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Abstract.

In this communication, we introduce and study the various time-optimal control problems for

Dirichlet co-operative hyperbolic linear system involving Laplace operator with distributed or bound-

ary controls and with observations belong to different spaces. For each problem, we have answer

to three question (controllability, existence of control, properties of this control if it exist) arise

naturally in connection with this problems.
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1. Introduction.

The ” time optimal ” control problem is one of the most important problems in the field of control

theory. The simple version is that steering an initial state y0 in a Hilbert space H to hitting a target

set K ⊂ H in minimum time , with control subject to constraints (u ∈ U ⊂ H ) .

In this work, we will focus our attention on some special aspects of minimum time problems for

co-operative parabolic system involving Laplace operator with distributed or boundary control. In

order to explain the results we have in mind, it is convenient to consider the abstract form:

Let V and H be two real Hilbert spaces such that V is a dense subspace of H. Identifying the

dual of H with H, we may consider V ⊂ H ⊂ V ′, where the embedding is dense in the following

space. Let A(t) ( t ∈]0, T [ ) be a family of continuous operators associated with a symmetry bilinear

forms π(t; ., .) defined on V × V which are satisfied G̊arding’s inequality

π(t; y, y) + c0∥y∥2H ≥ c1∥y∥2V , c0 ≥ 0, c1 > 0, for y ∈ V, t ∈ [0, T ]. (1)
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Then, from [1] and [2], for given f, y0, y1 and for a bounded linear operator B from a Hilbert

space U to L2(0, T ;H) the following abstract systems:

d2

dt2
y(t) +A(t)y(t) = f +Bu, t ∈]0, T [,

y(0) = y0, y′(0) = y1

 (2)

have a unique solution.

Let

y(t;u) := be the unique solution of (2),

z(t;u) := D(y(t;u), y′(t;u)),

K := be a given target set,

 (3)

where y′ denote to dy
dt and D is a given bounded linear operator.

The time optimal control problem we shall concern reads:

min{t : z(t;u) ∈ K, u ∈ U } (4)

where K is a given target set.

A control u0 is called a time optimal control if u0 ∈ U and if there exists a number τ0 > 0

such that z(τ0;u0) ∈ K where τ0 = min{τ : z(τ ;u) ∈ K, u ∈ U }, we call the number τ0 as the

optimal time.

Three questions (problems) arise naturally in connection with this problem:

(a) Does there exist a control u, and τ > 0 such that z(τ ;u) ∈ K? ( this is an approximate

controllability problem).

(b) Assume that the answer to (a) is in the affirmative. Does there exist a control u0 which

steering z(τ0;u0) to hitting a target set K in minimum time?

(c) If u0 exists, is it unique? what additional properties does it have?

A typical application of time-optimal control governed by a system of hyperbolic equations is that

of stabilizing a vibrating system by means of the application of suitable forces during a certain time

interval;

∂2y

∂t2
= ∆y + u in Q = Ω×]0, T [,

y(x, 0) = y0(x) in Ω,

y′(x, 0) = y1(x) in Ω,

y(x, t) = 0 on Γ×]0, T [,


(5)

where Ω ⊂ RN is a bounded open domain with smooth boundary Γ, and ∆ =
∑N
k=1

∂2

∂x2
k

is the

Laplace operator.

In [3] and [4] the following time-optimal control problem was investigated: Let y0, y1, ȳ0, ȳ1 ∈
L2(Ω), M > 0. Does there exist a time T > 0 and a control function u ∈ L2(Q) with

∫ T
0
∥u(t)∥L2(Ω)

≥ M such that the corresponding solution of (5) with y(0) = y0, y
′(0) = y1 satisfies y(T ) =

ȳ0, y
′(T ) = ȳ1. The results in [3] partly overlap with results in [4] and they were shown that :

For every T > 0 there exists exactly one control function of the above problem and this control is

bang-bang i.e ∥u(t)∥L2(Ω) =M.
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More early, in the works [5] and [6] the time optimal controls problem of the wave equations are

studied.

The bang-bang principle for minimum-time control of time-invariant finite-dimensional linear

systems was presented in [7]. It asserts that, if a minimum time control exists for a given system,

then there exists a bang-bang optimal control in which the control inputs are almost always at a

vertex of the polyhedron defined by the input bounds. The bang-bang principle has been extended

to distributed-parameter systems in [8] - [10] among others.

