \ldots k$, from assumption (b), we can obtain $\beta \geqq 0$, which by $\beta_{i} \neq 0, \forall i \in 1,2, \ldots, k$ yields $\beta>0$.

From (14), (15) and (20), we have

$$
\sum_{i=1}^{k} \beta_{i}\left(\bar{p}_{i}^{T}\left(\nabla_{y} f_{i}-\bar{l}_{i} \nabla_{y} g_{i}\right)+\bar{p}_{i}^{T}\left(\nabla_{y y} f_{i}-\bar{l}_{i} \nabla_{y y} g_{i}\right) \bar{p}_{i}\right)=0
$$

By $\beta>0$ and assumption (a), we obtain $\bar{p}_{i}=0, i=1,2, \ldots, k$. Thus from (20) we get (22). Similarly, we obtain (24). Using (22) and the fact that $\bar{p}_{i}=0, i=1,2, \ldots, k$ in (9), we get

$$
\sum_{i=1}^{k} \beta_{i}\left[\nabla_{x} f_{i}-\bar{l}_{i}\left(\nabla_{x} g_{i}\right)\right]=\eta
$$

which by $\beta>0, \bar{\lambda}>0, \eta \geqq 0$ and (24) yields

$$
\sum_{i=1}^{k} \beta_{i}\left[\nabla_{x} f_{i}-\bar{l}_{i}\left(\nabla_{x} g_{i}\right)\right]=\frac{\eta}{\delta} \geqq 0
$$

Combining the above result with (17), we obtain

$$
\bar{x}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}-\bar{l}_{i}\left(\nabla_{x} g_{i}\right)\right]=0,
$$

Since $\delta>0$, so from (22) we get

$$
\bar{y}=\frac{\gamma}{\delta} \geqq 0 .
$$

Thus it follows from the above three inequalities that $(\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{q})$ is feasible solution to (EMWD). Under the assumptions of Theorem 3.1, if ($\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{q}=0$) is not an efficient solution of (EMWD), then there exists other feasible solution $(u, v, m, \bar{\lambda}, q)$ of (EMWD) such that $\bar{l} \leq m$. Since $(\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{p})$ is a feasible solution of (EMWP), by Theorem 3.1, we have $\bar{l} \not \approx m$, hence the contradiction implies ($\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{q}=0$) is an efficient solution of (EMWD).

If ($\bar{x}, \bar{y}, \bar{l}, \bar{\lambda}, \bar{q}=0$) is not a properly efficient solution of (EMWD), then there exists other feasible solution ($u, v, m, \bar{\lambda}, q$) of (EMWD) such that for an index $i \in\{1,2, \ldots, k\}$ and any real number $M>0, m_{i}-\bar{l}_{i}>M\left(\bar{l}_{j}-m_{j}\right)$ for j satisfying $\bar{l}_{j}>m_{j}$ whenever $m_{i}>\bar{l}_{i}$. This implies $m_{i}>\bar{l}_{i}$ can be made arbitrarily large and this contradicts with Theorem 3.1. Also the two objective values are equal.

Theorem 3.4 (Converse Duality). Let f be thrice differentiable function on $R^{n} \times R^{m}$. Let $(\bar{u}, \bar{v}, \bar{m}, \bar{\lambda}, \bar{q})$ be a weak efficient solution of (EMWD) and suppose that
(a) $\left(\nabla_{x x} f_{i}-\bar{m}_{i} \nabla_{x} g_{i}\right)$ is positive definite and $\bar{q}_{i}^{T}\left(\nabla_{x} f_{i}-\bar{m}_{i} \nabla_{x} g_{i}\right) \geqq 0, \forall i=1,2, \ldots, k$, or $\left(\nabla_{x x} f_{i}-\bar{m} \nabla_{x x} g_{i}\right)$ is negative definite and $\bar{q}_{i}^{T}\left(\nabla_{x} f_{i}-\bar{m}_{i} \nabla_{x} g_{i}\right) \leqq 0, \forall i=1,2, \ldots, k$,
(b) $\nabla_{x} g_{i} \bar{q}_{i}+\bar{q}_{i}^{T} \nabla_{x x} g_{i} \bar{q}_{i} \geqq 0, i=1,2, \ldots, k$,
(c) the set $\left\{\left(\nabla_{x} f_{1}+\nabla_{x x} f_{1} \bar{q}_{1}\right)-\bar{m}_{1}\left(\nabla_{x} g_{1}+\nabla_{x x} g_{1} \bar{q}_{1}\right),\left(\nabla_{x} f_{2}+\nabla_{x x} f_{2} \bar{q}_{2}\right)-\bar{m}_{2}\left(\nabla_{x} g_{2}+\right.\right.$ $\left.\left.\nabla_{x x} g_{2} \bar{q}_{2}\right), \ldots,\left(\nabla_{x} f_{k}+\nabla_{x x} f_{k} \bar{q}_{k}\right)-\bar{m}_{k}\left(\nabla_{x} g_{k}+\nabla_{x x} g_{k} \bar{q}_{k}\right)\right\}$ is linearly independent, where $f_{i}=f_{i}(\bar{u}, \bar{v}), i=1,2, \ldots, k$. Then $(\bar{u}, \bar{v}, \bar{m}, \bar{\lambda}, \bar{p}=0)$ is feasible for (EMWD). Furthermore, if the hypotheses of Theorem 3.1 are satisfied, then $(\bar{u}, \bar{v}, \bar{m}, \bar{\lambda}, \bar{p}=0)$ is a properly efficient solution of (EMWD) and the two objective values are equal.

