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Abstract

In this paper, we use an approximate subgradient algorithm for solving

unconstrained nonsmooth convex and nonconvex optimization problems.

Descent directions in this algorithm are computed by solving a system of

linear inequalities. In this paper, we present a new and efficient method

for solving the system of linear inequalities based on an extension of New-

ton method. We also compare the proposed method with nonsmooth

optimization approach using the results of numerical experiments. These

results demonstrate the superiority of the proposed method for solving

this system over the nonsmooth optimization method.
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1 Introduction

Nonsmooth, nonconvex unconstrained problems appears in many disciplines

such as economic, general nonlinear programming and data mining. Among
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these, we mention the bundle-type methods [1, 2, 3, 4, 5, 6, 7, 8], a gradient

sampling algorithm [9], algorithms based on smoothing techniques [10] and the

discrete gradient method [11, 12, 13, 14, 15, 16, 17].

In this paper, we use an approximate subgradient algorithm for solving un-

constrained nonsmooth convex and nonconvex optimization problems. Descent

directions in this algorithm are computed by solving a system of linear inequal-

ities. We present a new and efficient method for solving the system of linear

inequalities. We also compare the proposed method with nonsmooth optimiza-

tion approach in reference [11] using the results of numerical experiments.

The structure of the paper is as follows. Section 2 provides some necessary

preliminaries and we describe the approximate subgradient method. In Section

3, we present a new and efficient method for solving the system of linear in-

equalities. In section 4, it is presented the results of numerical experiments.

Concluding remarks are given in Section 5.

We now describe our notation. Let x = [xi] ∈ Rn. By xT , we mean

the transpose of vector x and the scalar product of two vectors x and y in

the n−dimensional real space Rn will be denoted by 〈x, y〉. The value 〈∇f(x), d〉
is called directional derivative of f at x in direction d where ∇f(x) is the gra-

dient of f at x. For x ∈ Rn, ‖x‖ and |x| denote 2−norm and the vector with

absolute values of each component of x respectively.

1.1 The Clarke subdifferential

Let f be a locally Lipschitz function defined on Rn. Clarke introduced the notion

of subdifferential for such functions (see, e.g., [18]). Since these functions are

differentiable almost everywhere, we can define for them a Clarke subdifferential

as follows:

∂f(x) = co{υ ∈ Rn : ∃(xk ∈ D(f), xk → x, k → +∞) : (1.1)

υ = lim
k→+∞

∇f(xk)}.

Here D(f) denotes the set where f is differentiable, co denotes the convex

hull of a set.

It is shown in [18] that the mapping x → ∂f(x) is upper semicontinuous and

bounded on bounded sets.
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The generalized directional derivative of f at x in the direction g is defined as

f0(x, g) = lim sup
y→x,α→+0

f(y + αg)− f(y)

α
(1.2)

2 The approximate subgradient method

Consider the following unconstrained minimization problem:

Minimize f(x) subject to x ∈ Rn, (2.1)

where the objective function f is locally Lipschitz. Recently, there were

several methods to solve (2.1). In this section, we consider the approximate

subgradient method and its various properties.

The approximate subgradient method is based on the notion of a discrete gra-

dient. We can obtain a set of discrete gradients as follows (see [11]) :

xk+1 = xk + σkgk. (2.2)

where gk is any approximate subgradient and σk obtain by a line-search based

on the Armijo rule.

Compute the direction g ∈ Rn as a solution to the following system:

〈vi, g〉+ δ ≤ 0, i = 1, . . . , k, g ∈ S1. (2.3)

Where S1 = {g ∈ Rn : ‖ g ‖= 1} , v is a discrete gradient of the function f

at the point x ∈ Rn , δ is a small positive constant and the system (2.3) solve

with nonsmooth optimization approach [11].

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Algorithm 1 The approximate subgradient method.

Let z ∈ p, λ > 0, α ∈ (0, 1] and real numbers c1 ∈ (0, 1) , c2 ∈ (0, c1] , δ > 0

be given and let p be the set of all univariate positive infinitesimal functions

(see [11]).
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Step 1 Choose any starting point x0 ∈ Rn and set k = 0.

Step 1 Choose any starting point x0 ∈ Rn and set k = 0.

Step 2 set s = 0 and xks = xk.