In this paper, we extend the above results to time-optimal control problems for n × n Dirich-

let co-operative linear hyperbolic system with distributed or boundary controls as well as we will

take various cases of observations. We will consider various time-optimal control problems for the

following system (here and everywhere below the vectors are denoted by bold letters and the index

i = 1, 2, ..., n ):

∂2yi
∂t2

= (A(t)y)i + ui(x, t) in Q,

yi(x, 0) = yi,0(x) in Ω,

y′i(x, 0) = yi,1(x) in Ω,

yi(x, t) = vi(x, t) on Σ,


(6)

where yi,0, yi,1 are given functions, ui represents either a distributed control or a given function

defined in Q, vi represents either a Dirichlet boundary control or a given function defined in Σ

and A(t) ( t ∈]0, T [ ) are a family of n× n continuous matrix operators;

A(t)y =


∆+ a1 a12 . . . a1n

a21 ∆+ a2 . . . a2n
...

...
...

...

an1 an2 . . . ∆+ an



y1

y2
...

yn


with co-operative coefficient functions ai, aij satisfying the following conditions:

ai, aij are positive functions in L∞(Q),

aij(x, t) ≤
√
ai(x, t)aj(x, t),

aij(x, t) = aji(x, t)

λ1(a) ≥ n.


(7)

A classical time-optimal control problem consists in steering an initial vector state (y0,y1) =

y1,0

y2,0
...

yn,0

 ,


y1,1

y2,1
...

yn,1


 for system (6), with a distributed control u = (u1, u2, ..., un)

T belonging

to a given control set UQ or with a Dirichlet boundary control v = (v1, v2, ..., vn)
T , belonging to

a given control set UΣ so that an observation z(t) = (z1(t), z2(t), ..., zn(t))
T hitting a given target

set K in minimum time.

2. Abstract form and Solutions of the state.
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This section is devoted to the analysis of the existence and uniqueness of solutions of system (6).

We distinguish two classes of solutions: weak and ultra-weak solutions defined by transposition(cf

[11]-[12]).

Let Hℓ(Ω), be the usual Sobolev space of order ℓ which consists of all ϕ ∈ L2(Ω) whose

distributional derivatives Dqϕ ∈ L2(Ω), |q| ≤ ℓ, with the scalar product⟨
y, ϕ
⟩
Hℓ(Ω)

=
∑
|q|≤ℓ

⟨
Dqy,Dqϕ

⟩
L2(Ω)

,

q = {q1, ..., qN}, |q| = q1 + ...+ qN , D
q = Dq1

1 ...D
qN
N , Di =

∂
∂xi

.

We define Hℓ
0(Ω) by

Hℓ
0(Ω) :=

{
ϕ ∈ Hℓ(Ω) :

∂k

∂νk
= 0, 0 ≤ k ≤ ℓ

}
which endowed with the same scalar product defined on Hℓ(Ω). We have the following dense em-

bedding chain [13]

Hℓ
0(Ω) ⊂ L2(Ω) ⊂ H−ℓ(Ω),

where H−ℓ(Ω) is the dual of Hℓ
0(Ω) with the usual norm;

||ϕ||H−ℓ(Ω) = sup
ψ∈Hℓ

0(Ω)

⟨
ϕ, ψ

⟩
||ψ||Hℓ

0(Ω)

Here
⟨
., .
⟩
denotes the duality paring between Hℓ

0(Ω) and H−ℓ(Ω).

We choose H = (L2(Ω))n with its usual norm and V = (H1(Ω))n endowed with the norm

||y||V =

n∑
i=1

∫
Ω

[
|∇yi|2 − ai(x, t)y

2
i

]
dx−

n∑
i,j=1

∫
Ω

aij(x, t)yiyjdx

which is equivalent to the usual norm induced by (H1(Ω))n.

For y = (y1, y2, ..., yn)
T , ϕ = (ϕ1, ϕ2, ..., ϕn)

T ∈ V and t ∈]0, T [ , let us define a family of

continuous bilinear forms

π(t; ., .) : V × V → ℜ by

π(t;y, ϕ) =

n∑
i=1

∫
Ω

[(∇yi) (∇ϕi)− ai(x, t)yiϕi] dx−
n∑

i,j=1

∫
Ω

aij(x, t)yjϕidx (8)

.

In [14]-[16], we proved that the bilinear form (8) under the conditions (7) satisfy the G̊arding

inequality (1), then using Lax-Milgram Lemma, (cf [17]), the solution of (6) can be defined as the

solution of the abstract problem

⟨d2y(t)
dt2

, ϕ
⟩
V ′,V

+ π(t;y, ϕ) =M(ϕ) ∀ϕ ∈ V, (9)

with initial conditions

y(0) = y0(x), y′(0) = y1(x) in Ω

where ϕ→M(ϕ) is continuous linear form on V

We define the following Hilbert space W (0, T ) :

W (0, T ) =
{
f : f ∈ L2(0, T ; (H1(Ω))n),

d2f

dt2
∈ L2(0, T ; (H−1(Ω))n)

}
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endowed with the norm {∫ T

0

||y(t)||2(H1(Ω))ndt+

∫ T

0

||d
2f

dt2
||2(H−1(Ω))ndt

} 1
2

For any pair of real numbers r, s ≥ 0, the sobolev space Hr,s(Q) is defined by

Hr,s(Q) = H0 (0, T ; (Hr(Ω))n)
∩
Hs(0, T ; (H0(Ω))n)

which is a Hilbert space normed by{∫ T

0

||y(t)||2(Hr(Ω))ndt+ ||y||2Hs(0,T ;(H0(Ω))n)

} 1
2

where Hs(0, T ;X) denotes the sobolev space of order s of functions defined on [0, T ] and taking

values in X. ( see Chapter 1 of [2]).

