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Abstract

Contemporary knowledge-based systems are employed for obtainitigentedecisions to
problem-solving situations by making use of rules and justidicat The performance of
KBS’s can be characterized by a set of suitable meadurékis work, we consider the
following quantities: utilization, availability, and overalystem responsiveness. We also
create an operational framework for modelling knowledge atiguisirom KBS’s using
arguments from stochastic analysis. Actions to correct iffidand thus improve KBS
performance are also discussed for both centralized and multi-agemsyste
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1. Introduction

Knowledge bases (KBs) are essential elements of many cootary information
economies and societies. They are seamlessly integrated instotkeand-forward
nodes of large-scale computer networks acting as digital Esrarith sophisticated
man-machine interfaces. As such, modern KBs contribute to our undengtaidi
many important subjects of interest while serving as hosts forcagasing number
of telematic activities.

KB performance can be characterized by suitable quantitatasureswe shall
examine in some detail the most important ones in subsequent settibissarticle.
For the moment, suffice to say that the factors underlying temthyperformance of
KBs come from two interrelated sources: (i) the KB architectitself (internal
configuration and operational modules) and (ii) the capabilitieh@fsupporting
telecommunication infrastructures. The main features of thessinfctures include
many forms of broadband technologies (fixed and wireless), acaesateiligent
man-machine interfaces, and improved quality of service (QoS).

Human-readable knowledge bases, in addition to machine-readableartas)
implicit knowledge: such kind of knowledge (as opposed to explicit knowlddge)
particularly valuable when logical inference does not apply or it is difficudbtain.
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The so-callednulti-agent systemare also part of our examination, since they can
integrate the properties of explicit knowledge - also refeweastacit knowledge
with their inherent property of robustness, i.e. their ability tthstand workload
pressure much more successfully than the classical centralized system

In this article, we proceed as follows. First, we discuss fuedtahconcepts of
knowledge bases making the necessary distinction between maehasble and
human readable KBs. Next, we examine the main properties afagelit systems
in comparison with centralized systems. Then, we go on to more exsythjects as
stochastic modelling and analysis in the framework of KB perdoga evaluation.
We conclude with certain practical aspects, which are believbd essential for the
purpose of effective KB management.

2. Machine readable and human readable knowledge bases

Knowledge bases are databases specifically designetidaneéeting the needs of
knowledge management. They are large information repositories afadiath can
be searched, utilized, and shared by appropriate user communiteze. dre two
kinds of knowledge bases: machine-readable and human-readable KBs.

Machine-readable knowledge bases (MRKBSs) contain data andpngssnted
in a way by which they can be logically read by another macheme, no human
intervention is necessary. Knowledge contained in this type of bmseglicit by
design and tractable by means of logical inference. Artifimgelligence (Al)
techniques and algorithms are employed here [1]. Knowledge eepadsn and
reasoning are central themes in this design which also involvestoding of given
propositions. Al practice is concerned with the construction of knowledggdba
systems realized via suitable man-system interfaces. délogigerators such as
(AND, OR) are used in the course of machine interpretation. Such kigevieses
are extensively used within the so-called semantic web [2,3,4].

Human-readable knowledge bases (HKRBs) differ from the abpeedy they
also contain implicit knowledge: this kind of knowledge - known as tawtd€ than
can be said) - is particularly valuable when the formal ruldegital inference are
not applicable in a given situation. User content may refer, for instance, todpanki
medical history or to learning activities. In the business world,econhay also
include articles and reports, user manuals, and other documents fog simongst
workers and their clients. Search engines are the meandrievirgy information of
interest and for relaying that information, thus facilitatikkigowledge exchange
Intranets are also frequently used in such circumstances.

Figure 1 shows the main elements of a knowledge base in the wdddagb
along its user population. Note the presence of an inference esgmaated with
the KB in question as well as the interface connecting the uBeesquery-reply
format is typical in the case of a human-readable knowledge bdman Wécessary,
the contents of a machine-readable knowledge base may be cdnutota natural
language format so that humans can understand the facts andatagsouales
embedded there. Semantic web languages are often used for the above purpose.
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Figure 1. Elements of KB-user interaction in an open communications environment.

