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Abstract 

  In this paper, a monotone linear complementarity reformulation of the 

nonnegative least squares problems in inequality sense is introduced. Then 

Mehrotra’s predictor-corrector interior point algorithm is applied to solve  the 

resulting monotone linear complementarity problem. Our numerical experiments 

on several randomly generated test problems show that Mehrotra’s algorithm 

overperforms the widely used generalized Newton-penalty method. 
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1. Introduction   

Mathematical models described by linear systems arise in many areas such as 

radiation treatment planning, statistical analysis, training neural networks and 

classification .  In practice, the resulting  systems  are often inconsistent. Several  

algorithms are proposed   in order to make them feasible. A well studied approach 

for correcting an inconsistent system to a consistent one,  is to make the least 

changes in problem data. For example,  in  [1]  the authors  obtain  an optimal 

correction of an inconsistent linear system, where only the nonzero coefficient of 

the constraint matrix are allowed to be perturbed for reconstructing a consistent 

system. In [9]  the authors have applied the changes simultaneously in the 

coefficient matrix and the right hand side vector and have provided  a feasible 
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direction method for solving the fractional nonconvex minimization problem 

results  from the optimum correction  of  the inconsistent  linear system. In another 

study, the authors have considered  the changes in the coefficient matrix only and 

for solving the resulting fractional quadratic problem, they have utilized Genetic 

algorithm [10]. The optimal correction of  an inconsistent set of linear inequlities 

using the    norm by minimal changes in the right hand side vector is also well 

studied in [11,14,16] where the authors have applied  generalized Newton method, 

and interior point gradient  algorithm to solve the  underlying convex  problem. 

In this paper,  we consider  the following inconsistent set of linear inequalities: 

     
    

 

where       , with     and      . Correcting such system to a 

consistent system with minimal changes in the right hand side vectors in    norm is 

equivalent to solve the following minimization problem [11]: 

   
   

  
 

 
         

                       

where             . Problem (1) is a convex minimization problem and its 

KKT optimality conditions  are as follow: 

               

                                                                   

         

where    is the Lagrange multiplier corresponding to the inequality constraint.  

It is well known that modern  primal-dual interior point methods provide very 

efficient solution techniques for linear and nonlinear optimization problems  [18]. 

Under  the assumption  of  smoothness on objective function and constraints,  

primal-dual interior point algorithms are extended to general nonlinear 

programming [5,17].  However, the objective function of (1) is nonsmooth [6], 

thus the existing  primal-dual interior point methods can not be directly applied to 

solve  it.  In this paper, we show that  KKT optimality conditions (2) is equivalent 

to a monotone linear complementarity  problem (LCP). Then we apply Mehrotra’s 
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predictor –corrector interior point algorithm  to solve the resulting monotone LCP. 

We have compared  Mehrotra’s predictor-corrector algorithm with the so called  

Generalize Newton penalty algorithm on various  randomly generated test 

problems.  Our numerical experiments show  that  Mehrotra’s predictor-corrector  

algorithm finds an optimal  solution much faster than the  Generalized  Newton 

algorithm. 

Notations 

For a given  vector     ,           is a diagonal matrix with   ’s as 

diagonal elements and    denotes the vector of all ones.  

2. LCP  Reformulation 

The LCP is to find a pair        such that  

       

                  
        

 LCP(M,q) 

where      and        is a positive semidefinite matrix. 

Theorem 1.The optimality conditions (2) is equivalent to a monotone  LCP. 

Proof. Let the pair (     satisfies KKT conditions (2) . By introducing   

         we obtain the following system: 

        

                          

                 

                                       
                            

  

 

Now we split        to its positive part               ) and its negative 

part                ). Thus               and               

with         and   
     . Therefore (2) is equivalent to the following system   

             

  

          
                                 

                       
                                     

(3) 
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which is a monotone  LCP(M, q) with  

         

   
 ,     

    

 
 ,    

 
  

 ,     
 
  

 . 

 

In the next section, we discuss Mehrotra’s predictor-corrector interior point 

algorithm to solve the  monotone LCP. 