Definition 1. We say that the function (y,y′) is a weak solution for system (6) if

(y,y′) ∈ C
(
[0, T ]; (H1(Ω))n

)
× C

(
[0, T ]; (L2(Ω))n

)
∩W (0, T )

and ∫ T

0

∫
Ω

yifidxdt =

∫ T

0

∫
Ω

uiϕidxdt+

∫
Ω

yi,1ϕi(0)dx−
∫
Ω

yi,0ϕ
′
i(0)dx

+

∫ T

0

∫
Γ

vi
∂ϕi
∂ν

dΓdt for allϕ = (ϕ1, ϕ2, ..., ϕn)
T ∈ Φ,

(10)

Φ =


∂2ϕ

∂t2
+ (A(t)ϕ)i = fi ∈ L2(0, T ;L2(Ω)) inQ,

ϕ : ϕ(T ) = ϕ′(T ) = 0 inΩ,

ϕ = 0 onΣ,


where ν is the outward normal

To justify this definition we can apply Theorem 1.1 p.273 in [1] and Theorem 3.1 p.19 in [2] to

obtain the following theorem:

Theorem 1. For every (y0,y1,u,v) ∈ (H1(Ω))n × (L2(Ω))n × L2(0, T ; (L2(Ω)n)) × H
1
2 ,

3
2 (Σ),

the problem (6) has a unique weak solution (y,y′). Furthermore, the linear maps (y0,y1,u,v) →
(y,y′) is continuous of (H1(Ω))n×(L2(Ω))n×L2(0, T ; (L2(Ω))n)×H 1

2 ,
3
2 (Σ) → C([0, T ]; (H1(Ω))n)×

C([0, T ]; (L2(Ω))n).

Definition 2. We say that the function (y,y′) is an ultra- weak solution for system (6) if

(y,y′) ∈ C
(
[0, T ]; (L2(Ω))n

)
× C

(
[0, T ]; (H−1(Ω))n

)
∩ L2

(
0, T ; (L2(Ω))n

)
× L2

(
0, T ; (H−1(Ω))n

)
and ∫ T

0

∫
Ω

yifidxdt =

∫ T

0

∫
Ω

uiϕidxdt+
⟨
yi,1, ϕi(0)

⟩
−
∫
Ω

yi,0ϕ
′
i(0)dx

+

∫ T

0

∫
Γ

vi
∂ϕi
∂ν

dΓdt for allϕ = (ϕ1, ϕ2, ..., ϕn)
T ∈ Φ̄,

(11)

Φ̄ =


∂2ϕ

∂t2
+ (A(t)ϕ)i = fi ∈ L1(0, T ;L2(Ω)) inQ,

ϕ : ϕ(T ) = ϕ′(T ) = 0 inΩ,

ϕ = 0 onΣ.





360 Mohammed Shehata

To justify this definition we can apply transposition theorem, Theorem 3.1 p.292 in [1] or Theorem

3.2 p.150 in [12] to obtain the following theorem:

Theorem 2. For every (y0,y1,u,v) ∈ (L2(Ω))n×(H−1(Ω))n×L1(0, T ; (L2(Ω))n)×L2(0, T ; (L2(Γ))n,

the problem (6) has a unique weak solution (y,y′). Furthermore, the linear maps (y0,y1,u,v) →
(y,y′) is continuous of (L2(Ω))n × (H−1(Ω))n× L1(0, T ; (L2(Ω))n)× L2(0, T ; (L2(Γ))n →
C([0, T ]; (L2(Ω))n)× C([0, T ]; (H−1(Ω))n).