When the specification language used is close to natural langhadsrisformation
from a machine readable KB to a human-readable one is made @as TIL-script
programming language, for example [5], is capable of encoding the caftent
ontologies and other attributes. TIL-script messages are presengedstandard
natural language that is very close to needs of human agents.

Knowledge-based systems (KBS) are “products” of artlficigelligence (Al).
They are employed for the purpose of providing intelligent decidionsroblem-
solving situations by making use of rules and justifications. Attde, a KBS
contains a large amount of information as well as an elaboratef ssncepts,
assumptions and rules. Further, a reasoning system implementedkiB$ helps in
making intelligent decisions. Any knowledge base, whatever pis, thakes use of
the concept of ontologies. An ontology is simply a set of attribugsigi@ed to the
objects of a KBS, and to the inter-relations of these objects. THBS,afe able to
support human learning, enhance understanding, and provide guidance for action.

The inference engine of Figure 1, upon the receipt of a req@asthes the
knowledge base and then applies all relevant rules and relatioasmiogst objects.

It also processes the associated information encoded there and ptiowidesessary
justification for further action. Apart from its internal sture, KBS performance
also depends on the workload received during a period of observation. Gamnce s
workload is always a function of the user population - more predbelgubset of
active users - connected to the knowledge base, it follows thatvérall KBS
performance is also influenced by workload fluctuations. We exathisematter
later in this article.

For the time being we simply note that, when user activity ase® system
(KBS) responsivenedR(s) decreases proportionately [6]. And in the limiting case,
i.e. when N — oo, which practically means thithas exceeded some critical point, it
follows thatR(s)— 0. This is seen by the users as inability to communicate kgth t
distant KBS host system [7]. Also, when systmtropyincreases, instabilities occur
leading to an increase in uncertainty which, in turn, affect thaesee of logical
inferencing and the quality of decisions [8].
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3. Stochastic modelling and analysis

Analysis of complex systems can be performed by meanshar eleterministic or
probabilistic models. Because of their known potential for represeméindom

phenomena in a compact manner, probabilistic models are preferabéeandlysis
of computer systems and networks. The same potential is presenoméhattempts
to study the performance of databases or, in the present situatione#tgevbases
which are distributed across web connections. Amongst the probalagtioaches
to the modelling of of the above type of knowledge bases, the qgeay@mmoach is
by far the most appealing one because of its versatility and robustness.

This section begins with a brief account of the structure and pregpestating to
stochastic processes and Markov chains. Then, we introduce a modéikemgesof
knowledge acquisition from a web knowledge base in the framework o$ttidy.
The key performance parameters of this model are next derividically followed
by an example illustrating our approach. Finally, we discussethdts obtained in
the context KBS performance management.

3.1. Stochastic processes and Markov chains

A stochastic procesX(t) is a function of time whose values are random variables.
Further, a Markov chain is a stochastic procédpwith statesS,, S;, ... § ..., such

that the probability at timg,; an arbitrary stat§ depends only on the state at time

t, for any sequence of time instartis t,, -+ t,; with t; <t, < - t.,. The
probability of a transition from stafto state§ at timek may be written as follows:

P (K = prob K1 =j [ X =1} 1)

The statistical relationships amongst the possible statesviErieov chain can be
specified by means of a matrR(k) known as the transition-probability matrix.
Further, we make the assumption that the transition probabildledar practical
purposes be independent of time; therefore, our chain is assumedambgeneous.
The transition matriXxP(k) of a homogeneous chain can be graphically illustrated
when the state space is moderate.

Stochastic models including homogeneous chains can be used with confidence
for the modelling of real systems. They are especially usefuhe study of
transitions amongst possible states. With such models the aisafse to answer
several performance-related questions. Examples of such questions amas foll

(i) How often is a certain state visited in the course of an observation period?
(i) How much time is spent in that state by system under examination?