3 . Mehrotra’s Predictor-Corrector Algorithm  

There are several approaches to solve LCP’s which have been studied intensively 

[2,7,12,13,18]. Among them,  interior-point methods (IPMs) are one of the most 

remarkable methods [3,7,8,18,19]. In this section, we apply the infeasible version 

of Mehrotra’s predictor-corrector (MPC) algorithm for solving the  LCP 

reformulation  (3)  as follow: 

       

   
  

 
  

   
    

 
   

 
  

   

                                            
 
  

        
 
  

                (4) 

Based on  Mehrotra’s  predictor –corrector  strategy, first a predictor direction 

              is obtained  by solving the following system which  corresponds  

computing the pure Newton  direction for the system (4) : 

 

     

    
 
  

 
 

 
 

  

 
  

 

 

 
 
 
 
     

     

   
   

   
    

 
 
 
  

   
   

      
    

       (5) 

where           ,                are the residual and   

                                         .  This direction is often 

called the affine –scaling direction.  It is easily seen that the coefficient matrix in 

(5) is nonsingular whenever      and        It  should be noted the solution  of 

(5) is obtained as follow rather than solving it directly: 
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 where        
     

  . Once the affine –scaling direction is computed,  the 

maximum step size  in this direction is computed i.e., the largest   
   

 and 

  
   

such that  

     
   

          
   

        , 

where                 
     and                 

    . Using the 

information from the predictor step,  MPC  algorithm  computes the corrector 

direction by solving the following system: 

 

     

    
 
  

 
 

 
 

  

 
  

 

  

     

     

   
   

   
   

   

 
 

       
      

    

               

        

where    
            

    ,    
            

    ,       

           ,                    and the centering parameter   is chosen 

according to the following heuristic due to Mehrotra 

   
    

 
  , 

where    
   

     
  and       

     
   

            
   

      

     
.  

Once the predictor and corrector steps are computed, they are added together to 

produce the composite predictor-corrector direction  

                                     . 

Finally, the  direction         is used to generate the new iteration of the 

algorithm. The detailed algorithm is outlined as follow: 
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MPC Algorithm  

Choose            and set    . 

While               
 

     or                  do 

Step1. Set               and solve system (5) for              . Compute 

  
   

                             

  
   

                             

     
     

   
            

   
      

     
. 

Step 2. Set    
    

 
   and solve system (6) for                . 

Step 3. Set                                       and compute 

                          , 

                          , 

Step 5. Set                
           

 ,       and go to Step 1. 

End 

4. Numerical Results 

In this section, we compare MPC algorithm with the so-called generalized 

Newton-penalty (GNP) algorithm of [14,15] on several randomly generated test 

problems. Test problems are generated using the following MATLAB code: 

% Generates random inconsistent system Ax<=b. 

% Input: m,n,d(density)  Output: A,b. 

pl=inline('(abs(x)+x)/2'); 

m1=max(m-round(0.5*m),m-n); 

A1=sprand(m1,n,den);A1=(A1-0.5*spones(A1)); 

x=spdiags(rand(n,1),0,n,n)*(rand(n,1)-rand(n,1)); 
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x=spdiags(ones(n,1)-sign(x),0,n,n)*10*(rand(n,1)-

rand(n,1)); 

m2=m-m1;u=randperm(m2);A2=A1(u,:); 

b1=A1*x+spdiags((rand(m1,1)),0,m1,m1)*ones(m1,1); 

b2=b1(u)+spdiags((rand(m2,1)),0,m2,m2)*10*ones(m2,1); 

A=100*[A1;-A2]; b=[b1;-b2]; 

 

In our testing,   and  maximum number of iterations in both  algorithms are set to 

      and 100, respectively. The penalty parameter   in GNP algorithm is 

considered 

                    

where k is the iteration number. The average of  10 runs for both algorithms on 

generated examples are reported in Tables 1 and 2.  One can observe that MPC 

algorithm finds an optimal solution extremely faster than the GNP Algorithm,  

specially for  large-scale problems.  

Table1: Comparison of   MPC  and GNP  algorithms on several test problems with         

    and. 

 

 

                               Time 

(sec) 

Iter 

        MPC                          0.692 17.7 

GNP                          3.981 100 

1000,500 MPC                          0.773 17.0 

GNP                          4.370 100 

1500,1000 MPC                          3.948 19.3 

GNP                         20.33 100 

2000,1000 MPC                          4.604 19.3 

GNP                          22.51 100 

2500,2000 
MPC                          22.85 19.1 

GNP                          110.7 100 

3000,2000 
MPC                          22.87 19.4 

GNP                          109.0 100 

4000,3000 
MPC                          63.46 19.5 

GNP                          292.9 100 
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Table2: Comparison of  MPC and GNP  algorithms on several test problems with         

     and. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this paper, we have studied the nonnegative least squares problems in the 

inequality sense.  We have shown that its KKT optimality conditions is equivalent 

to  a monotone linear complenetarity problem which can be efficiently solved 

using Mehrotra’s predictor–corrector interior point algorithm. Finally, the 

performance of  the so called Generalized Newton-penalty algorithm and 

Mehrotra’s predictor-corrector algorithm are compared on several randomly 

generated test problems.  Our computational comparison  show that  Mehrotra’s 

algorithm  is extremely faster. 
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