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Abstract 
 
Contemporary knowledge-based systems are employed for obtaining intelligent decisions to 
problem-solving situations by making use of rules and justifications. The performance of 
KBS’s can be characterized by a set of suitable measures. In this work, we consider the 
following quantities: utilization, availability, and overall system responsiveness. We also 
create an operational framework for modelling knowledge acquisition from KBS’s using 
arguments from stochastic analysis. Actions to correct instabilities and thus improve KBS 
performance are also discussed for both centralized and multi-agent systems. 
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1. Introduction 
 
Knowledge bases (KBs) are essential elements of many contemporary information 
economies and societies. They are seamlessly integrated into the store-and-forward 
nodes of large-scale computer networks acting as digital libraries with sophisticated 
man-machine interfaces. As such, modern KBs contribute to our understanding of 
many important subjects of interest while serving as hosts for an increasing number 
of telematic activities. 
 KB performance can be characterized by suitable quantitative measures: we shall 
examine in some detail the most important ones in subsequent sections of this article. 
For the moment, suffice to say that the factors underlying the overall performance of 
KBs come from two interrelated sources: (i) the KB architecture itself (internal 
configuration and operational modules) and (ii) the capabilities of the supporting 
telecommunication infrastructures. The main features of these infrastructures include 
many forms of broadband technologies (fixed and wireless), access via intelligent 
man-machine interfaces, and improved quality of service (QoS). 
 Human-readable knowledge bases, in addition to machine-readable ones, contain 
implicit knowledge: such kind of knowledge (as opposed to explicit knowledge) is 
particularly valuable when  logical inference does not apply or it is difficult to obtain. 
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The so-called multi-agent systems are also part of our examination, since they can 
integrate the properties of explicit knowledge - also referred to as tacit knowledge - 
with their inherent property of robustness, i.e. their ability to withstand workload 
pressure much more successfully than the classical centralized systems. 
 In this article, we proceed as follows. First, we discuss fundamental concepts of 
knowledge bases making the necessary distinction between machine readable and 
human readable KBs. Next, we examine the main properties of multi-agent systems 
in comparison with centralized systems. Then, we go on to more complex subjects as 
stochastic modelling and analysis in the framework of KB performance evaluation. 
We conclude with certain practical aspects, which are believed to be essential for the 
purpose of effective KB management. 
 
 
 
2. Machine readable and human readable knowledge bases 
 
Knowledge bases are databases specifically designed for the meeting the needs of 
knowledge management. They are large information repositories of data which can 
be searched, utilized, and shared by appropriate user communities. There are two 
kinds of knowledge bases: machine-readable and human-readable KBs. 
 Machine-readable knowledge bases (MRKBs) contain data and rules presented 
in a way by which they can be logically read by another machine; hence, no human 
intervention is necessary. Knowledge contained in this type of bases is explicit by 
design and tractable by means of logical inference. Artificial intelligence (AI) 
techniques and algorithms are employed here [1]. Knowledge representation and 
reasoning are central themes in this design which also involves the encoding of given 
propositions. AI practice is concerned with the construction of knowledge-based 
systems realized via suitable man-system interfaces. Logical operators such as 
(AND, OR) are used in the course of machine interpretation. Such knowledge bases 
are extensively used within the so-called semantic web [2,3,4]. 
 Human-readable knowledge bases (HKRBs) differ from the above type as they 
also contain implicit knowledge: this kind of knowledge - known as tacit (more than 
can be said) - is particularly valuable when the formal rules of logical inference are 
not applicable in a given situation. User content may refer, for instance, to banking or 
medical history or to learning activities. In the business world, content may also 
include articles and reports, user manuals, and other documents for sharing amongst 
workers and their clients. Search engines are the means for retrieving information of 
interest and for relaying that information, thus facilitating knowledge exchange. 
Intranets are also frequently used in such circumstances. 
 Figure 1 shows the main elements of a knowledge base in the world-wide web 
along its user population. Note the presence of an inference engine associated with 
the KB in question as well as the interface connecting the users. The query-reply 
format is typical in the case of a human-readable knowledge base. When necessary, 
the contents of a machine-readable knowledge base may be converted into a natural 
language format so that humans can understand the facts and associated rules 
embedded there. Semantic web languages are often used for the above purpose. 
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Figure 1: Elements of KB-user interaction in an open communications environment. 
 