(iif) How long - or short - are the intervals between successive visits?

(iv) Are the operating overheads sufficiently low or at least tolerable?
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If our model satisfies certain conditions which are detailed helbgn answering
guestions such as the above is possible. Of course, one needs to heddocias
analytical expressions in order to avoid lengthy simulation procedures.

3.2. Equilibrium state probabilities

Analytical expressions require the adoption of the following pr@gsewhich often
characterize homogeneous chains:

P1:Irreducible chain.This property is considered true when a state can be reached
from any other state.

P2:Recurrent statedA state is considered recurrent if the probability of re-visiting it,
after a visit has already taken place, is equal to 1.

P3: Aperiodic stateslf the visits to a recurrent state have recurrence timesatba

not all equal, then that state is aperiodic; and if all stageageriodic, then the entire
Markov chain is aperiodic also.

Let us denote b; (K) the probability that a Markov chain, at tirkgs in some state
S. The initial state probabilities are simppy (0). Let us also recall our initial

assumption about homogeneity and then combine this with properties P1, P2.and
Then, the limiting state probabilities:

pi = lim {p; (K} with (k— 0,i =0, 1, 2, ...) (2
exist and are independent of the initial state probabilities.
Assuming that all mean recurrence times are finite clwlg thought realistic in

most system observations - then the state probabilities aetyraestationary series,
and they can be found analytically be solving the following set of equations:

o :Z PR with(=0,1,2, ..) 3

and

LSS (4)

The solution of Equations (3) and (4) above give the equilibrium stabalpiities
which are independent of the initial state probabilities. Froms#ti®f equations we
can compute several key performance measures which are esinterthis study.
Before going into the details of such computations we need to discuss tharstofict
our model and relate it to the performance study of remote knowhesgpet
systems. So, let us consider the following figure:
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Figure 2: Model of users’ requests for service. Requests are placed in a queue.

The figure comprises the following elements: (1) a KBS itk of the two types of
knowledge bases (MR/HR) mentioned in the previous sections; (2) eghgsurce
where system users make their requests; and (3) a queue inthémbove requests
are placed awaiting service. When service is completed, an oatpeddh request is
generated and this output follows the direction of the arrow on the left.

Our interest is focused on certain key performance meashatesan be used in
the analysis of the KBS: further, we seek closed-form aspyas for these measures
S0 as to avoid simulation or lengthy iterative procedures. Such performaaseanas
characterize KBS operation in terms of (i) resource utibmat(ii) responsiveness,
and (iii) stability. First, we need to specify all possiblkatest From Figure 2 above,
and by taking account of all KBS elements, we propose the following state space:

¢ S Thewaiting statej.e. when the KBS expects input from the its users.

¢ S;: This may be called theser stateyvhich corresponds to all active users.

¢ S,: Thescheduling stateyhich is associated with queueing and internal functions.
¢ S;: Finally, theproblem-solving state,e. the overall service provided by the KBS.

From the above state space we can construct the transition-prytrabiiiix P(k) by
giving some values as regards possible state transitfprs §). Such an example
with indicative values follows below:

Table 1: Transition-probability matrix for the example KBS

States | §, S S S

S 0.97 0.03 0.00 0.00
S 0.03 0.93 0.04 0.03
S 0.00 0.03 0.91 0.04
S 0.00 0.02 0.04 0.96
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First, we note that the equilibrium state probabilities musagvwsum up to value 1
according to the requirement of Equation (4) above. Next, by solving iEqsi&B)
for the values of Table 1 we obtain:

Po=0.23; p; =0.12; p,=0.07; p3=0.58. 5)

3.3. Utilization and time intervals

From the above results we may obtain the degradilofation, i.e. the fraction of
busy time of our KBS as the complemenipgfabove. Calling this fractiopn we see
thatp = (1- 0.23) = 0.77, or in percentage fopm= 77 %. This implies that < 1,
which is expected because our system operates within its elguiibFherefore, the
inequalityp < 1 can be seen as a necessary condition for sygséamy-state.