Proof. It follows on the lines of Theorem 3.3.

4. Self duality

A mathematical programming problem is said to be self-dual if it is formally identical with its dual, that is, the dual can be recast in the form of the primal. If we take the functions f_{i} as skew-symmetric and g_{i} as symmetric, that is,

$$
f_{i}(x, y)=-f_{i}(y, x), g_{i}(x, y)=g_{i}(y, x)
$$

for each $i=1,2, \ldots, k$, then we shall show that the programs (EMWP) and (EMWD) are self-dual. By recasting the dual problem (EMWD) as minimization problem, we have

$$
\text { Minimize }-m=\left(-m_{1},-m_{2}, \ldots,-m_{k}\right)
$$

subject to

$$
\begin{aligned}
& {\left[f_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} f_{i}(u, v) q_{i}-m_{i}\left(g_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} g_{i}(u, v) q_{i}\right)\right]=0, \quad i=1,2, \ldots, k,} \\
& \quad \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \geqq 0, \\
& u^{t} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{x} f_{i}(u, v)+\nabla_{x x} f_{i}(u, v) q_{i}\right)-m_{i}\left(\nabla_{x} g_{i}(u, v)+\nabla_{x x} g_{i}(u, v) q_{i}\right)\right] \leqq 0, \\
& \quad \lambda>0,
\end{aligned}
$$

where $m_{i}=\left[\frac{f_{i}(u, v)-\frac{1}{2} q_{i}^{t} \nabla_{x x} f_{i}(u, v) q_{i}}{g_{i}(u, v)-\frac{1}{2} q_{i}^{q_{i}} \nabla_{x x} g_{i}(u, v) q_{i}}\right]$.
Since f_{i} and $g_{i}, i=1,2, \ldots, k$ are skew-symmetric and symmetric, respectively, we have

$$
\begin{gathered}
\nabla_{x} f_{i}(u, v)=-\nabla_{x} f_{i}(v, u), \nabla_{x x} f_{i}(u, v)=-\nabla_{x x} f_{i}(v, u), \\
\nabla_{y} f_{i}(u, v)=-\nabla_{y} f_{i}(v, u), \nabla_{y y} f_{i}(u, v)=-\nabla_{y y} f_{i}(v, u), \\
\nabla_{x} g_{i}(u, v)=\nabla_{x} g_{i}(v, u), \nabla_{x x} g_{i}(u, v)=\nabla_{x x} g_{i}(v, u), \\
\nabla_{y} g_{i}(u, v)=\nabla_{y} g_{i}(v, u), \nabla_{y y} g_{i}(u, v)=\nabla_{y y} g_{i}(v, u) .
\end{gathered}
$$

Hence the dual problem (EMWD) can be written as

$$
\text { Minimize } z=\left(z_{1}, z_{2}, \ldots, z_{k}\right)
$$

subject to

$$
\begin{gathered}
f_{i}(v, u)-\frac{1}{2} q_{i}^{t} \nabla_{y y} f_{i}(v, u) q_{i}-z_{i}\left(g_{i}(v, u)-\frac{1}{2} q_{i}^{t} \nabla_{y y} g_{i}(v, u) q_{i}\right)=0, i=1,2, \ldots, k, \\
\sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(v, u)+\nabla_{y y} f_{i}(v, u) q_{i}\right)-z_{i}\left(\nabla_{y} g_{i}(v, u)+\nabla_{y y} g_{i}(v, u) q_{i}\right) \leqq 0,\right.
\end{gathered}
$$

$$
\begin{aligned}
& u^{t} \sum_{i=1}^{k} \lambda_{i}\left[\left(\nabla_{y} f_{i}(v, u)+\nabla_{y y} f_{i}(v, u) q_{i}\right)-z_{i}\left(\nabla_{y} g_{i}(v, u)+\nabla_{y y} g_{i}(v, u) q_{i}\right)\right] \geqq 0, \\
& \lambda>0
\end{aligned}
$$

where $z_{i}=\frac{f_{i}(v, u)-\frac{1}{2} q_{i}^{t} \nabla_{y y} f_{i}(v, u) q_{i}}{g_{i}(v, u)-\frac{1}{2} q_{i}^{t} \nabla_{y y} g_{i}(v, u) q_{i}}$, for all $i=1,2, \ldots, k$.
This shows that the dual problem (EMWD) is identical to (EMWP). Hence if (u, v, λ, m, q) is feasible for (EMWD), then (v, u, λ, m, q) is feasible for (EMWP) and conversely.