When the specification language used is close to natural language, the transformation 
from a machine readable KB to a human-readable one is made easier. The TIL-script 
programming language, for example [5], is capable of encoding the content of 
ontologies and other attributes. TIL-script messages are presented in a standard 
natural language that is very close to needs of human agents. 
 Knowledge-based systems (KBS) are “products” of artificial intelligence (AI). 
They are employed for the purpose of providing intelligent decisions to problem-
solving situations by making use of rules and justifications. At its core, a KBS 
contains a large amount of information as well as an elaborate set of concepts, 
assumptions and rules. Further, a reasoning system implemented in the KBS helps in 
making intelligent decisions. Any knowledge base, whatever its type, makes use of 
the concept of ontologies. An ontology is simply a set of attributes assigned to the 
objects of a KBS, and to the inter-relations of these objects. Thus, KBS are able to 
support human learning, enhance understanding, and provide guidance for action. 
 The inference engine of Figure 1, upon the receipt of a request, searches the 
knowledge base and then applies all relevant rules and relationships amongst objects. 
It also processes the associated information encoded there and provides the necessary 
justification for further action. Apart from its internal structure, KBS performance 
also depends on the workload received during a period of observation. Since such 
workload is always a function of the user population - more precisely the subset of 
active users - connected to the knowledge base, it follows that the overall KBS 
performance is also influenced by workload fluctuations. We examine this matter 
later in this article. 
 For the time being we simply note that, when user activity increases, system 
(KBS) responsiveness R(s) decreases proportionately [6]. And in the limiting case, 
i.e. when  N → ∞, which practically means that N has exceeded some critical point, it 
follows that R(s) → 0. This is seen by the users as inability to communicate with the 
distant KBS host system [7]. Also, when system entropy increases, instabilities occur 
leading to an increase in uncertainty which, in turn, affect the sequence of logical 
inferencing and the quality of decisions [8]. 
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3. Stochastic modelling and analysis 
 
Analysis of complex systems can be performed by means of either deterministic or 
probabilistic models. Because of their known potential for representing random 
phenomena in a compact manner, probabilistic models are preferable in the analysis 
of computer systems and networks. The same potential is present when one attempts 
to study the performance of databases or, in the present situation, knowledge bases 
which are distributed across web connections. Amongst the probabilistic approaches 
to the modelling of of the above type of knowledge bases, the queueing approach is 
by far the most appealing one because of its versatility and robustness. 
 This section begins with a brief account of the structure and properties relating to 
stochastic processes and Markov chains. Then, we introduce a modelling scheme of 
knowledge acquisition from a web knowledge base in the framework of this study. 
The key performance parameters of this model are next derived analytically followed 
by an example illustrating our approach. Finally, we discuss the results obtained in 
the context KBS performance management. 
 
 
3.1. Stochastic processes and Markov chains 
 
A stochastic process X(t) is a function of time t whose values are random variables. 
Further, a Markov chain is a stochastic process X(t) with states S0, S1, ... Si ... , such 
that the probability at time tk+1 an arbitrary state Si depends only on the state at time 

tk for any sequence of time instants t1, t2, .... tK+1 with  t1 < t2 < .... tK+1. The 
probability of a transition from state Si to state Sj at time k may be written as follows: 
 
      pij  (k) =  prob {XK+1 = j | XK = i }.     (1) 
 
The statistical relationships amongst the possible states of a Markov chain can be 
specified by means of a matrix P(k) known as the transition-probability matrix. 
Further, we make the assumption that the transition probabilities can for practical 
purposes be independent of time; therefore, our chain is assumed to be homogeneous. 
The transition matrix P(k) of a homogeneous chain can be graphically illustrated 
when the state space is moderate. 
 Stochastic models including homogeneous chains can be used with confidence 
for the modelling of real systems. They are especially useful in the study of 
transitions amongst possible states. With such models the analyst is able to answer 
several performance-related questions. Examples of such questions are as follows: 
 
(i) How often is a certain state visited in the course of an observation period? 
(ii) How much time is spent in that state by system under examination? 
(iii) How long - or short - are the intervals between successive visits? 
(iv) Are the operating overheads sufficiently low or at least tolerable? 
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If our model satisfies certain conditions which are detailed below, then answering 
questions such as the above is possible. Of course, one needs to have closed-form 
analytical expressions in order to avoid lengthy simulation procedures. 
 