Utilization is an important measure as it shows how busy @parating system
during a period of observation. When— 1, this is an indication that our system,
here the KBS, has the tendency to leave its equilibrium, thusdriftto instabilities
and possible saturation. We examine these matters in the next section.

For the time being, we can also calculate another useful meakiate may be
called themean duratiorof state§ (j = 0, 1, 2, 3, ...). At every time instant, starting

with state§, our chain has a probabiliy; of remaining there and a complementary
probability (1- p;) of going to another state. The properties of the previous seb-

section (P1, P2, P3, P4) and the homogeneous nature of our chain allow us to
calculate the mean duration times as follows.
Let us first assume that, when a s@tg¢ = 0, 1, 2, 3, ...) is active, it may last for

a maximum ofg milliseconds. The quantitg may be calledjuantumor time-slice.
Such very short amounts of time are frequent in real situations;igbp&henever
service is offered on on a time-sharing basis. Our KBS is a good exanapéystem
operating on the above basis since it has to cater for the neetmgfusers with
different demands (see also Figure 2). Then, the mean dufatedrstate§ can be

calculated as follows:
T=q/{(1-p)}(=0,1,23..). (6)

Assuming a quanturg = 75 ms, application of Equation (5) above, in connection
with the values opj; in Table 1, gives the following values (in secondg)= 2.500;

T, =1.071;T, = 0.833;T; = 1.875.
We note that, on the average, most of the time is spent in S{at8sand S;

which characterize user, scheduling, as well as problem-satatgs. An adequate
amount of time is also spent in st&gi.e the user waiting state. Therefore, we may

note that our example KBS system is stable, capable of serving its ussesihff
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4. System performance and instabilities

Performance instabilities principally occur when user activity gragdunadreases and
becomes intense thus approaching the KBS ability for servicephkrsomenon can
be illustrated by recalling the definition of st&gof the previous sectiorg, is the
waiting statej.e. the state in which the KBS expects input from its usesodated
with § is py, 1.€. the corresponding equilibrium state probability.

4.1. User activity and system utilization

The impact of such intense user activity on system utilizationbeaillustrated by
allowing p, to gradually decrease, as shown in Table 2. The sum of the ri&t of
probabilities also increases so as to keep to the sum total egliahdcording to
Equation (4) of the previous section. System utilizatias the complement gi, as
above, thugp will increase proportionately. The effect of these changskasvn in
Table 2. Whenp reaches the value of 95%, we may say that our system is
approaching itsaturation point.

Table 2: Progress of utilization for the example KBS

Po P1tPotps | p (%)
0.23 0.77 77

0.20 0.80 80

0.17 0.83 83

0.14 0.86 86

0.11 0.89 89

0.08 0.92 92

0.05 0.95 9F")
0.02 0.98 98

0.00 1.00 10@sat.)

(*) Onset of system saturation.

This simple numerical example illustrates the general reqemeror steady-state
briefly referred to earlier, i.e.:

p < 1 (steady-state) apd— 1 (saturation) (7)

Whenp = 1, our KBS becomes completely saturated, thus unavailable ueeits.
Another way of looking into this troublesome situation is to observenthanp = 1,
thenpy = 0. Recalling from earlier the definition of the waiting st&§, we see that
in this case the system is working at its full capacity. &ssital queueing theopyis
also known as the systemaffic intensity.Then,p relates arrival rates to the system
service rates. For stability, it is required that values of the arrited eaiealways less
than the corresponding values of service rates.
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4.2. System availability and responsiveness

Apart from system utilization, another important measure thatcteizes a KBS is
its end-to-end delayl'his measure may be defined as the sum of the times the system
works for its users, i.e. all intervals of time except thervwatlecorresponding to the
waiting states,. The above measure, which we denotd Qy, takes into account all

possible delays attributed to the queueing of users’ requeserfiresas well as the
delays associated with network transmissions.
The value ofTs above can be calculated by virtue of the well-known Little’s

law from classical queueing theory. Little’'s law, origigafbrmulated by J.D.C.
Little as a theorem, has been proved in the course of time to btraey system
with arbitrary arrival and service times. Stated informallytle’s law equates the
number of “customers’N to the product of the system’s arrival rateand the

corresponding waiting tim&V. Hence, the well-known equatiofiN(s) = A-W”
where the above quantities are expressed by their mean WAluesludes both the
“customers” being served and those waiting in the queue.