Based on the above theorems, we may state our results more explicitly by choosing the observation

in a less abstract fashion. We may consider the following problems:

(I) distributed control problem with observation y ∈ C([0, T ]; (L2(Ω))n)

(II) distributed control problem with observation y ∈ C([0, T ]; (H1(Ω))n)

(III) distributed control problem with observation y′ ∈ C([0, T ]; (L2(Ω))n)

(IV) boundary control problem with observation y ∈ C([0, T ]; (L2(Ω))n)

(V) boundary control problem with observation y′ ∈ C([0, T ]; (H−1(Ω))n)

In the next sections, we will denote by y(t;u) to the unique weak of (6) at time t corresponding

to a given functions y0,y1,v and distributed control u ∈ UQ satisfying the hypothesis of Theorem

1 with UQ given by;

UQ = closed convex subset of L2(0, T ; (L2(Ω)n)). (12)

Similarly, we will denote by y(t;v) to the unique ultra-weak solution of (6) at time t corresponding

to a given functions y0,y1,u and boundary control v ∈ UΣ satisfying the hypothesis of Theorem

2 with UΣ given by;

UΣ = closed convex subset of L2(0, T ; (L2(Γ)n)). (13)

Occasionally, we write y(t;u, x) or y(t;v, x) when the explicit dependence on x is required.

Also, we will denote by KH , KV , and KV ′ to the following target sets:

KH =
{
z = (z1, z2, ..., zn)

T ∈ (L2(Ω))n : ∥zi − zid∥L2(Ω) ≤ ε
}
,

ε > 0 and zid ∈ L2(Ω) are given.

KV =
{
z ∈ (L2(Ω))n : ∥zi − zid∥L2(Ω) +

N∑
j=1

∥ ∂zi
∂xj

− zid∥L2(Ω) ≤ ϵ
}
,

ε > 0 and zid ∈ L2(Ω) are given.

KV ′ =
{
z ∈ (H−1(Ω))n : ∥zi − zid∥H−1(Ω) ≤ ε

}
,

ε > 0 and zid ∈ H−1(Ω) are given.

3. Distributed control - position observation problem.

We consider the following first time-optimal control problem with distributed control u and

position observation z = y(t;u) ∈ C([0, T ]; (L2(Ω))n) :

(TOP1) : min
{
t : y(x, t;u) ∈ KH , u ∈ UQ

}
Theorem 3. If T is large enough , then there exists a τ ∈]0, T ] and u ∈ UQ with y(τ ;u) ∈ KH .
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Proof. let us first remark that by translation we may always reduce the problem of controllability

to the case were the system (6) with yi,0 = yi,1 = vi = 0. We can show quit easily that (6) is

approximately controllable in (L2(Ω))n if and only if the set of reachable states R(τ) at any finite

time τ > 0 is dense in (L2(Ω))n;

R(τ) =
{
y(τ ;u) : u ∈ L2(0, T ; (L2(Ω)n))

}
.

By the Hahn-Banach theorem, this will be the case if∫
Ω

ψi(x)yi(x, τ ;u)dx = 0, ψi ∈ L2(Ω), (14)

for all u ∈ L2(0, T ; (L2(Ω)n)), implies that ψi(x) = 0.

We introduce ξ = (ξ1, ξ2, ..., ξn)
T as the solution of the following system

∂2ξi
∂t2

(t;u)− (A(t)ξ(t;u))i = 0 inΩ×]0, τ [,

ξi(x, τ) = 0 inΩ,

ξ′i(x, τ) = −ψi(x) ∈ L2(Ω) inΩ,

ξi(x, t) = 0. onΓ×]0, τ [.


(15)

The problem (15) can be solved in the sense of Theorem 1 and Definition 1 (with an obvious change

of variables t→ τ − t and y → ξ, ϕ→ y ); Problem (15) have a unique weak solution such that

∫
Ω

ψi(x)yi(x, τ ;u)dx =

∫ τ

0

∫
Ω

ξi(x, t;u)uidxdt.

and so, if (14) holds, then ∫ τ

0

∫
Ω

ξi(t;u)uidxdt = 0 ∀ui ∈ L2(Q)

hence ξi(t;u) = 0, But from the continuity property, ξi(τ ;u) ≡ 0 and hence ψi(x) = 0.

Now, set

τ01 = inf{τ : y(τ ;u) ∈ KH for some u ∈ UQ}. (16)

The following result holds .

Theorem 4. There exists an admissible control u0 to the problem (TOP1), which steering y(t;u0)

to hitting a target set KH in minimum time τ01 ( defined by (16) ). Moreover

n∑
i=1

∫
Ω

(yi(τ
0
1 ;u

0)− zid)
(
yi(τ

0
1 ;u)− yi(τ

0
1 ;u

0)
)
dx ≥ 0 ∀u ∈ UQ. (17)

Proof. We can choose τm → τ01 and admissible controls {um } such that

y(τm;um) ∈ KH , m = 1, 2, . . . .

Set ym = y(um). Since UQ is bounded, we may verify that ym ( respectively dy
dt ) ranges in a

bounded set in L2(0, T ; (H1(Ω))n ) ( respectively L2(0, T ; (L2(Ω))n ).
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We may then extract a subsequence, again denoted by {um,ym} such that

um → u0 weakly in L2(0, T ; (L2(Ω))n ), u0 ∈ UQ,

ym → y weakly in L2
(
0, T ;

(
H1(Ω)

)n)
dym

dt
→ weakly in L2(0, T ; (L2(Ω))n ).