Step 3 Compute a descent direction at x = xks , δ = δk, z = zk,

λ = λk (see [11]). We get the system (2.3) and solve it.

Step 4 If this system is not solvable put xk+1 = xks , k = k+1 and

go to step 2. Otherwise we get the direction gks ∈ S1 which is a solution

to this system

f(xks + λkg
ks)− f(xks) ≤ −c1λkδk.

Step 5 Construct the following iteration xks+1 = xks+σsg
ks, where

σs is defined as follows

σs = argmax{σ ≥ 0 : f(xks + σgks)− f(xks) ≤ −c2σδk}.

Step 6 Set s = s+ 1 and go to Step 3.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
More details on the convergence proof for Algorithm 1 can be found in [11].

The main step of the approximate subgradient method is to Compute the di-

rection g ∈ Rn as a solution to the following system

〈vi, g〉+ δ ≤ 0, i = 1, . . . , k, g ∈ S1.

Where δ is a small positive constant. In this section, we apply an efficient algo-

rithm in order to compute the descent directions.

Proposition 2.1. If the system (2.3) is not solvable, then

min
υ∈D̃k

‖ υ ‖< δ. (2.4)
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Proof: refer to [11].

Proposition 2.2. If (2.4) is satisfied then the system (2.3) is not solvable

Proof: refer to [11].

3 Solving the inequality system

Step 3 is an important step in Algorithm 1, where we solve the system (2.3) to

find search directions. Different methods have been developed to solve a system

of linear inequalities [19, 20]. However, these methods cannot be applied directly

to solve the system (2.3) because of the presence of the additional condition

g ∈ S1. The system (2.3) is solved with nonsmooth optimization approach in

reference [11].

In this paper, we first reformulate the system (2.3) as the following optimization

problem:

Minimize Qk(g) = (〈vi, g〉+ δ, )+ i = 1, . . . , k (3.1)

subject to

g ∈ B1 = {g ∈ Rn : ‖g‖2 ≤ 1}. (3.2)

Then, we use Tikhonov regularizing - which is a well-studied approach for solving

the system 2.3. Instead of solving system 2.3, we consider the following problem

:

min
g∈Rn

Qk(g)
2

+ ρ‖g‖2, (3.3)

where ρ is a positive constant value; it is called the regularizing parameter [21].

We will demonstrate the approximate subgradient algorithm when descent di-

rections are computed by solving this system based on Tikhonov regularizing

method, is more efficient than approximate subgradient when descent directions

are computed by solving this system with nonsmooth optimization approach in

reference [11]. In the following section we present the Matlab code for solving

the problem (3.3) using generalized Newton method [3, 19].
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% The Mathlab Code 1 For Solving The problem (3.3)

pl = inline(′(abs(x) + x)/2′) ; [m,n] = size(A) ; yy = ones(n, 1) ;

tol = 1e− 10; delta = 1e− 4; itmax = 50; i = 0; zz = 0;

While(i < itmax & norm(yy − zz, inf) > tol)

df = A′ ∗ pl(A ∗ yy − b);
d2f = A′ ∗ spdiags(sign(pl(A ∗ yy − b)), 0,m,m) ∗A+ (delta) ∗ speye(n);

f1 = 0.5 ∗ norm(pl(A ∗ yy − b))2;

% Armijo Stepsize

sigma = 0.5; betaa = 0.5; kk = 0; kkmax = 10; dd = −df/d2f ;

tt = 1; pp = [ ]; z = yy + tt ∗ dd; f2 = 0.5 ∗ norm(pl(A ∗ z − b))2;

ss = f2− f1− sigma ∗ tt ∗ (df)′ ∗ dd;

While(ss > 0. & kk < kkmax)

tt = tt ∗ betaa; z = yy + tt ∗ dd; f2 = 0.5 ∗ norm(pl(A ∗ z − b))2; ss =

f2− f1− sigma ∗ tt ∗ (df)′ ∗ dd; kk = kk + 1;

end

j = j + 1; i = i+ 1; zz = yy; yy = yy + tt ∗ dd;

end

4 Numerical Experiments

The efficiency of the approximate subgradient algorithm when descent direc-

tions are computed by solving a system with Matlab code 1 method was verified

by applying it to some problems with nonsmooth objective functions.

Problems 2 and 3 from [14] have been used in numerical experiments as P1

and P2. We also provide the others problems with nonsmooth and nonconvex

objective function by ourselves.