Figure 2 given earlier is an appropriate model in this situgionided that we
first translate “customers” to users’ requests for serviem equatingVto Ty, and

finally relating the arrival raté with system workload and responsiveness. The latter
relationship is given analytically from classical queueingtheas the ratio of to
the system’s service ragie Hence, the traffic intensity formuta= 1/u.

From this formula and by expressing the service tifheab the value of the

quantum ¢), we can see that = A-g. Finally, by remembering that and p, are

complimentary quantities, (& pg) = A-q. From this expression we can calculate the
value of/ as follows:

A=(1-pg) /. (8)
Application of Little’s law with the above notation gives the following relaships:
N(ES) =2 [ (w=2); Tsys= 1/ (u—2). 9)

Let it be noted that Equations (8) above require the additional assurapBamnsson
arrivals 4 and exponentially distributed service timgg:..1This type of queueing

system is denoted by M/M#/in Kendall's notation. Finally, the probability:
P (no accesss prob {N >k} = pk (10)

may be used to show the case when the number of rediestseeds some critical
valuek of the system’s capacity. Applying our example values, welige 0.77/75

msec = 0.77/0.075 sec = 10.27 requests/sec, from whickfy = 2-g= 10.27*0.075
=0.770rp =77% Sincep < 1, our example system is in its steady-state.
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From Equation (10) we can estimate #wailability A(s) of our system, i.e. the
fraction of users’ requests that can be accepted for serviee thie system’s internal
capacity limitations. Then, for a value of elg= 10, i.e. a maximum of 10 requests
allowed in the system (waiting for or receiving service) five that:P (no accessy
prob {N > 10} = 0.77%9 = 0.073. Therefore, 7.3% of the incoming requests will have
to be denied access. Thus, system availability stanfispt 92.7%.

Equations (9) and (10) above are very useful in exploring the consegusnce
gradually increasing workloads. This happens whenpare 1 as in expression (7)
or equivalently wherd — u. Table 3 below shows the performance of our example
system as the function of its workload for a valu& sf10.

Table 3: Availability and responsiveness for the example KBS

A (req./sec) A(s) (%) N(s)(num) | Tg s(seconds)
10.27 92.7 3.39 0.33

10.67 87.9 4.06 0.38

11.07 84.5 4.87 0.44

11.47 77.9 6.19 0.54

11.87 68.8 8.07 0.68

12.27 56.6 11.54 0.94

12.67 40.1(*) 19.26(*) 1.52(*)

13.07 18.3 50.32 3.85

13.33 0.Q(sat.) (0) (o0)

4.3. Instabilities and saturation

From Table 3 we can clearly see that, after(thgoint in A(s), system availability
drops below 50% and thereafter it declines very sharply. (Fhigoint corresponds
to its equivalent onset saturation point, in Table 2 shown earlierewher 95%.
The last line of Table 3 shows a completely saturated systmnh again from
Table 2 corresponds @ = 1. This is the effect of an increasing workload which
gradually approaches and then reaches the capacity of th@lexsystem. The last
two columns of Table 3 show this effect in connection with the numbexgolests
being served and the corresponding times within the system.