 (18)

We deduce from the equality
d2ym

dt2
= um +A(t)ym

that

d2ym

dt2
→ d2y

dt2
= u0 +A(t)y inL2

(
0, T ;

(
H−1(Ω)

)n)
,

and

y(0) = y0,
dy

dt
(0) = y1.

But

y(τm;um)− y(τ01 ;u
0) = y(τm;um)− y(τ01 ;u

m) + y(τ01 ;u
m)− y(τ01 ;u

0)

then, from (18) we have

y(τ01 ;u
m) → y(τ01 ;u

0) weakly in (H1(Ω))n (19)

and

∥y(τm;um)− y(τ01 ;u
m)∥(L2(Ω))n =

∥∥∥∥∥
∫ τm

τ0

d

dt
y(t;um)dt

∥∥∥∥∥
(L2(Ω))n

≤
√
τm − τ01

(∫ τm

τ0
1

∥∥∥∥ ddty(t;um)dt

∥∥∥∥2
(L2(Ω))n

dt

) 1
2

≤ c
√
τn − τ01

(20)

Combine(19) and (20) show that

y(τm;um)− y(τ01 ;u
0) → 0 weakly in

(
L2(Ω)

)n
. (21)

Similarly, we can verify that

y′(τm;um)− y′(τ01 ;u
0) → 0 weakly in

(
H−1(Ω)

)n
. (22)

And so, y(τ01 ;u
0) ∈ KH as KH is closed and convex, hence weakly closed. This shows that KH

is reached in time τ01 by admissible control u0.

For the second part of the theorem, really, from Theorem 1, the mapping t → y(t;u) and t →
y′(t;u) from [0, T ] → (H1(Ω))n and [0, T ] → (L2(Ω))n, respectively, are continuous for each fixed

u and so y(τ01 ;u) /∈ intKH , for any u ∈ UQ, by minimality of τ01 .

Using Theorem 1 it is easy to verify that the mapping u → y(τ01 ;u), from L2(0, T ; (L2(Ω)n)) →
(L2(Ω))n, is continuous and linear. Then, the set

A(τ01 ) = {y(τ01 ;u) : u ∈ UQ}

is the image under a linear mapping of a convex set hence A(τ01 ) is convex. Thus we have A(τ01 ) ∩
intKH = ∅ and y(τ01 ;u

0) ∈ ∂KH ( boundary of KH) . Since intKH ̸= ∅ ( from Theorem 7)
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so there exists a closed hyperplane separating A(τ01 ) and KH containing y(τ01 ;u
0), i.e there is a

nonzero g ∈ (L2(Ω))n such as

sup
y∈A(τ0

1 )

⟨
g,y(τ0;u)

⟩
(L2(Ω))n

≤
⟨
g,y(τ0;u0)

⟩
(L2(Ω))n

≤ inf
y∈KH

⟨
g,y(τ01 ;u)

⟩
(L2(Ω))n

. (23)

From the second inequality in (23), g must support the set KH at y(τ0;u0) i.e⟨
g , (y(τ01 ;u)− y(τ01 ;u

0))
⟩
(L2(Ω))n

≥ 0 ∀u ∈ UQ

and since (L2(Ω))n is a Hilbert space , g must be of the form

g = λ(y(τ01 ;u
0)− zid) for some λ > 0.

Dividing the inequality (23) by λ gives the desired result.

The condition (17) can be simplified by introducing the following adjoint equation. For each

u0 ∈ UQ, we define p(t;u0) as the solution of the following system

∂2pi
∂t2

(t;u0)−
(
A(t)p(t;u0)

)
i
= 0 inΩ×]0, τ01 [,

pi(x, τ
0
1 ;u

0) = 0 inΩ,

p′i(x, τ
0
1 ;u

0) = −(yi(x, τ
0
1 ;u

0)− zid) inΩ,

pi(x, t;u
0) = 0 onΓ×]0, τ01 [.


(24)

The problem (24) can be solved in the sense of Theorem 1 and Definition 1 (with an obvious change

of variables t → τ10 − t and y → p, ϕ → y(t;u) − y(t;u0) ); Problem (24) have a unique weak

solution such that∫
Ω

(yi(x, τ
0
1 ;u

0)− zid)(yi(x, τ
0
1 ;u)− yi(x, τ

0
1 ;u

0))dx =

∫ τ0
1

0

∫
Ω

pi(ui − u0i )dxdt.

Condition (17) then becomes

n∑
i=1

∫ τ0
1

0

∫
Ω

pi(ui − u0i )dxdt ≥ 0 ∀u ∈ UQ. (25)

This result can be summarized as:

Theorem 5. The optimal control u0 of problem (TOP1) is characterized by (24),(25) together with

(6) (with ui = u0i ).