We now state the self-duality theorem.
Theorem 4.1 Let f_{i} and $g_{i}, i=1,2, \ldots, k$ be skew-symmetric and symmetric, respectively. Then (EMWP) is self-dual. Furthermore, if (EMWP) and (EMWD) are dual problems and $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{m}, \bar{p})$ is a joint optimal solution, then so is $(\bar{y}, \bar{x}, \bar{\lambda}, \bar{m}, \bar{p})$ and and the common optimal value of the objective functions is 0 .

Proof. It follows on the lines of the corresponding results by Weir and Mond [17].

5. Special Cases

(i) If $k=1$, then the problem (MWP) and (MWD) are reduced to that presented in Gulati et al. [7].
(ii) If we set $k=1, g(x, y)=1$, then (MWP) and (MWD) becomes the programs studied in Bector and Chandra [3]. Also if $p=0$ and $q=0$, then they reduce to the problems presented in Mond and Weir [11].
(iii) If $g=1$ for all x, y in (MWP) and (MWD), we get the programs studied in Suneja et al. [15].

6. Conclusion

In this article, a pair of Mond-Weir type multiobjective second-order fractional symmetric dual programs is presented and weak, strong and converse duality relations between primal and dual problems are discussed. It is the future tasks of the the authors to extend these results to higher-order fractional symmetric dual programs over cones. It will be interesting to check the validity of duality results for multiobjective second-order mixed integer programs, wherein some primal and dual variables are constrained to belong to some arbitrary sets.

References

[1] I. Ahmad, S. Sharma, Multiobjective fractional symmetric duality involving cones, J. Appl. Math. Informatics, 26 (2008) 151-160.
[2] I. Ahmad, Z. Husain, On multiobjective second order symmetric duality with cone constraints, European J. Oper. Res., 204 (2010) 402-409.
[3] C. R. Bector, S. Chandra, Second order symmetric and self-dual programs, Opsearch, 23 (1986) 89-95.
[4] S. Chandra, B. D. Craven, B. Mond, Symmetric dual fractional programming, Zeitschrift für Oper. Res., 29 (1985) 59-64.
[5] G. B. Dantzig, E. Eisenberg, R. W. Cottle, Symmetric dual nonlinear programming, Pac. J. Math., 15 (1965) 809-812.
[6] W. S. Dorn, A symmetric dual theorem for quadratic progarms, J. Oper. Res. Soc. Japan, 2 (1960) 93-97.
[7] T. R. Gulati, G. Mehndiratta, K. Verma, Symmetric duality for second-order fractional programs, Optim. Lett., 7 (2013) 1341-1352.
[8] S. K. Gupta, N. Kailey, Multiobjective second-order mixed symmetric duality with a square root term, Appl. Math. Comput., 218 (2012) 7602-7613.
[9] S. K. Gupta, N. Kailey, Nondifferentiable multiobjective second-order symmetric duality, Optim. Lett., 5 (2011) 125-139.
[10] O. L. Mangasarian, Second and higher order duality in nonlinear programming, J. Math. Anal. Appl., 51 (1975) 607-620.
[11] B. Mond, T. Weir, Generalized concavity and duality, in: S. Schaible, W. T. Ziemba (Eds.), Generalized concavity in Optimization and Economics, Academic press, New York (1981) 263-280.
[12] B. Mond, S. Chandra, M. V. Durga Prasad, Symmetric dual non-differentiable fractional programming, Indian J. Manag. Syst., 3 (1987) 1-10.
[13] I. M. Stancu Minasian, A sixth bibliography of fractional programming, Optimization, 55 (2006) 405-428.
[14] I. M. Stancu Minasian, Fractional programming : Theory, Methods, and Applications, Kluwer Academic, Dordrecht, (1997).
[15] S. K. Suneja, C. S. Lalitha, S. Khurana, Second order symmetric duality in multiobjective programming, European J. Oper. Res., 144 (2003) 492-500.
[16] T. Weir, Symmetric dual multiobjective fractional programming, J. Aust. Math. Soc. Ser., 50 (1991) 67-74.
[17] T. Weir, B. Mond, Symmetric and self-duality in multiobjective programming, Asia Pac. J. Oper. Res., 5 (1988) 124-133.
[18] X. M. Yang, X. Q. Yang, K. L. Teo, S. H. Hou, Multiobjective second-order Symmetric duality with F-convexity, European J. Oper. Res., 165 (2005) 585-591.

[^0]: * Corresponding author

 Email address: ashishprasa@gmail.com (A. K. Prasad)