 
3.2. Equilibrium state probabilities 
 
Analytical expressions require the adoption of the following properties which often 
characterize homogeneous chains: 
 
P1: Irreducible chain. This property is considered true when a state can be reached 
from any other state. 
P2: Recurrent states. A state is considered recurrent if the probability of re-visiting it, 
after a visit has already taken place, is equal to 1. 
P3: Aperiodic states. If the visits to a recurrent state have recurrence times that are 
not all equal, then that state is aperiodic; and if all states are aperiodic, then the entire 
Markov chain is aperiodic also. 
 
Let us denote by pi (k) the probability that a Markov chain, at time k, is in some state 
Si. The initial state probabilities are simply pi (0). Let us also recall our initial 
assumption about homogeneity and then combine this with properties P1, P2 and P3. 
Then, the limiting state probabilities: 
 
     pi = lim {pi (k)} with (k → ∞, i = 0, 1, 2, ...)    (2) 
 
exist and are independent of the initial state probabilities. 
 
Assuming that all mean recurrence times are finite - which is thought realistic in 
most system observations - then the state probabilities are merely a stationary series, 
and they can be found analytically be solving the following set of equations: 
 
     pj = ∑ pi pij     with (j = 0, 1, 2, ...)      (3) 
       i 
 
and 
 
       ∑ pi = 1.          (4) 
        i 
 
The solution of Equations (3) and (4) above give the equilibrium state probabilities 
which are independent of the initial state probabilities. From this set of equations we 
can compute several key performance measures which are of interest in this study. 
Before going into the details of such computations we need to discuss the structure of 
our model and relate it to the performance study of remote knowledge-based 
systems. So, let us consider the following figure: 
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Figure 2: Model of users’ requests for service. Requests are placed in a queue. 
 
The figure comprises the following elements: (1) a KBS with any of the two types of 
knowledge bases (MR/HR) mentioned in the previous sections; (2) a physical source 
where system users make their requests; and (3) a queue in which the above requests 
are placed awaiting service. When service is completed, an output for each request is 
generated and this output follows the direction of the arrow on the left. 
 Our interest is focused on certain key performance measures that can be used in 
the analysis of the KBS: further, we seek closed-form expressions for these measures 
so as to avoid simulation or lengthy iterative procedures. Such performance measures 
characterize KBS operation in terms of (i) resource utilization, (ii) responsiveness, 
and (iii) stability. First, we need to specify all possible state. From Figure 2 above, 
and by taking account of all KBS elements, we propose the following state space: 
 
• S0: The waiting state, i.e. when the KBS expects input from the its users. 

• S1: This may be called the user state, which corresponds to all active users. 

• S2: The scheduling state, which is associated with queueing and internal functions. 

• S3: Finally, the problem-solving state, i.e. the overall service provided by the KBS. 
 
From the above state space we can construct the transition-probability matrix P(k) by 
giving some values as regards possible state transitions (Si ↔ Sj). Such an example 
with indicative values follows below: 
 
  Table 1: Transition-probability matrix for the example KBS 
 

States S0 S1 S2 S3 
S0 0.97 0.03 0.00 0.00 
S1 0.03 0.93 0.04 0.03 

S2 0.00 0.03 0.91 0.04 

S3 0.00 0.02 0.04 0.96 
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First, we note that the equilibrium state probabilities must always sum up to value 1 
according to the requirement of Equation (4) above. Next, by solving Equations (3) 
for the values of Table 1 we obtain: 
 
      p0 = 0.23;   p1 = 0.12;   p2 = 0.07;   p3 = 0.58.   (5) 
 