The maximum conditions (25) of the optimal control leads to the following result :

Theorem 6. (Bang-bang theorem) We assume that

UQ =
{
u ∈ (L2(0, T ; (L2(Ω))n), u(t) ∈ EΩ

}
,

EΩ = closed, bounded, convex subset of (L2(Ω))n.
(26)

Then the optimal control of (TOP1) is bang-bang, i.e.

u(t) ∈ ∂EΩ = boundary of EΩ. (27)
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Proof. According to Theorem 9, In ]0, τ01 [, p(t;u0), satisfies

∂2pi
∂t2

(t;u0)−
(
A(t)p(t;u0)

)
i
= 0 inΩ×]0, τ01 [,

pi(x, τ
0
1 ;u

0) = 0 inΩ,

p′i(x, τ
0
1 ;u

0) = −(yi(x, τ
0
1 ;u

0)− zid) inΩ,

pi(x, t;u
0) = 0 onΓ×]0, τ01 [.


and the optimality of u0 being characterized by

n∑
i=1

∫ τ0
1

0

∫
Ω

pi(t)(ui − u0i )dxdt ≥ 0 ∀u ∈ UQ.

From Theorem 2.1 Chapter 2 in [1] this condition is equivalent to

n∑
i=1

∫
Ω

pi(t)(ei − u0i )dxdt ≥ 0 ∀e = (e1, e2, ..., en)
T ∈ EΩ. (28)

Then pi(t) ̸= 0. This is true, since if pi(s) = 0 hence the backward uniqueness property implies

pi = 0 in ]s, τ01 [. Hence pi(t) = 0 and from Theorem 1, the mapping t → pi(t;u) is continuous

from [0, T ] → H1(Ω), and t→ p′i(t;u) is continuous from [0, T ] → L2(Ω), and so

p′i(τ
0
1 ;u

0) = −(yi(τ
0
1 ;u

0)− zid) = 0,

which contradicts the fact that yi(τ
0
1 ;u

0) ̸= zid.

Finally from (28) we obtain (27).

Corollary 1. Let the hypotheses of Theorem 6 hold. If further EΩ is strictly convex, the control of

(TOP1) is unique.

Proof. If u0 and û0 are two optimal controls, u0+û0

2 is also optimal control (since UQ is convex

) and hence from (27) and the strict convexity of EΩ we obtain u0 = û0.

Remark 1. In (TOP1), if we take the observation y(t;u) ∈ C([0, T ]; (H1(Ω))n) and replace the

target set KH by the target set KV then the necessary optimality conditions coincide with (24),(25),

(6) (with ui = u0i , ) and (yi(x, τ
0
1 ;u

0)− zid) in (24) is replaced by (−∆+ I)(yi(x, τ
0
1 ;u

0)− zid)

4. Distributed control - velocity observation problem.

In this section, We consider the following time-optimal control problem with distributed control

u and velocity observation z = y′(t;u) ∈ C([0, T ]; (L2(Ω))n) :

(TOP2) : min
{
t : y′(x, t;u) ∈ KH , u ∈ UQ

}
As in the above section, we can prove the following controllability theorem:

Theorem 7. If T is large enough , then there exists a τ ∈]0, T ] and u ∈ UQ with y′(τ ;u) ∈ KH .

Set

τ02 = inf{τ : y′(τ ;u) ∈ KH for some u ∈ UQ}. (29)

then similar to (TOP1), we can also prove the following theorem:
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Theorem 8. There exists an admissible control u0 to the problem (TOP2), which steering y′(t;u0)

to hitting a target set KH in minimum time τ02 ( defined by (29) ). Moreover

n∑
i=1

∫
Ω

(y′i(τ
0
2 ;u

0)− zid)
(
y′i(τ

0
2 ;u)− y′i(τ

0
2 ;u

0)
)
dx ≥ 0 ∀u ∈ UQ. (30)

The condition (30) can be simplified by introducing the following adjoint equation. For each

u0 ∈ UQ, we define p(t;u0) as the solution of the following system

∂2pi
∂t2

(t;u0)−
(
A(t)p(t;u0)

)
i
= 0 inΩ×]0, τ02 [,

pi(x, τ
0
2 ;u

0) = (y′i(x, τ
0
2 ;u

0)− zid) inΩ,

p′i(x, τ
0
2 ;u

0) = 0 inΩ,

pi(x, t;u
0) = 0 onΓ×]0, τ02 [.