Again we can clearly see the effect of workload increaseoling the values of
the last three rows of Table 3 above. After(epoint, the number of requests being
served increases exponentially and the same is true with tles tieguired to
complete service. For example, the value 1*¥ZXeconds is (1.58) = (1.52/0.075)
= 20.27, i.e twenty times over the system quantum: a very sharp increase. Also, at the
same timeN(s) is nearly twenty requests within the system, and this number als
grows exponentially after th@) point. Finally, the last row of Table 3 above shows
the system at its complete saturation state, hence the infinite vaNés ahd Ty

Let it be noted that in critical situations, e.g. when the wodklwraught forward
to a KBS approaches its inherent capacity, overall performamgradis, the system
becomes unstable and it may eventually collapse. This unpleasant phenomenon is
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known asthrashing,a term originally given by Denning and Buzen in the context of
centralized systems [9]. The performance of such systemadmbeen investigated
by many authors in the setting of knowledge-based systemé wiay be seen as
dynamical systems operating across the Internet for the purpbdearning and
discovering hidden information [10, 11, 12].

The newer multi-agent systems are generally consideredaees efficient and
flexible than classical centralized systems. They are matstl as autonomous,
intelligent agents with considerable communication capabilities.nVdhaulti-agent
system is in operation under the same critical conditions, somis afénts can
withstand the pressure and operate almost normally. Figure 3 béloms she
performance curves of a centralized system (CS) and thatmafltaagent system
(MAS) as functions of the system workload over time.

Performance

Attainable Maximum

Multi-agent
System (MAS)

Stable
Region

Centralized
System (CS)

Workload

Figure 3: Performance curve as a function of workload for two systems (CS, MAS).

Both systems in Figure 3 operate quite normally within theblestaegions attaining
their maximum performance as they approach tpkiteau,i.e. the top portion of
their respective curves. Thereafter, they both enter their uastagions. In the
previous analysis, we have shown analytically how the increasonkjoad affects
system responsivened$s), also noting the sharp increase in the values of H¢sh
and Tgys The main advantage of implementing a multi-agent system tivesall

performance - seen as a synthesis of the above three meadageades at a much
slower pace, thus allowing analysts and installation managerakéo corrective
actions in a timely fashion. Such actions may include the impletr@ntaf control
mechanisms in the users’ area to limit arrival rates wieeessarygx anteactions)
or upgrade parts of system configuration so as to make the wysilems more
responsive to users’ requestx postactions).
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Problems concerning performance evaluation, control, and system atganiz
with options for capacity planning are discussed in detail in [13, 14arikb]n their
related bibliography, in the broader context of computer/communicaystenss.
Issues of performance analysis and optimization for systems simgpoiany classes
of “customers”, i.e. tasks requiring service from distant hosts, are analyzd®b].
Finally, backlog-controlled systems with possibilities for thm#rformance control
and improvement are studied in [17].

5. Concluding remarks

The problem of performance evaluation and modelling of knowledge-bgstens
has been approached, in the present work, from a practical/operatamabf view.
We have developed a framework for modelling knowledge acquisition frB8iK
using arguments from stochastic analysis. Especially helpid queeueing-theoretic
results such as Little’s Law in conjunction with analysis ahsition probabilities
concerning possible system states.

Key performance measures derived analytically for a givample KBS were:
(1) utilization p, (2) availability A(s) and (3) overall system responsivengggg
Performance instabilities, when traffic intensity increased:eweghlighted both
graphically and analytically. When the workload brought forwardht éxample
KBS approached its inherent capacity, overall performance clessly seen to
degrade sharply. Thereafter, the system became unstable, everdaaliyng its
saturation point. For the example values used, it has been foundaththe onset of
system saturationTSySwas nearly twenty times over the system quangmaich

is a very high increase.

Also, at the same time, the number of requdks being served by the KBS
grew exponentially. Thereafter, the KBS entered its unstablerrdgs shown in
Figure 3) eventually becoming saturated, thus unable to serveerts Uie infinite
values oﬂ\l(s)andTSyS(in Table 3) show this progression.

Actions to correct instabilities and thus improve system periocenavere also
discussed with reference to centralized and to the newer claadtehgent systems.
The implementation of control mechanisms in the users’ areantodrrival rates
when necessary or the upgrading of system configuration can boththeakdnole
system more responsive to users’ requests. Finally, it has bessh that modern
knowledge-based systems, accessed via the Internet, are dgsespacial class of
dynamical systems and, as such, are always susceptible to performaatuétiest
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