 
3.3. Utilization and time intervals 
 
From the above results we may obtain the degree of utilization, i.e. the fraction of 
busy time of our KBS as the complement of p0 above. Calling this fraction ρ we see 

that ρ = (1 − 0.23) = 0.77, or in percentage form ρ = 77 %. This implies that ρ < 1, 
which is expected because our system operates within its equilibrium. Therefore, the 
inequality ρ < 1 can be seen as a necessary condition for system steady-state. 
 Utilization is an important measure as it shows how busy is an operating system 
during a period of observation. When  ρ → 1, this is an indication that our system, 
here the KBS, has the tendency to leave its equilibrium, thus drifting into instabilities 
and possible saturation. We examine these matters in the next section. 
 For the time being, we can also calculate another useful measure which may be 
called the mean duration of state Sj (j = 0, 1, 2, 3, ...). At every time instant, starting 
with state Sj, our chain has a probability pij  of remaining there and a complementary 

probability (1 − pij) of going to another state. The properties of the previous seb-
section (P1, P2, P3, P4) and the homogeneous nature of our chain allow us to 
calculate the mean duration times as follows. 
 Let us first assume that, when a state Sj (j = 0, 1, 2, 3, ...) is active, it may last for 
a maximum of q milliseconds. The quantity q may be called quantum or time-slice. 
Such very short amounts of time are frequent in real situations, especially whenever 
service is offered on on a time-sharing basis. Our KBS is a good example of a system 
operating on the above basis since it has to cater for the needs of many users with 
different demands (see also Figure 2). Then, the mean duration Tj of state Sj can be 
calculated as follows: 
 
      Tj = q / { (1 − pij) } ( j = 0, 1, 2, 3, ...).    (6) 

 
Assuming a quantum q = 75 ms, application of Equation (5) above, in connection 
with the values of pij  in Table 1, gives the following values (in seconds): T0 = 2.500;   
T1 = 1.071; T2 = 0.833; T3 = 1.875. 
 We note that, on the average, most of the time is spent in states S1, S2 and S3 
which characterize user, scheduling, as well as problem-solving states. An adequate 
amount of time is also spent in state S0, i.e the user waiting state. Therefore, we may 
note that our example KBS system is stable, capable of serving its users efficiently. 
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4. System performance and instabilities 
 
Performance instabilities principally occur when user activity gradually increases and 
becomes intense thus approaching the KBS ability for service. This phenomenon can 
be illustrated by recalling the definition of state S0 of the previous section. S0 is the 
waiting state, i.e. the state in which the KBS expects input from its users. Associated 
with S0 is p0, i.e. the corresponding equilibrium state probability. 
 
 
4.1. User activity and system utilization 
 
The impact of such intense user activity on system utilization can be illustrated by 
allowing p0 to gradually decrease, as shown in Table 2. The sum of the rest of the 
probabilities also increases so as to keep to the sum total equal to 1 according to 
Equation (4) of the previous section. System utilization ρ is the complement of p0 as 
above, thus ρ will increase proportionately. The effect of these changes is shown in 
Table 2. When ρ reaches the value of 95%, we may say that our system is 
approaching its saturation point. 
 
       Table 2: Progress of utilization for the example KBS 
 

p0  p1+p2+p3 ρ (%) 
0.23 0.77 77 
0.20 0.80 80 
0.17 0.83 83 
0.14 0.86 86 
0.11 0.89 89 
0.08 0.92 92 
0.05 0.95 95 (*)  
0.02 0.98 98 
0.00 1.00 100 (sat.) 

       (*)  Onset of system saturation. 
 
This simple numerical example illustrates the general requirement for steady-state 
briefly referred to earlier, i.e.: 
 
     ρ < 1 (steady-state) and ρ → 1 (saturation)    (7) 
 
When ρ = 1, our KBS becomes completely saturated, thus unavailable to its users. 
Another way of looking into this troublesome situation is to observe that when ρ = 1, 
then p0 = 0. Recalling from earlier the definition of the waiting state S0, we see that 
in this case the system is working at its full capacity. In classical queueing theory ρ is 
also known as the system traffic intensity. Then, ρ relates arrival rates to the system 
service rates. For stability, it is required that values of the arrival rates are always less 
than the corresponding values of service rates. 
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4.2. System availability and responsiveness 
 