Problem 1

f(x) = |x1 − 1|+ 100|x2 − |x1|.

Problem 2

f(x) = |x1 − 1|+ 100|x2 − |x1||+ 90|x4 − |x3||+ |x3 − 1|+ 10.1(|x2 − 1|+
|x4 − 1|) + 4.95(|x2 + x4 − 2| − |x2 − x4|).
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Problem 3

f(x) = |x1 − x2 − x3 + 1|+ |x1 − |x3||+ |x2 − 1|.

Problem 4

f(x) = |2x1 − 2|+ 2|x2 − |x3||+ |3x2 − 3x4|.

Problem 5

f(x) = 25|x1 − x2|+ |2x2 − x3 + x1 − 2|+ 50|x3 − |x4||+ |2|x2| − 2x5|.

Problem 6

f(x) = |5|x1|− 5|+ ||x2|−x1 + 7x3− 7|+ 9|x4−|x5||+ 2|3x3−x6− 3x5 + 1|.

Problem 7

f(x) = t(i)|x1−x2|+ (i+ 3)|1−|x3||+y(i)|x3−2x4−x5 + 2|+ i|x5−|x6||+
u(i)|ix6 − i+ x7 − 1|+ y(i)|(i+ 2)x8 − (i+ 2)|,
t(i) = 2(i− 1)/4,

y(i) = i|sin(2t(i)) + 4cos(2t(i))|,
u(i) = 2e2t(i).

We have different problems with i = 1, 2, 3, .... Here we use i = 2 and i = 3

for P7 and P8.

Problem 8

f(x) = |ix1 − i|+ ||x2| − x1 + (i+ 2)x3 − (i+ 2)|+ t(i)|x5 − |x6||+
y(i)|ix6 − i+ x7 − 1|+ 17|x2 − x4|,
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t(i) = 2(i− 1)/4,

y(i) = 3e−2t(i)|3sin(2t(i)) + 11cos(2t(i))|.

We have different problems with i = 1, 2, 3, .... Here we use i = 1 and i = 2

for P9 and P10.

In Table 1, ASM stands for the approximate subgradient method when de-

scent directions are computed by solving a system with nonsmooth optimization

approach in reference [11] and SKM stands for the approximate subgradient

method when descent directions are computed by solving the system with Mat-

lab code 1.

Table 1: Results of numerical experiments

Problem Method f̄ Time (s)

P1
ASM 4.000 ∗ 10−1 0.04

SKM 4.792 ∗ 10−5 2.21

P2
ASM 9.000 ∗ 10−1 0.22

SKM 4.410 ∗ 10−2 4.10

P3
ASM 4.786 ∗ 10−3 1.17

SKM 5.762 ∗ 10−2 14.96

P4
ASM 6.334 ∗ 10−2 2.10

SKM 3.394 ∗ 10−5 6.86

P5
ASM 6.147 ∗ 10−1 0.44

SKM 3.954 ∗ 10−2 3.39

P6
ASM 2.991 ∗ 10−1 0.81

SKM 1.388 ∗ 10−2 3.05

P7
ASM 3.235 ∗ 100 0.41

SKM 8.685 ∗ 10−2 10.58

P8
ASM 1.169 ∗ 100 5.51

SKM 2.574 ∗ 10−1 5.31

P9
ASM 4.682 ∗ 100 1.89

SKM 1.780 ∗ 10−2 5.82

P10
ASM 3.152 ∗ 100 1.23

SKM 7.671 ∗ 10−3 7.51

The value f̄ is the values of the objective function found by algorithms and the
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exact value of the objective function is equal to zero in all problems.

5 Conclusion

In this paper, we used an approximate subgradient algorithm for solving un-

constrained nonsmooth convex and nonconvex optimization problems. Descent

directions in this algorithm are computed by solving a system of linear inequali-

ties. In this paper, we present a new and efficient method for solving the system

of linear inequalities.

We compare the proposed method for solving the system of linear inequali-

ties with nonsmooth optimization approach in reference [11] using the results of

numerical experiments. Comparing these results, one can see that the approxi-

mate subgradient method when descent directions are computed by solving this

system with the proposed method is more efficient than approximate subgradi-

ent method when descent directions are computed by solving this system with

nonsmooth optimization approach in reference [11].
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