(31)

Since (y′i(x, τ
0
2 ;u

0)−zid) ∈ L2(Ω), then the problem (31) can be solved in the sense of Theorem 2 and

Definition 2 (with an obvious change of variables t→ τ02 − t and y → p, ϕ→ y(t;u)−y(t;u0) );

Problem (31) have a unique ultra-weak solution such that∫
Ω

(y′i(x, τ
0
2 ;u

0)− zid)(y
′
i(x, τ

0
2 ;u)− y′i(x, τ

0
2 ;u

0))dx =

∫ τ0
2

0

∫
Ω

pi(ui − u0i )dxdt.

Condition (30) then becomes

n∑
i=1

∫ τ0
2

0

∫
Ω

pi(ui − u0i )dxdt ≥ 0 ∀u ∈ UQ. (32)

Thus, the results in this section can be summarized as:

Theorem 9. The optimal control u0 of problem (TOP2) is characterized by (31),(32) together with

(6) (with ui = u0i . ) Moreover, if UQ is given by (26) then u0 is bang-bang. If further EΩ is strictly

convex, u0 is unique.

5. Boundary control - position observation problem. In this section, we consider the follow-

ing time-optimal control problem with boundary control v ∈ UΣ and observation z = y(t;v) ∈
C([0, T ]; (L2(Ω))n) :

(TOP3) : min
{
t : y(x, t;v) ∈ KH , v ∈ UΣ

}
Theorem 10. If T is large enough, then there exists a τ ∈]0, T ] and v ∈ UΣ with y(τ ;v) ∈ KH .

Proof. Here y(τ ;v) ∈ (L2(Ω))n. To show the system is controllable let ψi(x) ∈ L2(Ω) such that∫
Ω

ψi(x)yi(x, τ ;v)dxdt = 0 ∀v ∈ L2
(
0, T ;

(
L2(Γ)

)n)
.

We introduce ξ = (ξ1, ξ2, ..., ξn)
T as the solution of the following system

∂2ξi
∂t2

(t;v)− (A(t)ξ(t;v))i = 0 inΩ×]0, τ [,

ξi(x, τ) = 0 inΩ,

ξ′i(x, τ) = −ψi(x) ∈ L2(Ω) inΩ,

ξi(x, t) = 0. onΓ×]0, τ [.


(33)
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Since ψi(x) ∈ L2(Ω), then according to Theorem 2 and Definition 2 , system (33) admits an unique

ultra-weak solution ξ. ( after reversing sense of time), and we obtain the following identity:

∫ τ

0

∫
Ω

ξi
∂yi
∂ν

dΓdt = 0;

hence ξi = 0 on Σ. The Cauchy data of ξ(t;v) on Σ being zero, we conclude ( see [18]) ξ = 0

and hence ψ = 0.

Now, set

τ03 = inf{τ : y(τ ;v) ∈ KH for some v ∈ UΣ}. (34)

Then the following result holds (proof as in the above section).

Theorem 11. There exists an admissible control v0 to the problem (TOP3), which steering y(t;v0)

to hitting a target set KH in minimum time τ03 ( defined by (34) ). Moreover

n∑
i=1

∫
Ω

(yi(τ
0
3 ;v

0)− zid)
(
yi(τ

0
3 ;v)− yi(τ

0
3 ;v

0)
)
dx ≥ 0 ∀v ∈ UΣ (35)

which can be interpreted as the above sections to obtaining the following theorem:

Theorem 12. The optimal control v0 of problem (TOP3) is characterized by (6) (with vi = v0i )

and the following system of equations and inequalities

∂2pi
∂t2

(t;v0)−
(
A(t)p(t;v0)

)
i
= 0 inΩ×]0, τ03 [,

pi(x, τ
0
3 ;v

0) = 0 inΩ,

p′i(x, τ
0
3 ;v

0) = −(yi(x, τ
0
3 ;v

0)− zid) inΩ,

pi(x, t;v
0) = 0 onΓ×]0, τ03 [,


(36)

n∑
i=1

∫ τ0
3

0

∫
Γ

∂pi
∂ν

(vi − v0i )dΓdt ≥ 0 ∀u ∈ UΣ. (37)

If UΣ is given by

UΣ =
{
v ∈ L2

(
0, T ;

(
L2(Γ)

)n)
, v(t) ∈ EΓ

}
,

EΓ = closed, bounded, convex subset of (L2(Γ))n.
(38)

Then v0 is bang-bang. If further EΓ is strictly convex, v0 is unique.

6. Boundary control - velocity observation problem. In this section, we consider the follow-

ing time-optimal control problem with boundary control v ∈ UΣ and observation z = y′(t;v) ∈
C([0, T ]; (H−1(Ω))n) :

(TOP4) : min
{
t : y′(x, t;v) ∈ KV ′ , v ∈ UΣ

}
and here the norm (which is equivalent to the usual norm) in H−1(Ω) is defined by

∥f∥H−1(Ω) =

(∫
Ω

((−∆)−1f)fdx

) 1
2
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where (−∆)−1f = ϕ satisfies −∆ϕ = f inΩ, ϕ = 0 onΓ.