Apart from system utilization, another important measure that characterizes a KBS is 
its end-to-end delay. This measure may be defined as the sum of the times the system 
works for its users, i.e. all intervals of time except the interval corresponding to the 
waiting state S0. The above measure, which we denote by Tsys , takes into account all 
possible delays attributed to the queueing of users’ requests for service as well as the 
delays associated with network transmissions. 
 The value of Tsys above can be calculated by virtue of the well-known Little’s 
law from classical queueing theory. Little’s law, originally formulated by J.D.C. 
Little as a theorem, has been proved in the course of time to be true for any system 
with arbitrary arrival and service times. Stated informally, Little’s law equates the 
number of “customers” N to the product of the system’s arrival rate λ and the 

corresponding waiting time W. Hence, the well-known equation: “N(s) = λ.W”  
where the above quantities are expressed by their mean values. W includes both the 
“customers” being served and those waiting in the queue. 
 Figure 2 given earlier is an appropriate model in this situation provided that we 
first translate “customers” to users’ requests for service, then equating W to Tsys , and 
finally relating the arrival rate λ with system workload and responsiveness. The latter 
relationship is given analytically from classical queueing theory as the ratio of λ to 
the system’s service rate µ. Hence, the traffic intensity formula ρ = λ/µ. 
 From this formula and by expressing the service time 1/µ as the value of the 

quantum (q), we can see that ρ = λ.q. Finally, by remembering that ρ and p0 are 

complimentary quantities, (1 − p0) = λ.q. From this expression we can calculate the 
value of λ as follows: 
 
        λ = (1 − p0) / q.        (8) 

 
Application of Little’s law with the above notation gives the following relationships: 
 
     N(s) = λ / (µ − λ) ;   Tsys = 1 / (µ − λ).     (9) 

 
Let it be noted that Equations (8) above require the additional assumption of Poisson 
arrivals λ and exponentially distributed service times 1/µ. This type of queueing 

system is denoted by M/M/1/∞ in Kendall’s notation. Finally, the probability: 
 
     P (no access) = prob {N ≥ k} = ρk       (10) 
 
may be used to show the case when the number of requests N exceeds some critical 
value k of the system’s capacity. Applying our example values, we get: λ = 0.77/75 

msec = 0.77/0.075 sec = 10.27 requests/sec, from which ρ = λ/µ = λ.q= 10.27*0.075 

= 0.77 or ρ =77%. Since, ρ < 1,  our example system is in its steady-state. 
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 From Equation (10) we can estimate the availability A(s) of our system, i.e. the 
fraction of users’ requests that can be accepted for service given the system’s internal 
capacity limitations. Then, for a value of e.g. k = 10, i.e. a maximum of 10 requests 
allowed in the system (waiting for or receiving service), we find that: P (no access) = 
prob {N ≥ 10} = 0.7710 = 0.073. Therefore, 7.3% of the incoming requests will have 
to be denied access. Thus, system availability stands at A(s) =  92.7%. 
 Equations (9) and (10) above are very useful in exploring the consequences of 
gradually increasing workloads. This happens when and ρ → 1 as in expression (7) 
or equivalently when λ → µ. Table 3 below shows the performance of our example 
system as the function of its workload for a value of k = 10. 
 
     Table 3: Availability and responsiveness for the example KBS 
 

λ (req./sec) A(s) (%) N(s) (num) Tsys (seconds) 
10.27 92.7 3.39 0.33 
10.67 87.9 4.06 0.38 
11.07 84.5 4.87 0.44 
11.47 77.9 6.19 0.54 
11.87 68.8 8.07 0.68 
12.27 56.6 11.54 0.94 
12.67 40.1 (*)  19.26 (*)  1.52 (*)  
13.07 18.3 50.32 3.85 
13.33 0.0 (sat.) (∞) (∞) 

 
 
4.3. Instabilities and saturation 
 
From Table 3 we can clearly see that, after the (*)  point in A(s), system availability 
drops below 50% and thereafter it declines very sharply. This (*)  point corresponds 
to its equivalent onset saturation point, in Table 2 shown earlier, where  ρ = 95%. 
The last line of Table 3 shows a completely saturated system, which again from 
Table 2 corresponds to ρ = 1. This is the effect of an increasing workload which 
gradually approaches and then reaches the capacity of the example system. The last 
two columns of Table 3 show this effect in connection with the number of requests 
being served and the corresponding times within the system. 
 Again we can clearly see the effect of workload increase by noting the values of 
the last three rows of Table 3 above. After the (*)  point, the number of requests being 
served increases exponentially and the same is true with the times required to 
complete service. For example, the value 1.52 (*)  seconds is (1.52/q) = (1.52/0.075) 
= 20.27, i.e twenty times over the system quantum: a very sharp increase. Also, at the 
same time, N(s) is nearly twenty requests within the system, and this number also 
grows exponentially after the (*)  point. Finally, the last row of Table 3 above shows 
the system at its complete saturation state, hence the infinite values of N(s) and Tsys. 
 Let it be noted that in critical situations, e.g. when the workload brought forward 
to a KBS approaches its inherent capacity, overall performance degrades, the system 
becomes  unstable  and  it  may eventually collapse. This  unpleasant  phenomenon is 
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known as thrashing, a term originally given by Denning and Buzen in the context of 
centralized systems [9]. The performance of such systems has also been investigated 
by many authors in the setting of knowledge-based systems which may be seen as 
dynamical systems operating across the Internet for the purposes of learning and 
discovering hidden information [10, 11, 12]. 
 The newer multi-agent systems are generally considered as more efficient and 
flexible than classical centralized systems. They are constructed as autonomous, 
intelligent agents with considerable communication capabilities. When a multi-agent 
system is in operation under the same critical conditions, some of its agents can 
withstand the pressure and operate almost normally. Figure 3 below shows the 
performance curves of a centralized system (CS) and that of a multi-agent system 
(MAS) as functions of the system workload over time. 
 
 

 
 
    Figure 3: Performance curve as a function of workload for two systems (CS, MAS). 
 
Both systems in Figure 3 operate quite normally within their stable regions attaining 
their maximum performance as they approach their plateau, i.e. the top portion of 
their respective curves. Thereafter, they both enter their unstable regions. In the 
previous analysis, we have shown analytically how the increasing workload affects 
system responsiveness A(s), also noting the sharp increase in the values of both N(s) 
and Tsys. The main advantage of implementing a multi-agent system is that overall 
performance - seen as a synthesis of the above three measures - degrades at a much 
slower pace, thus allowing analysts and installation managers to take corrective 
actions in a timely fashion. Such actions may include the implementation of control 
mechanisms in the users’ area to limit arrival rates when necessary (ex ante actions) 
or upgrade parts of system configuration so as to make the whole system more 
responsive to users’ requests (ex post actions). 
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 Problems concerning performance evaluation, control, and system organization 
with options for capacity planning are discussed in detail in [13, 14, 15] and in their 
related bibliography, in the broader context of computer/communication systems. 
Issues of performance analysis and optimization for systems supporting many classes 
of “customers”, i.e. tasks requiring service from distant hosts, are analyzed in [16]. 
Finally, backlog-controlled systems with possibilities for their performance control 
and improvement are studied in [17]. 
 
 
 
5. Concluding remarks 
 
The problem of performance evaluation and modelling of knowledge-based systems 
has been approached, in the present work, from a practical/operational point of view. 
We have developed a framework for modelling knowledge acquisition from KBS’s 
using arguments from stochastic analysis. Especially helpful were queueing-theoretic 
results such as Little’s Law in conjunction with analysis of transition probabilities 
concerning possible system states. 
 Key performance measures derived analytically for a given example KBS were: 
(1) utilization ρ, (2) availability A(s), and (3) overall system responsiveness Tsys. 

Performance instabilities, when traffic intensity increased, were highlighted both 
graphically and analytically. When the workload brought forward to the example 
KBS approached its inherent capacity, overall performance was clearly seen to 
degrade sharply. Thereafter, the system became unstable, eventually reaching its 
saturation point. For the example values used, it has been found that - at the onset of 
system saturation - Tsys was nearly twenty times over the system quantum (q), which 

is a very high increase. 
 Also, at the same time, the number of requests N(s) being served by the KBS 
grew exponentially. Thereafter, the KBS entered its unstable region (as shown in 
Figure 3) eventually becoming saturated, thus unable to serve its users. The infinite 
values of N(s) and Tsys (in Table 3) show this progression. 

 Actions to correct instabilities and thus improve system performance were also 
discussed with reference to centralized and to the newer class of multi-agent systems. 
The implementation of control mechanisms in the users’ area to limit arrival rates 
when necessary or the upgrading of system configuration can both make the whole 
system more responsive to users’ requests. Finally, it has been noted that modern 
knowledge-based systems, accessed via the Internet, are essentially a special class of 
dynamical systems and, as such, are always susceptible to performance instabilities. 
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