Theorem 13. If T is large enough, then there exists a τ ∈]0, T ] and v ∈ UΣ with y(τ ;v) ∈ KV ′ .

Proof. Here y(τ ;v) ∈ (H−1(Ω))n. To show the system is controllable let ψi(x) ∈ H1(Ω) such that⟨
ψi(x), yi(x, τ ;v)

⟩
= 0 ∀v ∈ L2

(
0, T ;

(
L2(Γ)

)n)
.

We introduce ξ = (ξ1, ξ2, ..., ξn)
T as the solution of the following system

∂2ξi
∂t2

(t;v)− (A(t)ξ(t;v))i = 0 inΩ×]0, τ [,

ξi(x, τ) = ψi(x) ∈ H1(Ω) inΩ,

ξ′i(x, τ) = 0 inΩ,

ξi(x, t) = 0. onΓ×]0, τ [.


(39)

Since ψi(x) ∈ H1(Ω), then according to Theorem 1 and Definition 1 , system (39) admits an unique

weak solution ξ. ( after reversing sense of time), and we obtain the following identity:

∫ τ

0

∫
Ω

ξi
∂yi
∂ν

dΓdt = 0;

hence ξi = 0 on Σ. The Cauchy data of ξ(t;v) on Σ being zero, we conclude ( see [18]) ξ = 0

and hence ψ = 0.

Now, set

τ04 = inf{τ : y′(τ ;v) ∈ KV ′ for some v ∈ UΣ}. (40)

Then the following result holds (proof as in the above section).

Theorem 14. There exists an admissible control v0 to the problem (TOP4), which steering y′(t;v0)

to hitting a target set KV ′ in minimum time τ04 ( defined by (40) ). Moreover

n∑
i=1

∫
Ω

−(−∆)−1(y′i(τ
0
4 ;v

0)− zid)
(
y′i(τ

0
4 ;v)− yi(τ

0
4 ;v

0)
)
dx ≥ 0 ∀v ∈ UΣ (41)

which can be interpreted as the above sections to obtaining the following theorem:

Theorem 15. The optimal control v0 of problem (TOP4) is characterized by (6) (with vi = v0i )

and the following system of equations and inequalities

∂2pi
∂t2

(t;v0)−
(
A(t)p(t;v0)

)
i
= 0 inΩ×]0, τ04 [,

pi(x, τ
0
4 ;v

0) = −(−∆)−1(yi(x, τ
0
4 ;v

0)− zid) inΩ,

p′i(x, τ
0
4 ;v

0) = inΩ,

pi(x, t;v
0) = 0 onΓ×]0, τ04 [,


(42)

n∑
i=1

∫ τ0
4

0

∫
Γ

∂pi
∂ν

(vi − v0i )dΓdt ≥ 0 ∀u ∈ UΣ. (43)

If UΣ is given by (38) then v0 is bang-bang. If further EΓ is strictly convex, v0 is unique.
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Conclusions.

• Here, some time-optimal control problems for n × n Dirichlet co-operative hyperbolic linear

system involving Laplace operator with distributed or boundary control have been studied.

For each problem, the optimal controls are characterized in terms of an adjoint system and

(for special cases of control) shown to be unique and bang-bang.

• We note that, in this paper, we have chosen to treat a special systems involving Laplace

operator, just for simplicity. Most of the results we described in this paper apply, without any

change on the results, to more general parabolic systems involving the following second order

operator :

L(x, .) =

n∑
i,j=1

bij(x, .)
∂2

∂xi∂xj
+

n∑
j=1

bj(x, .)
∂

∂xj
+ b0(x, .)

with sufficiently smooth coefficients (in particular, bij , bj , b0 ∈ L∞(Q), bj , b0 > 0 ) and under

the Legendre-Hadamard ellipticity condition

n∑
i,j=1

ηiηj ≥ σ

n∑
i=1

ηi ∀(x, t) ∈ Q,

for all ηi ∈ ℜ and some constant σ > 0.

In this case, we replace the first eigenvalue of the Laplace operator by the first eigenvalue

of the operator L (see [19]).

• The results in this paper, carry over to the optimal control problems with fixed -time ( [1]

chapter 3 ), for example, the results of (TOP1) carry over to the fixed -time problem

minimize
n∑
i=1

∫
Ω

|yi(x, T ;u)− zid(x)|2dx, T fixed ,

subject to (6) [ except in the trivial case where zid(x) = yi(x, T ;v) for some admissible control

u. ] This can proven in an analogous manner, as the necessary and sufficient conditions for

optimality for this problem coincide with (24),(25) and (6) (with ui = u0i ).
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